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In this paper, we establish an endpoint estimate for the commutator, [b, T], of a class of pseudodifferential operators T with
symbols in Hörmander class Sm

ρ,δ(R
n). In particular, there exists a nontrivial subspace of BMO(Rn) such that, when b belongs to

this subspace, the commutators [b, T] is bounded from H1
ω(Rn) into L1

ω(Rn), which we extend the well-known result of Calderón-
Zygmund operators.

1. Introduction

(e purpose of this paper is to find out a proper subspace of
BMO(Rn) such that, the commutators of pseudodifferential
operators T is bounded on weighted Hardy space H1

ω(Rn),
where the operators T associated with the symbols in the
Hölmander class Sm

ρ,δ(R
n) and ω ∈ Ap(Rn). As in [1], we

firstly recall some notations and lemmas. For m ∈ R and
ρ, δ ∈ [0, 1], a symbol a(x, ξ) ∈ Sm

ρ,δ(R
n) is a smooth func-

tion defined on Rn × Rn such that

z
α
xz

β
ξa(x, ξ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Cα,β(1 +|ξ|)
m− ρ|β|+δ|α|

, (1)

holds for all multi-indices α, β ∈ Nn, where Cα,β is inde-
pendent of x and ξ (see, e.g., [2]).

Given an infinitely differentiable function f ∈ Rn with
compact supports and symbol a(x, ξ) ∈ Sm

ρ,δ(R
n), the

pseudodifferential operator T is defined by

Tf(x) � 􏽚
Rn

a(x, ξ)e2πix·ξ 􏽢f(ξ)dξ, (2)

where 􏽢f is the Fourier transform of f and we write T ∈Lm
ρ,δ

. Moreover, the operatorT can be expressed by a distribution
kernel K(x, y) as (see, e.g., [3])

Tf(x) � 􏽚 K(x, y)f(y)dy. (3)

Let b ∈ BMO(Rn) and T be a Calderón-Zygmund op-
erator. A classical result in [4] stated that the commutator
operators [b, T], defined by

[b, T]f(x) � b(x)Tf(x) − T(bf)(x), (4)

is bounded on Lp(Rn) for p ∈ (1,∞). However, it fails to be
of weak type (1, 1) and of type (H1(Rn), L1(Rn)) when
b ∈ BMO(Rn) (see, [5, 6]). Instead, some endpoint theories
are provided.

Remark that if the symbol a(x, ξ) satisfies some par-
ticular assumptions, pseudodifferential operator T inLm

ρ,δ is
a Calderón-Zygmund operator (see, [7]). Correspondingly,
when b ∈ BMO(Rn) and T ∈Lm

ρ,δ, the boundness of [b, T]

on Lebesgue space Lp(Rn) for p ∈ (1,∞) was considered
(see, e.g., [8–10]).

It is widely known that H1(Rn) is an advantageous
substitute for L1(Rn). (e behavior of commutator [b, T] on
H1(Rn) has also attracted a lot of interest. For example,
when b ∈ LMO∞(Rn) (see, [11]), Yang et al. [12] obtained
that [b, T] is bounded from H1(Rn) into L1(Rn), where
T ∈L0

1,δ with δ ∈ [0, 1); Hung and Ky [13] established an
estimate for [b, T] on local Hardy space h1(Rn). Very re-
cently, Deng and Long [14] got an estimate for [b, T] from
H1(Rn) into weak L1(Rn), where b ∈ BMO(Rn).

Forω ∈ Ap(Rn), there are numerous papers dealing with
the weighted Lp boundedness of the commutators [b, T] for
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p ∈ (1,∞) and we refer to [15–20] for more details, where
T ∈Lm

ρ,δ and b ∈ BMO(Rn). A nature question is that can
one establish an estimate for [b, T] on weighted Hardy
spaces H1

ω(Rn)?
In general, the commutators [b, T] is not bounded from

the weighted Hardy spaces H1
ω(Rn) into the weighted

Lebesgue spaces L1
ω(Rn) if b ∈ BMO(Rn) is not a constant

function, even T is a Calderón-Zygmund operator. It is
worthy to pointing out that in [21], Liang et al. found a
proper subspaces of BMO(Rn), such that, the commutators
of Calderón-Zygmund operator is bounded on weighted
Hardy spaces. Motivated by this result, we wonder whether
there exists a nontrivial subspace of BMO(Rn) such that
when b belongs to this subspace, the commutators [b, T] of
pseudodifferential operator is bounded on H1

ω(Rn).
(emain concern of this paper is to give an answer to the

above question. For this purpose, we recall the definition of
the Muckenhoupt weights Ap(Rn). A nonnegative mea-
surable function ω is said to be in the Muckenhoupt class
Ap(Rn) for p ∈ (1,∞), if

[ω]Ap Rn( ) � sup
B⊂Rn

1
|B|

􏽚
B
ω(x)dx􏼠 􏼡

1
|B|

􏽚
B
ω(x)

− (1/p− 1)dx􏼠 􏼡

p− 1

<∞,

(5)

and for p � 1, if

[ω]A1 Rn( ) � sup
B ⊂ Rn

1
|B|

􏽚
B
ω(x)dx􏼠 􏼡 esssupx∈Bω(x)

− 1
􏼐 􏼑<∞,

(6)

where the supremum is taken over all balls B ⊂ Rn and
A∞(Rn) � ⋃p≥1Ap(Rn).

As known, if ω ∈ Ap, then ω ∈ Aq for some q ∈ [1, p).
We thus write qω � inf p≥ 1: ω ∈ Ap􏽮 􏽯 to denote the critical
index of ω. For a measurable set E, we denote
ω(E) � 􏽒

E
ω(x)dx. (e following lemma provides a way to

compare |E| and ω(E) of a set E(see [22]).

Lemma 1. Let ω ∈ Ap and p≥ 1.&en, there exists a constant
C> 0 such that

C
|E|

|B|
􏼠 􏼡

p

≤
ω(E)

ω(B)
, (7)

for all balls B and measurable subsets E ⊂ B.

Definition 1. Let ω ∈ A∞(Rn) and 􏽒
Rnω(x)/1 + |x|ndx<∞.

A locally integrable function b is said to belong to
BMOω(Rn) if

‖b‖BMOω Rn( ) � sup
B⊂Rn

1
ω(B)

􏽚
Rn∖B

ω(x)

|x − x0|
ndx􏼢 􏼣 􏽚

B
b(y) − bB

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dy􏼔 􏼕􏼨 􏼩<∞. (8)

Here, bB � (1/|B|)􏽒
B
b(x)dx and the supremum is taken

over all balls B � B(x0, r) ⊂ Rn with center x0 and radius r.
We point out that the space BMOω(Rn) has been

studied in [21, 23, 24]. A locally integrable function b is said
to be in BMO(Rn) if

‖b‖BMO Rn( ) � sup
B⊂Rn

1
|B|

􏽚
B
|b(x) − bB|dx<∞, (9)

where the supremum is taken over all balls B ⊂ Rn.
In [21], the spaceBMOω(Rn) is proved to be a subspace

of BMO(Rn), and not be a trivial space since it contains the
Lipschitz function with compact support and also that,

Lemma 2. Let ω ∈ A∞(Rn) and p ∈ [1,∞). &en, there
exists a constant C> 0 such that, for any f ∈ BMO(Rn) and
any ball B ⊂ Rn,

1
ω(B)

􏽚
B

f(x) − fB

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pω(x)dx􏼠 􏼡

1/p

≲‖f‖BMO Rn( ). (10)

&e first main result is stated as follow.

Theorem 1. Let ϵ � min 1, (1 + m + n)/ρ􏼈 􏼉, ω ∈ A1+(ϵ/n)

satisfies 􏽒
Rnω(x)/1 + |x|ndx<∞ and b ∈BMOω(Rn). As-

sume that the pseudodifferential operator T ∈Lm
ρ,δ with

ρ ∈ (0, 1], δ ∈ [0, 1) and

m ∈ (− (n + 1), − (n + 1)(1 − ρ)]. (11)

&en, the commutator [b, T] is bounded from H1
ω(Rn)

into L1
ω(Rn); i.e., there exists a constant C> 0 such that, for all

f ∈ H1
ω(Rn),

‖[b, T]f‖L1
ω Rn( ) ≤C‖b‖BMOω Rn( ). (12)

Finally, we make some conventions on notations. C de-
notes a positive constant may change from line to line and we
write a≲b as shorthand for a≤Cb. If a≲b and b≲a, we mean
a ∼ b. For a measurable set A, |A| denotes the Lebesgue
measure of A. B will always denote a ball and tB (t> 0)

denotes the ball B dilated by t.

2. Notations and Technical Lemmas

In this section, we begin our story by presenting an estimate
about the pseudodifferential operator T associated with the
kernel K(x, y). LetS(Rn) be the class of Schwartz functions
andS′(Rn) be its dual space.(e space of C∞-function with
compact support is denoted by C∞0 (Rn). Pseudodifferential
operators are bounded fromS(Rn) toS(Rn) and so possess
distribution kernels K(x, y) ∈ S′(Rn × Rn). (en, the fol-
lowing formula for the kernel is useful (cf. Proposition 1 in
[25], see also [26]).

Lemma 3. Let a(x, ξ) ∈ Sm
ρ,δ(R

n) with 0< ρ≤ 1, 0≤ δ < 1
and associate with the pseudodifferential operator T ∈Lm

ρ,δ.
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&en, the distribution kernel K(x, y) of T is smooth away
from the diagonal (x, x): x ∈ Rn{ } and is given by

K(x, y) � lim
ε⟶ 0

􏽚
Rn
e2πi(x− y)·ξ

a(x, ξ)ψ(εξ)dξ, (13)

where ψ ∈ C∞0 (Rn) satisfies ψ(ξ) � 1 for |ξ|≤ 1 and the limit
is taken in S′(Rn) and independent of the choice of ψ. If
M ∈ N and M + m + n> 0, K(x, y) satisfies the estimates

sup
|α+β|

D
α
xD

β
y K(x, y)|≤CM

1
|x − y|

(M+m+n)/ρ, x≠y. (14)

Moreover, for any multi-index α, β ∈ Nn and N ∈ N,

sup
|x− y|≥ 1/2

|x − y|
N

D
α
xD

β
y K(x, y)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Cα,β,N. (15)

In [20], the following is derived from Lemma 3.

Lemma 4. Let ρ ∈ (0, 1], δ ∈ [0, 1) and m ∈ (− (n + 1),

− (n + 1)(1 − ρ)] and the pseudodifferential operator
T ∈Lm

ρ,δ associated with the distribution kernel K(x, y).
&en, for any y ∈ B � B(x0, r) and every x ∈ 2j+1B∖2jB, we
have

K(x, y) − K x, x0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≲2− j(n+ε)
r

− jn
, (16)

where ϵ � min 1, 1 + n + m/ρ􏼈 􏼉.
Let ω ∈ A∞(Rn) and p ∈ (0,∞). We denote by L

p
ω(Rn)

the weighted Lebesgue space of all measurable functions f

satisfying

‖f‖L
p
ω Rn( ) � 􏽚

Rn
| f(x)|

pω(x)dx􏼒 􏼓
1/p
<∞. (17)

When p �∞, L∞ω (Rn) is defined to be the same as
L∞(Rn), the following useful L

p
ω bounds for pseudodifferential

operator T ∈Lm
ρ,δ are due to Michalowski et al. [15].

Lemma 5. Let T ∈Lm
ρ,δ with ρ ∈ (0, 1], δ ∈ [0, 1) and

m ∈ (− ∞, − n(1 − ρ)). &en, for each p ∈ (1,∞) and
ω ∈ Ap, there exists a constant C> 0 such that

b − bB( 􏼁Ta
����

����L1
ω Rn( )
≤C‖b‖BMO Rn( ), (18)

Let ϕ ∈ S(Rn) with 􏽒 ϕ dx≠ 0. &en, for any x ∈ Rn, the
maximal function of a distribution f ∈ S′(Rn) is defined by

ϕ∗(f)(x) � sup
t>0

ϕ∗t f(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (19)

where ϕt(y) � (1/tn)ϕ(y/t) for any t> 0. Let p ∈ (1,∞).
&en, the maximal function is bounded on L

p
ω(Rn) if and only

if ω ∈ Ap. Analogous to the classical Hardy space, the
weighted Hardy space H1

ω(Rn) can be defined in terms of
maximal functions.

Definition 2. Let ω ∈ A∞. (e weighted Hardy space
H1

ω(Rn) is defined by

H
1
ω R

n
( 􏼁 � f ∈ S′ Rn

( 􏼁: φ∗(f)(x) � sup
t> 0

φt ∗f(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 ∈ L
1
ω R

n
( 􏼁􏼨 􏼩,

(20)

which is independent of the choice of φ ∈ S(Rn). Moreover,
we define ‖f‖H1

ω(Rn) �
�����φ∗(f)‖L1

ω(Rn).

Definition 3. Let ω be a weight with critical index qω. An
(ω, 1,∞)-atom is a function a satisfying

supp(a) ⊂ B, ‖a L∞ Rn( )‖ ≤ω(B)
− 1

, (21)

and 􏽒
Rn a(x)xαdx � 0 for every multi-index α with

|α|≤ [n(qω − 1)]. Conventionally, T∗1 � 0 means
􏽒
Rn Ta(x)dx � 0 for all (ω, 1,∞)-atoms a.
(e Hardy space H1

ω(Rn) is spanned by all of
(ω, 1,∞)-atoms (see [22]). Namely,

f � 􏽘
j

λjaj, (22)

in the sense ofS′, where each aj is an (ω, 1,∞)-atom and λj

satisfies

􏽘
j

λj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌<∞. (23)

Moreover, ‖f‖H1
ω(Rn) � inf 􏽐

∞
j�1 |λj|: f � 􏽐

∞
j�1 λjaj􏽮 􏽯.

Deng et al. [1] got some sufficient conditions for the
boundedness of pseudodifferential operators T ∈Lm

ρ,δ on
weighted Hardy space H1

ω(Rn).

Lemma 6. Let ϵ � min 1, 1 + m + n/ρ􏼈 􏼉, p ∈ [1, 1 + ϵ/n),
ω ∈ Ap, and T ∈Lm

ρ,δ with ρ ∈ (0, 1], δ ∈ [0, 1). If
m ∈ (− (n + 1), − (n + 1)(1 − ρ)], then T is bounded from
H1

ω(Rn) into L1
ω(Rn), i.e., there exists a constant C> 0 such

that

‖Tf‖L1
ω Rn( ) ≤C‖f‖H1

ω Rn( ). (24)

3. The Proof of Theorem 1

In this section, we establish the sufficient condition for the
boundedness of [b, T] from H1

ω(Rn) into L1
ω(Rn). As in [21],

we need the following proposition.

Proposition 1. Write ϵ � min 1, (1 + m + n)/ρ􏼈 􏼉. Let
p ∈ (1, 1 + (ϵ/n)) and ω ∈ Ap(Rn). Assume that the pseu-
dodifferential operator T ∈Lm

ρ,δ with ρ ∈ (0, 1], δ ∈ [0, 1)

and m ∈ (− (n + 1), − (n + 1)(1 − ρ)]. &en, there exists a
constant C> 0 such that, for any b ∈ BMO(Rn) and
(ω, 1,∞)-atom a,

b − bB( 􏼁Ta
����

����L1
ω Rn( )
≤C‖b‖BMO Rn( ), (25)

where supp(a) ⊂ B � B(x0, r).

Proof. It suffices to show that

I1 � 􏽚
2B

b x − bB( 􏼁Ta(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ω(x)dx≤C‖b‖BMO Rn( ), (26)

and
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I2 � 􏽚
(2B)∁

b(x) − bB􏼁Ta(x) |ω(x)dx≤C‖b‖BMO Rn( ). (27)
For I1, it is easy to see that

I1 ≤􏽚
2B

b2B − bB

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|Ta(x)|ω(x)dx + 􏽚

2B
|b(x) − b2B‖Ta(x)|ω(x)dx

≤ |b2B − bB|‖Ta‖L1
ω Rn( ) + 􏽚

2B
|b(x) − b2B‖Ta(x)|ω(x)dx

� I11 + I12.

(28)

(en, by Lemma 6, the boundedness of the operator T

from H1
ω(Rn) to L1

ω(Rn), we conclude that

I11 ≤C‖b‖BMO Rn( ). (29)

Also, by Hölder inequality, Lemma 2 and the bound-
edness of T on L

p
ω(Rn) (Lemma 5), we have

I12 ≤ 􏽚
2B

b(x) − b2B

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q′ω(x)dx􏼒 􏼓

1/q′
􏽚
2B

|Ta(x)|
qω(x)dx􏼒 􏼓

1/q

≤C(ω(2B))
1− (1/q)

‖b‖BMO Rn( )‖Ta‖L
q
ω Rn( )

≤C(ω(2B))
1− (1/q)

‖b‖BMO Rn( )‖a‖L
q
ω Rn( )

≤C‖b‖BMO Rn( ).

(30)

(us, (26) holds. For I2, by the moment condition of (ω, 1,∞)-atoms a,
we have

I2 � 􏽚
(2B)∁

|b(x) − bB| 􏽚
B
a(y) K(x, y) − K x, x0( 􏼁􏼂 􏼃dy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
ω(x)dx

≤􏽚
B
|a(y) 􏽚

(2B)∁
| b(x) − bB‖K(x, y) − K x, x0( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
ω(x)dx dy

� 􏽚
B
|a(y) 􏽘

∞

k�1
􏽚
2k+1B∖2kB

| b(x) − bB‖K(x, y) − K x, x0( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
ω(x)dx dy.

(31)

(en, we apply Lemma 4 to get

I2 ≤C􏽚
B
|a(y)| 􏽘

∞

k�1
􏽚
2k+1B∖2kB

2− k(n+ϵ)
r

− kn
b(x) − bB

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ω(x)dx dy

≲
|B|

ω(B)
􏽘

∞

k�1

2− kϵ

2k+1
B

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽚
2k+1B

|b(x) − bB|ω(x)dx.

(32)

Finally, by using Lemma 2 again and combing the
inequality

b2k+1B − bB

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 􏽘

k

j�0
b2j+1B − b2jB

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≲(k + 1)‖b‖BMO Rn( ), (33)

4 Journal of Mathematics



with Lemma 1 and the condition p ∈ (1, 1 + (ϵ/n)), we
deduce

I2 ≤C
|B|

ω(B)
􏽘

∞

k�1
2− kε

k
ω 2k+1

B􏼐 􏼑

2k+1
B

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
‖b‖BMO Rn( )

≤C‖b‖BMO R
n

( 􏼁 􏽘

∞

k�1
k2− k(ε+n− pn) ≤C‖b‖BMO Rn( ),

(34)

and which suggests that (27) holds. (us, we finish the proof
of Proposition 1.

Now, we are ready to give the proofs of (eorem 1. □

Proof. Write ϵ � min 1, (1 + m + n)/ρ􏼈 􏼉. Let ω ∈ A1+(ϵ/n)

and f ∈ H1
ω(Rn). According to the atomic characterization

of f and Proposition 1, it is reduced to showing that

T b − bB( 􏼁a( 􏼁
����

����L1
ω Rn( )
≤C‖b‖BMOω Rn( ), (35)

holds for each (ω, 1,∞)-atom a related to some ball
B � B(x0, r).

(en, by the boundedness of T from H1
ω(Rn) to L1

ω(Rn)

as in Lemma 6, we just need to prove

b − bB( 􏼁a
����

����H1
ω Rn( )
≲‖b‖BMOω Rn( ). (36)

Finally, (36) is equivalent to establishing

ϕ∗ b − bB( 􏼁a( 􏼁
����

����L1
ω Rn( )
≲‖b‖BMOω Rn( ), (37)

for φ ∈ S(Rn) with 􏽒φ dx≠ 0, since
‖(b − bB)a‖H1

ω(Rn) �
�����φ∗((b − bB)a)‖L1

ω(Rn) as in Definition 2.

In order to get (37), we consider

I3 � 􏽚
2B
ϕ∗ b − bB( 􏼁a( 􏼁(x)ω(x)dx,

I4 � 􏽚
(2B)∁

ϕ∗ b − bB( 􏼁a( 􏼁(x)ω(x)dx.

(38)

For I3, combining Hölder’s inequality with the weighted
Lp boundedness of the maximal function and Lemma 2, we
have

I3 ≤ (ω(2B))
1/q′ ϕ∗

���� b − bB( 􏼁a( 􏼁 L
q
ω Rn( )‖ ≤ (ω(2B))

1/q′
b − bB( 􏼁

���� a L
q
ω Rn( )‖

≤C
1

ω(B)
􏽚

B
| b(x) − bB|

qω(x)dx􏼠 􏼡

1/q

≤C‖b‖BMO Rn( )

≲‖b‖BMOω Rn( ).

(39)

For I4, noting that |x − y| ∼ |x − x0| for every x ∈ (2B)∁

and any y ∈ B, we get

ϕ∗ b − bB( 􏼁a( 􏼁 � sup
t> 0

1
t
n􏽚

B
|b(y) − bB‖a(y)| ϕ

x − y

t
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dy

≲
1

x − x0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
n􏽚

B
|b(y) − bB‖a(y)|dy.

(40)

Hence, I4 ≲ ‖b‖BMOω(Rn) and it completes the proof of
(eorem 1. □
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