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This article applies efficient methods, namely, modified decomposition method and new iterative transformation method, to
analyze a nonlinear system of Korteweg-de Vries equations with the Atangana-Baleanu fractional derivative. The nonlinear
fractional coupled systems investigated in this current analysis are the system of Korteweg-de Vries and the modified system of
Korteweg-de Vries equations applied as a model in nonlinear physical phenomena arising in chemistry, biology, physics, and
applied sciences. Approximate analytical results are represented in the form of a series with straightforward components, and
some aspects showed an appropriate dependence on the values of the fractional-order derivatives. The convergence and
uniqueness analysis is carried out. To comprehend the analytical procedure of both methods, three test examples are provided for
the analytical results of the time-fractional KdV equation. Additionally, the efficiency of the mentioned procedures and the
reduction in calculations provide broader applicability. It is also illustrated that the findings of the current methodology are in
close harmony with the exact solutions. The series result achieved applying this technique is proved to be accurate and reliable with
minimal calculations. The numerical simulations for obtained solutions are discussed for different values of the fractional order.

1. Introduction

Many researchers have been working on various aspects of
fractional derivatives in recent years. Caputo and Fabrizio
modified the existing Caputo derivative to develop the
Caputo-Fabrizio fractional derivative [1-5] based on a
nonsingular kernel. Because of its advantages, numerous
researchers utilized this operator to investigate various types
of fractional-order partial differential equations [6-9]. To
address this issue, Atangana and Baleanu proposed a new
fractional operator called the Atangana-Baleanu derivative,
which combines Caputo and Riemann-Liouville derivatives.
Because of the existence of the Mittag-Leffler kernel, which
is a generalization of the exponential kernel, this new

Atangana-Baleanu derivative has along memory. Moreover,
the Atangana-Baleanu operator outperforms other opera-
tors, and different scientific models have been successfully
solved. Many advances have been made in fractional calculus
over the last few years by borrowing ideas from classical
calculus, but it does not remain easy. Scholars have the main
concern to obtain a numerical solution; for this, numerous
efficient methodologies have been constructed for fractional
differential equations, such as the Adomian decomposition
transform method [10], variational iteration transform
method [11, 12], optimal homotopy asymptotic method [13],
and homotopy perturbation method [14, 15].

Korteweg and de Vries introduced the Korteweg-de
Vries equation in 1895 to model shallow water waves in a
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canal [16]. The suggested system Korteweg-de Vries
equations play a crucial role in diverse engineering and
applied sciences such as plasma physics, water waves, hy-
drodynamics, and theory of the quantum field. The
Korteweg-de Vries equations are usually investigated in the
analysis of nonlinear dispersive waves [17]. They define the
interactions among two long waves with various dispersion
relations. Many researchers have been interested in these
schemes, and a lot of works have been done. For example,
Ghoreishi et al. applied the homotopy analysis method to
achieve numerical results of a modified system of
Korteweg-de Vries equations [18]. Kaya and Inan in [19]
achieved traveling wave results of the system of Korteweg-de
Vries and modified system of Korteweg-de Vries equations.
The fractional-order system of Korteweg—de Vries equations
is defined as follows:

ay_[U—_ 83_[U_6 Ma£+6va_w
R Ve PR Py
\ (1
v oV oV
= 30—, $§>0,0<y<],

55~ oy oy

where y is the fractional-order derivative of U(¢, ) and
V (¢, ), 9, and p are constants, respectively. The functions
U(p, J) and V (¢, ) are considered as important functions
of time and space, disappearing for S and ¢, respectively.
The other method eliminates to the conventional coupled
Korteweg-de Vries equations since p=9=1 s
implemented.

A classic model in this hierarchy is the modified coupled
Korteweg-de Vries system. The following nonlinear partial
differential equations govern this model [20]:
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The modified Korteweg-de Vries equation in its
standard type is simplified by the modified couple
Korteweg-de Vries equation (2), with V=W=0.
Korteweg-de Vries models are a source of nonevolution
equations with a wide range of implementations in science
and engineering. The Korteweg-de Vries models, for
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instance, generate ion-acoustic result in fluid mechanics
[21, 22]. Long waves characterise geophysical fluid dy-
namics in shallow and deep oceans [23, 24]. Various
studies have suggested numerous systems to overcome the
fractional-order Korteweg-de Vries equation employing
various methodologies, such as the differential transform
method [25], Adomian decomposition method [26],
natural decomposition method [27], homotopy analysis
method [28], Elzaki projected differential transform
method [29], variational iteration method [30], new it-
erative method [31], modified tanh technique [32], and Lie
symmetry analysis [33]. Analogously, same solutions for
(2) have been suggested by Inc and Cavlak [34], Fan [35],
Lin et al. [36], Inc et al. [37], and Ghoreishi et al. [18].

Daftardar-Gejji and Jafari [38] proposed an innovative
iterative method of solving functional equations with ap-
proximation solutions. The new iterative approach is con-
structed on the justification of disappearing the nonlinear
functions is identified as the iterative transformation tech-
nique [39]. This procedure is quick and accurate, and it
avoids the utilization of complicated integrals, uncondi-
tioned matrix, and infinite series forms. This technique does
not require any expressive parameters for the model. Nu-
merous researchers have analyzed new iterative transfor-
mation methods to solve partial differential equations, such
as the Fornberg-Whitham equation [40], KdV equation
[31], and Klein-Gordon equation [41].

The Adomian decomposition method was firstly intro-
duced by Adomian in 1980 and implemented by several
investigators. In recent decades, numerous researchers have
investigated the solutions of integral and differential
equations by different techniques with the mixed Laplace
transform. The Adomian decomposition method was
modified with many integral transformations, such as
Laplace, p-Laplace, Elzaki, Aboodh, and Mohand. Modifi-
cation of Laplace Adomian decomposition method for
solving nonlinear Volterra integral and integro-differential
equations based on Newton Raphson formula [42] for
solving nonlinear integrodifferential and Volterra integral
equations based on the Newton-Raphson method, discrete
Adomian decomposition technique [43] applied for inves-
tigating the fractional-order Navier-Stokes model, Lap-
lace-Adomian decomposition method [44] study of
implicit-impulsive differential equations involving Caputo-
Fabrizio fractional derivative.

2. Basic Definitions

Definition 1. The fractional-order Caputo derivative is de-

fined by
CDLF(S)} = —— j° (S - kT 7 (Rdk,
0

(n—1y) (3)

wheren<y<n+ 1.

Definition 2. The Laplace transformation connected with
fractional Caputo derivative “°DL{f (S)} is expressed by
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L{"Dg{f (S )}}(s) [s L{f (x, 3)}

(s)-s”*lf(x,O)—.--—f”*l(x,O)].
(4)

Definition 3. In the Caputo sense, the Atangana-Baleanu
derivative is defined as

Dyl f ()} = A(”j f' (R [—%(l—k)y]dk
(%)

where A(y) is a normalization function such that
A(0)=A() =1,feH (ab),b>aye[01], and E,
represents the Mittag-Leffler function.

Definition 4. The Atangana-Baleanu derivative in the Rie-
mann-Liouville sense is defined as

ABC ~ A()’) d (s Y
Di{r @)= 55 Lf(k)Ey[ o k)y]dk.

(6)

Definition 5. The Laplace transform connected with the
Atangana-Baleanu operator is defined as

A()s"L{f ()} (s) =" 1f(0)'

7
1=y (s"+ (/1 -9)) @)

“PDE{f (D)} (s) =

Definition 6. Consider 0<y <1, and f is a function of y;
then, the fractional-order integral operator of y is given as

j-1

k=0

3

Y -1
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3. The General Implementation of the Modified
Decomposition Method

Suppose the nonlinear fractional partial differential
equations
2LU(9, Q) + ZU(9, F) + SU(p, T) )
=Z(9,3), T>0,0<y<],
with the condition
U(g,0) = Z(9), (10)

where 2% = (0"U(¢, F)/03”) show the fractional-order
Caputo derivative operator with 0 <y <1, while Z is linear,
W are nonlinear functions, and # (¢, ) defines the source
term.

Applying the Laplace transformation to (9), we get

L[25U(p, ) + ZU(, S) + V' U(9, )| = LIF (¢, 3)].
(11)

Taking the Laplace transformation differentiation, we
find

W _j—l 1\ 7% 1 )
w5l

(12)
L{ZU (¢, ) + NU(e,I)] + L[Z (¢, I)].

The inverse Laplace transformation of (12) gives

y—k-1 Y _
U(p.) =L [Z ;) v +Wu%(q),sn}

(13)

Y —
_I[WUQU(@SHWU(%SH]'

The adomain decomposition method series form solu-
tion is defined as

U D) = ) U (¢, D). (14)

Jj=0

Thus, the nonlinear function ./ (¢, ) can be calculated
by the Adomian polynomials defined as

NU(@.S) =) A,(UpUp,..), j=01...,  (15)
=0

where

A;(UpUy,...) =

[ <ZAI[U]>:| ., j>0. (16)
J=0 A=0

Putting (14) and (15) into (13), we have
Y(1—
1 |: (V (1 y) + Y) [I_

}.

Lastly, the iterative methodology for (17) is achieved as

YU (9.9 =% (p)+Z(p)- L

j=0

] (17)
[gu(¢,5)+22&j

j=0




U (9. 9) =% (9)+Z(p), j=0,

Y _ o)
Ujn (9.9) =L [Wm[%((p,m + ZAJ] , j=zlL

j=0

(18)

4. The General Discussion of the New Iterative
Transformation Method

Let us assume the following general fractional partial dif-
ferential equation

DEU(, S) + LU(9, S) + NU(9, F) = Z (9, ),

~ . . (19)
I>0,j-1<y<j,jeN,
with the condition
UY(9,00= %, (¢), x=0,1,2,...,j—1, (20)

j-1
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where & and J/ are linear and nonlinear terms and % (¢, )
shows the source term.
Using the Laplace transformation to (19), we get

L[Z5U(p, ) + ZU(, ) + V' U(, )| = LIF (¢, 3)].

(21)
Taking the Laplace transformation differentiation
property, we get
VV j-1 1\ %1
o=y () U
(VA -7 +y) Zo v

+L[ZLU(p, T) + SU(p, )]

+L[Z (¢, )]
(22)

The inverse Laplace transformation of (22) gives

y-x-1 Y1 —
(.S =L [Z ()" v +Wu%(<p,sn]

k=0

(23)

Y(1 -
_L—I[Wuguwﬁ)+/V[U(<p,8)]]-

From the iterative connection, we achieve

U, S) = ) U, (9, ). (24)
=0

Also, the linear operator is &; therefore,

./V<Z Uj((P,S)) = /V(U0(¢,5))
j=0

3(2“1'(‘/)’5)) =Y Z[U;(9.9)], (25)
j=0 j=0

and ./ defines the nonlinear term as in [38].

+§|:/V<OZO:HJK(¢,S)>—./V<§[UK((/>,S)>:| (26)
=0 k=0 k=1

=/ (Uy) + Y. D,
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where D; = #/ (Y1, U,) - ¥ (Z15U,).

j-1

Y Uj(e, 5)[[1[
j=0

k=0

By putting (24), (25), and (??) into (23), we obtain

—x—1 Y _
Z(%)Y [U(x)(o)+M[L[%((p,5)]:|

(27)

_L_I{ML{“%(i UJK((p,S)) + W/ (Up) + iDj] }
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As a result, we determine the next iteration

INE=i\aa V(l-y)+
Up (9, = L ‘[}j(;) v o)+ Ay (57,59
k=0
Y(1_

lh(¢,5)::—ml{(”(l}?)+’°u{5f(wo<¢, )+ (Uy (9,8 )1}

v (28)
~ L[(P A=y + -

Up (90 9) = I{Wm[g(uj(go,d))wj]}, me1.

Finally, (19) and (20) yield the j-term result in the series having the norm |.|. For this, we introduce a mapping

form, defined as

[U(¢) S) = [U() ((p’ S) + [Ul ((P) s) + [U2 (9’, S)

(29)

+ --+[Uj(go,£?), jeN.

5. Uniqueness and Existence Solutions for the
Modified Decomposition Method

Theorem 1 (uniqueness theorem). The unique result of

equation (9) provide space whenever 0<e<l1, where

£= (L +L + L) ((1-p)+ (/T (y +1))).

Proof. Assume that ] = (€[I], ||.|) represents all continu-
ous mappings on the Banach space, defined on I = [0, T]

WU - wU|

= max
[Jel
W
Y
[ (A=) +y)
[L[ miARY|
< max| +

Jel

v

_1[(VV(1

LIZ[U(p,3)] - Z[U(g, 8)]]]
Y _ o
-1 [Wu%w((p,sn - Z[U(g, S)]]]

‘—YWJfY)[L[/V[uJ(q),S)] —/V[[U(%S)”]

W: M—M, and we have

Y _
Uy (0,8) = U(p,S) + L7 [WL[S/[U"(@ 3))

+R[U, (¢, 9)] + ¥[U,
(30)

when Z[U(¢, 3)] = (2°U(g, I)/0¢9?) and
R[U(p,3)] = (U (¢, I)/0¢). Suppose that ZL[U(g, )]
and M (U ((p, $3)] are  also L1psch1t21an with
|§?Z—%ﬂJ|<L |U-U| and |2U - 8[U|<L2|[U Ul where
L, and L, are Lipschitz constants, respectively, and U, U are
various values of the mapping.

[M [Z[U (¢, )] + Z[U(p, )] + A [U(g, «5)]]]

L [Mug U(g, )]+ 2[U(p, )] +/V[[U(€0’~$)]]]
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- y _ .
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VSV

=(Li+ L, +i3)((1 RS 1))||u(¢,5) - U(e: D).

The mapping is a contraction under the assumption
0<e<1. As a result of the Banach contraction fixed point
theorem, there is a unique solution to (9). As a result, the
proof is complete. o

= max

) [7M pe) [L[Z Z[Uty, snﬂ

j=q

A2 ]

Theorem 2 (convergence analysis). The solution general Sel j=q
form of (9) will be convergent. X
+|]__1 {(Vy(l B Y) + V) |]_|:nz: I:I (90 \c}):|j|
~ iz n\®
Proof. Suppose S, is the nth partial sum; that is, v j=q
W,=3" i Uj (9, ). Firstly, we define that {W }1saBanach
space Cauchy sequence in M. Using into consideration of Jora- y) + y -1 R
Adomian polynomials, we achieve L Z (W ) Z (Wq—l)
j=q
n-1
—_ ~ Y V) y _ - R ~ b
R(W) = Hy+ . Hy < max| 1L 1{“ (-3+y) [z (W,.) - 2(W,..) ]
1 (32) el |
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Y(1-y)+ - -
R R e G B
g’ ~
:(L1+L2+L3)<(1—y)+r(y+1))” . qu“

Consider n = g + 1; then,

"Wq“ - Wq“ < SHWq ~Woa ”
W] o<Wy - W,
(34)

where ((IVJ1 +f,2+i3)3(”_1)/y!). Similarly, we have the
triangular inequality

(W= Wl = [Wars = W +]Wor2 = W

T L

et e W Wy
_ 9
<gq(1 : >||[u1||,
and since 0 <e< 1, we get (1 —¢""9) <1; then,
&
|w, -w ||<: max||U, . (36)

However, |U, | < 0o (since U (¢, ) is bounded). Thus, as
q—00, IIW,, - qull—)O. Hence, Wl} is a Cauchy sequence in
K. As a solution, the series ),° U, converges, and this
completes the proof. O

Theorem 3 (error estimate). The maximum absolute trun-
cation error of series solution (9) to (??) is computed as

&l
max [U(go,J)Z[U (0, — rg ”U_J || (37)

n=1

6. Numerical Results

This section describes several test examples by applying two
novel techniques, modified decomposition technique and
new iterative transformation technique, via the Atanga-
na-Baleanu derivative operator. Also, the stability and
convergence of the technique are discussed.

Example 1 (see [31]). Consider the fractional-order non-
linear system of Korteweg-de Vries equation (1) with 9 =
p = 1, with the initial conditions

1)
U(gp,0) = 9 sec h2<+92¢)

V(¢,0) = \/ggzsec hz(g + ?)

Case L first, we apply the modified decomposition
technique for Example 1.

(38)

Applying the Laplace transform to (1), we get

VY j-1 1 y-x-1 .
(V4V<1—y>+y>{%“"’”‘z($> [“”(0’}

k=0

3 Y
= [L[—pa;l;—6pba;u+ 6\/6—],
99 d¢ d¢

W j-1 1y—x—1 ®
(vyu—w+y){7“”’”)‘,§<v> Y (0)}
a3 a\/

(39)

In view of (38) and analytical method procedure as
follows:

+Mﬂ_

U Y
[ pa 3 6p[UaLU 6\/8—],
99 d¢ d¢

1
U(p,v) = ;[U(O)(go, 0)

(40)

Y —
%(gD,V) =%\/(0)((p,0)+ (V (1 Vyy)+)/)|]_

[_ A [Ua_\/]
Por PV

Using the inverse Laplace transformation, we get

U(p, D) = ”—_1[%[U(90,0)] +[L-1[Mm

o’U U oV
| —p——6pU—+6V—||,
[ pa<p3 P J¢ a‘PH

y _n-1[1 -1
V(g §) =L [V\/(¢,0)]+ﬂ_
[(vy(l—y)w) [_P_\/_3 LY ]

VY a(p p 09
(41)



By morality of the modified decomposition technique,
we get

Up (9, 3) = [ Ul(g, 0)]

=L [ 0 sec h (
= o’sec h2<(—$+%),
2 2

V, (9, S) = [L_l[%\/(q),o)]

= \ﬁgzsec hz((—S + %),
2 2 2

1[(vy(1—y)+y)[L

VW

l\)IOo

)

YU =L
j=0
'|:_PZ(;( wv)) 6PZ°Q{ +6Zgg:”
pe

(8] Y _
Z()\/j+1 (9.3 =L" [7(1' L Vyy) )y
=

| [‘Pg (Voar); = 30 2 %jﬂ’

i=0,1,2,....
(42)

Ui (9, 9) = ml[(vy(l “V+Y)

W

y+2
-1 W 5 g
=L [VV”Q p tanh(z

=0p tanh(é + %)sec hz(
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The Adomian polynomials’ some terms are defined as
follows:

ol (UU,,) = Ugly,,
o, (UU,) = Ugly, + U, Uy,
o, (UU,) = U, Uy, + U U, + U U,
‘%O(Ww) = VoV
B1(W,) = VoV, + VY, (43)
B> (W,) = V| Vo, +V,V,, + V, Vg,
G,o(LV,) = UgVy,
@, (LV,) = UpgV,, +U,V,,,
©,(LV,) = U,V,, + UV, + U,V
For j=0,1,2,3,...,

L (U)o~ 98 650

d a¢ yS’
_+7)<(1 Vs 1))

_ V(1 -
Vi (p,3) =L 1[%"‘[7’(\/@%)0_ 3P(go]]

5 32
_Qop 5 op 6
Y tanh<2+ 5 )sec h (2

1[(VY(1—VY)+V)|]_[_IO(U

ﬂJ2(¢)s}) = l

¢¢¢)1

09 yS’
9 CR

—6pod, + 6931]]
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e 98 0 0
=1! v er [2 cosh2<p q)) ]sec h4<p ¢>
vt 2 2 2 2 2

8

237 201 - p)ySY
Q p [2 COShz(p Q§0> ]SCC h4<B +%> (1 _ ,Y)Z + Yy~ + ( )/))/«S
2 2 2 2 r2y+1) T(y+1)

_ Y(1- 44
Vale.B) =L I[W[L[_P(wa)f@%l]] ()

5 5/2 2 2y ~Y

op 2(P 09 PO Yy 2(1 -9y

= 2 h 1-
2\/2[ o8 <2 2) 3]seCh< )<( v T+l T+ D

The modified decomposition technique result for Ex-
ample 1 is shown as

U(p, ) =U;y (¢, 3) + Uy (¢, ) + U, (0, F) + U (9, ) + - - -

1) 1) ) Y
= o’sec h (—+%) + Qsp tanh<z+%>sec h2<2 )((1 -+ Iy \i 1)) (45)

22y ~y
7[) [2 COSh2<P ng) 3]sec h4<8+%> (1 _ y)Z + Yy~ + 2(1- ) n
2 22 2 2 Fy+1)  T(y+1)

Similarly, we get

V(e S)=\ﬁstech2 0,09 +Q5p3/2tanh §+% sec (2420 (I-p)+ i
’ 2 2" 2)7 2 2 2 2 Ty+D

(46)
5 5/2 2 2y 2(1 - Y
+&[2 cosh2<8+%>—3]sech <p Q¢> (1- ) Y + 1=y +
242 22 F(2y+1) T(y+1)
By putting y = 1, we achieve the exact result of the
system of Korteweg-de Vries equation (1):
5 ’S
U(p,J) = stec h2<2 + % - pQZ«S>,
(47)

1)
V(p, ) = \fz sec h2(5+ QZ(P PQZ«S)
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Case II: now, we apply the new iterative transformation Using the suggested analytical method, we have
technique on Example 1.

g -1 '[L ]_7112 20, 09
Up(p,3) =L [v[U(go,O) =L [Vgsech<2+2
= g’sec h2<§ + %)
2 2

11
Vo(p, ) =L" _;\/(?”0)]

— ,
U (0 S) = L) (1 y)+y)[L[_pa UJ3°—6P[U0%+6V0%H
I 0 o

[ (A -y +y) 5

d op 26 09
Vy 0 ptanh(§+7)sec h (£+7
5 o9 5 o9 S’
_ 5 4 2 v EY _
_thatnh<2+2)sech<2+2 (1 y)+l"(y+1)

V(-y)+ Y vV,
( vy)’ Y)[I_[—p 0 _ 30,220

5 3/2 [« 34

e’p § op TN y3
= h({ -+ —+-L 1-

NG tan (2+2>sech(2+2)(( y)+l“(y+1)

=01

Vi (¢, 3) = |]—1|:

N————

(48)
S[ra=-y) +y) o’u oU oV
3) =L 1 (V ( Y Y Ll - 1_ Y1 \/71
UJZ((P"S) [ v)/ 4 a(p3 6P[U1 a¢ +6 la¢
22 8 2 0
= I]__l[ I %[2 cosh2<3+%>—3]sec h4(B+—(P>]
yrtE 2 2 2 2 2
8 2 2 2y Y
=M[2 cosh2<e+%>—3]sec h4<B+%> (1-9)7+ Ll +2(1 S
2 272 272 T2y+1) T(y+1)
y 3
< [ (A -y +y) oV, v,
V, (9, 3) =L [ 7 Li-p og° _3P[Ula—

5 5/2 2 2y _ ~Y
P [2 cosh2<8+%>—3]sec h4(8+%> (1-y)+ Y3 +2(1 MYS
22 2 2 2 2 r2y+1) T(y+1)

I~

3
[ (A -y) +y) oU;, ou; j1

B vy 1- + 83\/-_ 8\/-_
V(9.9 =L 1[( ( va) y)L[—p 5131_3PU —(]/)1:|:|
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The series of solutions for Example 1 is expressed as

[U((P’ S) = [UO ((p’ S) + [Ul (?’) s) + [U2 (§0> S)

+[U3(§0)3)+[U]((P»S)) ( )
49
\/(¢7 ‘\c}) = \/O((P) S) + \/1 (q): ‘\C}) + \/2 (gD: ‘\oj)
+\/3(<p,5)+--~\/]-((p,5).

11

Consequently, we have

~ 20 0 8 o9 28 S’
U(p, ) = Qsech( 3 +¢°p tanh 5+ sec h 2+ 1-y)+ T+

2 2y
TP[ZCOShZ(P Q§0> ]e h4(p @¢>((1_y)z+ y'sT 20

V(p, J) = \ﬁgzsec W §+% +Q5P3/2 tanh §+—
2 272 VZ 2

5 5/2

+Qp [2c0h<§+%)—3]sech<§ Q§0)<(1_ )+ y +2(1

22

By putting y = 1, we get the exact result of the system of
Korteweg-de Vries equation (1):

d o9 PQ
) h2 - )
U(p, ) = o’sec ( + 5 5

) = P2 3,09 po'S
\/(¢,J)—\£Qsech(2+2 5 )

In Figures 1 and 2, the actual and analytical solutions of
U(p, ) and V (¢, J) are proved at § = 2, p = 0.5, and ¢ = 1.
In Figures 3 and 4, the surface and two-dimensional figure
for U(¢, J) and V (¢, ) for numerous fractional orders are
described which demonstrate that the modified decompo-
sition technique and new iterative transformation technique
obtained series form solutions are in close contact with the
analytical and the exact results. This comparison shows a
strong connection among the modified decomposition
method and actual solutions. Consequently, the modified
decomposition technique and new iterative transformation
technique are accurate innovative techniques which need
less calculation time and are very simple and more flexible

(51)

r2y+1) T(y+1) ’

(50)

2f 6 Y
)sech (5+_><(1_ ) + Iy +1))

2 2y

_ (o34
S ) .

F(2y+1) I'(y+1)

than the homotopy analysis technique and homotopy per-
turbation technique.

Example 2 (see [31]). Consider the fractional-order non-
linear system of Korteweg-de Vries equation given as

U v 10U
03" 0Jp 2 09’

(52)
OV_ U 90U 9 g g0cysi
3" 09 og° 09’ USYES
with the conditions
U(e,0)=p [tanh( p(p>+1]
(53)

z
sech2<§ pgo) 1.

V(p,0) = 5

Case L first, we apply the modified decomposition
technique for Example 2.

Applying the Laplace transform to (52), we find

VY j-1 ly—;c—l i oV 16[U2
i en-50) et 5%
54
e *E(‘) Ty gy [ 282U -
Ga-p+n PTG L 99 9¢® 09
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In view of (29) and straightforward approximate
achieve

1 Y(1-9)+ a\/ la[U

(- ww)

7 (¢,v) =V (9,0) +

I op° 09
(55)
Using the inverse Laplace transformation, we get
1 1
V(e =L [LU(p0)] +1 [M
v v
v 1o
Jp 2 0d¢
_ W(l-v)+
v =1 [juipo] v | O
RN
9 o9’ ¢ ]
(56)

By the consequence of the modified decomposition
technique, we get

U(e.®) =1 [FU(p.0)]

(57)

V, (9, ) = [I_"l[%\/(go,o)]

U, (¢, 3) = ﬂ—l[

W

(Va-nN+y),

Journal of Mathematics

It follows that

(o] y .
> U (9, 9) = LI[WL

j=0

z\/jﬂ (9, 9) =
=0

(58)

The Adomian polynomials’ some terms are expressed
as

2,(V?) = U,
2,(U%) = 20,0, (59)
2,(%) = 20,0, + U,

For j=0,1,2,...,

o’ w'? o)
_ _FPg-1
= 2[I_ [ y+2sech(2 )]

2 (a4
P 2(Q PP Y3
256Ch< )((1_ )+ T(y +1)>

Vi (e, ])=1"

! [W L [‘([U(p)o - (\/ww)o ~( (ZY)¢)0] ]
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3 (o34
P e pp\ sre pe\( S
2 Smh(z 2 )sec h (2 )(“ LS Yo 1))

Y —
Uy (0 5) = [L_l[(v W=DV [ ypw,), _191]]

2
5 2y +2
= I]__l[ Zsec h2<g PZ‘P) + i 2y+2 h2<§+%0>sec h4<§+?>]

7 3+
Try+1) o
Py 2( Y+ )w}y+2 sin h(@ p¢>sec hs(@ P‘P)
4 I(y+1) v 2 22

- [Lsee (2 +E2) ¢ Ente($ 4 PN (320 (- 22

— Y 7 3y
—2(1 VY +p—sinh<g+%>sec hS(g +/E> [y + DS
T(y+1) 4 27 2 2 T (y+ 1T 3y + 1)

(q,)[w ) ()]

22y _ ~Y
2 COSh2<Q p¢> 3]sec h4<g +/E> (1 _ ,}})2 + Yy~ + 2(1 V)V'J
22 22 r2y+1) T(y+1)

f=))

.4>|‘°

The modified decomposition technique result for Ex-
ample 2 is represented as

U9, 8) = Uy (9, 3) + Uy (0, F) + Uy (9, F) +--+,

_p<tanh<g P2<P)+1> p;sechz(g p<P><(1_y) r();s-:l)>
&7 ) (61)

5
| P ec hz(@ P‘P) +Lsmh2(g Pq))sec h4<@ P‘P) (1-p)+ P33
4 2 2 4 2 2 2 2 r(y+ 1)

_ o34 7 s
L20-yyST p Sinh(e P‘P)Sec hs(@ /ﬁ) I'2y+ 1S
T(y+1) 4 r2 (y+1DI'(3y+1)

Consequently, we get

) <Y
$) 2 1P e (2 PP) P (@ PP eoe (2 PPN (1 ¥
V(p, 3) = 1+zsech<2 2) 2s1nh<2 2)sech(z )((1 y)+1"(y+l))
(62)
6

2 2y
A
4

_ 234
2 cosh2<g+&> 3]sec h4<Q pq>> 1-y)7°+ . 20 =y)yS +
272 2 T2y+1) T(p+1)

By putting y = 1, we achieve the exact result of the
system of Korteweg-de Vries equation:



Journal of Mathematics

0 P‘P p S Case II: now, we implement the new iterative trans-
Uy, ) = (tanh( > 2 ) + 1), formation technique on Example 2.

(63) By using the suggested analytical technique, we get

2
e Py P N
V (o, 1.
(9, 3) = sec h (2 5 5 )

lUO((p,S)zl]__l[%U((p,O)]z [ip(tanh(g P"’)+1)]

p(tanh(g ngo) + 1)
V, (¢, S) = rrl[%\/((p,m]

2
U (9. 9) = [Ll[(vy(l‘y?)w)[L[ a\/o_laa%H

14

2 wy+
=—p|]_1[ sec h2<Q+P(P>]
22

+2
W

2 x4
__P 2@ PS" Y
= 2sech( 2)((1 y)+l"(y+l)>

(V' (1-y)+y) L[ Y O’y 9L,V
v 9 99’ o¢p

3 (34
= p—sinh<g + %)sec h3<g —(P> 1-p)+ ry
2 272 272 T(y+1)

o [P =p+y) [ oV, 1007
S |
2

smh2<Q p(P)sec h4(g P‘P)]
2 2 2

\/1(90,8)=[L1[

2y+

A P afe po\ 3P w
=L [ 4sech(2 2)+TV2?’+2

7 3p+2

Try+1) w?

LR 2(y+ )ww+2 sin h(a+p¢) Chs<@ P‘P)
4 (y+1) v 2 2 2

[ e () (g e () (00 2

_ 1Ay <3V
+72(1 S +p smh(g p2(p>sech5<g p(p> [2y+ 13

L(y+1) 4 2 I’ (p+ D3y +1)
o [ (PU=p+y)[ 0V, U, ouV,
\/2 ((P> ‘\S) =L [ Vy a(P a(p3 a(P

80 [z com( ) - sJse (24 22) (1 -y (5 20T

(VA-p+y) [ Vi 1 U,
v op 2 0¢

3
\/‘ (q)’ S) — I]__l (vy (1 B y) + y) aU];l _ a [Uf;l _ a[Ujfl\/jfl .
1 v o¢p o’ o9

[uj(q),S):rU[
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The series of results for Example 2 is expressed as

U(p,3) = Uy (9, 3) + Uy (9, F) + Uy (9, F) +---Uj; (9, 9),
V(p, ) =V, (9,3) +V, (¢, T) + V, (9, ) + -V, (9, T).
(65)

) = panh(§ ) 1) s (5 a-nri)

5 5
+[ P —sec h2<g pga) +Ls1nh2(g
4 2 2 4 2

_ v 5
2(1-p)yS +P_snh<Q psv)sechs(e p<p>

T(y+1) 4 2 2

V(p,J) =

2 2 2 2

,0_[2 cosh2<g P(P> ]sec h4<g+
4 2 2 2

By putting y = 1, we obtain the actual result of the system
of Korteweg-de Vries equation (3?):

U(p, ) = (tanh(g qu) p2 >+1)

2
V(p, ) = sech(g pe pd)

(67)

2 2 2

In Figures 5 and 6, the actual and analytical solutions of
U(p, ) and V (¢, J) are proved at § = 2, p = 0.5, and ¢ = 1.
In Figures 7 and 8, the surface and two-dimensional figure
for U (g, ) and V (¢, ) for numerous fractional orders are
described which demonstrate that the modified decompo-
sition technique and new iterative transformation technique
approximated obtained results are in close contact with the
analytical and the exact results. This comparison shows a
strong connection among the modified decomposition
method and actual solutions. Consequently, the modified
decomposition technique and new iterative transformation

j-1

fiywm%(q),v) - Z G)

(Vy ( 1 k=0

y-xk—-1

U™ (0) =

15
Consequently, we have
234
pq))SCC ]’14<Q p¢> (1_y)+ s
2 272 T(y+1)
&3
r2y+ns (66)
2 r? (y+ I 3y+1)

2 (o34
1+%sec h2<Q pfp>+P_smh<e P(P)Sec h3<@ P‘P)<(1—y)+ yS >

2 2 I(y+1)

2 2y =34
PN (1 2. VS 21— yyS
7)((1 TSy R o )+

technique are accurate innovative techniques which need
less calculation time and are very simple and more flexible
than the homotopy analysis technique and homotopy per-
turbation technique.

Example 3. (see [31]). Consider the fractional-order non-
linear system of modified Korteweg-de Vries equations
given as (2) with the conditions

2 + tanh
[U(QD, 0) = %,

2 — tanh 68
V(e,0) = %, (68)
W (g, 0) =2 —tanh ¢.

Case I first, we apply the modified decomposition
technique for Example 3.

Using the Laplace transformation to (2), we have

1a3 ,0U 3. 9°V  _oVOW 3_0o*W

3+ =W +3— —+-V—-

203° dp 2 29’ Op 0p 2 Q¢
+3 a[U+3»z a\/+3z oW
3 9
Pop " 00 T 3



16 Journal of Mathematics

v =N INa Y v ’ w \
yv4“7(go,v)—z<—> \/(")(0)=[L[—a—3—3a£a——3wa¥lj—3wza—+6zyaiu+3uza—],
(VA-p)+y) =\ o9’ 99 dp 09 dp T op ¢ ()

Y j-1 1\?-*1 3W wW 2 W vV
YV7W(([),V)—Z<—> W(K)(O):[L[_a_3_3a;ua__3wa_u;_3\/za_+6zya;u+3uza_].
(VA-p) +y) =\ o9’ 0p ¢ o9 o9 dp o

In view of (68) and straightforward calculations,
Y(1— 3 2 2
%(fp,v):lu(o)(¢,0)+—(v L yy)+y)ﬂ_[la_ﬂi_3u28£+§wa_\2/+3a_va¥w+§va_\/2\/
v v 293 dp 2 9¢ op 0p 2 Q¢
+3 a£+3z a—\/+3z Bﬂ
o0 T80 T B |
1 (V(A-p+y) [ @V UV o°U ow ou oV 7o
) =V (g, vVasvEY), _30U OV oy 22 o 20V
7 (@, v) ” (9,0) + i a¢3 3890 99 3 E)goz 3 ag0+6zya(p+3EU 99
1 Y(1- W W ? \ W
W (9,v) =-W (¢,0) + (v VV)”)[L[ 9 : —3a¥Ua——3walﬁ—3wza—+6zxaLU+3uza— .
% v d¢ 09 0¢ o9 09 09 09
Applying the Laplace transform, we have
e G a-p+y) [12U _ 0U 3V _9VOW 3 W ou
U(p, S =I]_1[—[U ,0]+ﬂ_1[7|}_——— —+-W—+3— —+=-V—+3yx—
(9. 3) v (9.0) v 2 953 dp 2 09> 09 0p 2 3¢’ Yxago
+ 3z a—\/+3z aﬂ
Xa<p yaq) ,
Y(1_ 3 2
\/(fp,S)zﬂ_l[l\/(fp,O)]H_l[(V { y”)”)m[ a\3/_3auJa\/_3\/a[L2J_3\/2aw+62yau+3U2a\/”
v v o9 0 0¢ 09 o0 1610) 16 10)
y _ 3 2
w(w,s):ml[lw(cp,o)]wl[(v {a y”)“’)m[ awgw_3auaw_3Wa[L2J_3WZa\/+6ZXaU+3u2aw”
v v o¢ 0 O¢ o¢ o0 o0 16 10)
(71)
By the consequence of the modified decomposition
technique, we get
Uy (99) = L™} ¢ 0)]—1[L‘1[1(2+t h )
0 (9, 3) = LU0 =7 ” anh ¢
it 1
Vol ®) =LV (o, 0)] -4 (2~ tanh ¢), (72)
!
W, (9, ) = L ;W(go,o)] — (2 tanh ¢).
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It follows that
0 ~ y(l_ ) 1 & 0 3R 0 3 X
S V(o9 -1 1{7“ VYV +Y)I]_[EZ([U¢W) 36355380035,
= = j= j=

(73)

(o) Y _ (o) [e0] [ee] (o) (o) (o)
Z\/j+1 (¢.9) = Ll{%ﬂ_[—z"(\/@w%—.%Z%j —3Z/Vj —32@]. +6ij + 32@,}]
j=0 j=0 j=0 j=0 j=0 j=0

j=

o

e R S DY EENCED WA EA eI

j=0 j=0 j=0 j=0 j=0 j=0

The Adomian polynomials’ some terms are defined as

[Ué[qu,, for]J =0,
&,(U'U,) =1 (2U,U,)Uy, + UjU,,,, for] =1,
| (2UpU, + U)Uy, + (2UgU, Uy, + UgUy,,  for] =2,
RUA forJ =0,
F1(WV,,,) =4 W Vo, + WoVig,, for] =1,
W, Vo, + WV, + WoVy,, for] =2,
[ Vo, Wo,, for] =0,
?](\/(Pw(p) =1 Voo Wy, + VW, for] =1,
[ VoW, + Vi, Wy + Vo, Wy, for] =2,
[ Vo, W forJ =0,
(VW) = 4 VopWigy +VigWog,, forJ =1,
| Vg Wogy + VigWyg + Vo Wy, for] =2,
| (YX)()[U()(P, for] =0,
I](\/Z[U(p) =1 (yx)Uiy + (y%x)1Upys for] =1,
| (YX)O[UZ(/J + (YX)1U1<p + (YX)Z[UO(/J’ for] =2,
[ (22),Upy» for] =0,
f]([Uz\/(p) =1 (zx)gUy, + (2x), Uy, forJ =1,
{ (zx)gUy, + (2x), Uy, + (2x),U¢,,  for ] =2,
i (ZY)()[U()(p; for] =0,
%,(zy\/%) =1 (zy)Uy, + (2y), Uy for] =1,
(zy)oUyy + (2y), Uy + (2y),Uyy,  forJ =2,
[ UgyVop» forJ =0,
-ﬂ]([U(P\/q,) =1 Uy, Vi, + UV, for] =1,
| Uy Vo, + Uy Vi, + U, Vy,,  for] =2,
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[ VoUggg for] =0,
N5 (VU,, ) =1 VoUigy +ViUggy, for] =1,
| V,Ugpy + V4 Uy, + VU, for] =2,
[ VW, forJ =0,
0,(V'W,) =1 (2V,V, )W, + VoW, for] =1,
[ (2VpV, + V)W, + (2V,V )W, + VoW, for] =2,
[ (zy)oUoy for] =0,
x,(zyw¢) =1 (zy)oUy, + (2y)gUy, for] =1,
| (ZY)o[Uzgz + (zy)l[Ul(p + (Zy)z[Uo(,v for] =2,
( [Ug\/w, for] =0,
@, (LV,) =1 (2UU,)V,, + UgV,,, for] =1,

[ (20U, + UV, + UL, )V, + gV, for ] =2,

Uoe Vo> for] =0,
Ro(U,V,) =1 UspVip + UiV, for] =1, (74)
[ Upy Vo + Uy, Vs, + UV, for] =2,
[ WUy for]J =0,
8;(WU,, ) = 1 Wollgy + W, Ug,,, for] =1,
| W,Ug,, + WUy, + Wol,,,, for] =2,
[ WiV, for ] =0,
T(WAV,) =1 2WeW, )V, + WoV,,, for] =1,
[ (2WoW, + WV, + (2WW, )V, + WV, for] =2,
[ (2x)oUyggs for] =0,
&”,([UWI[U@) =1 (2x)U;, + (2x), Uy, forJ =1,
[ (2x),Uy + (2x), Uy, + (2%),U,,, for] =2,
[ UgW,,, forJ =0,
7,(UW,) =1 (2U,U,)W,, + UgW,, for] =1,
[ (2U,U, + U)W, + 2U Uy )W, , + UgW,,, for ] =2.

For j=0,1,2,3,...,

_ Y(1- 1 3 3
U (¢, 9) =L ‘[W&[E(uw)o - 3845 F 3G, + ST +31y+ 37, + 3%0]]

1, yS’
_Tsec h ((p)((l _y)+1"(y+ 1))

afera-
Vi (p,9) =L ‘[WH(WW

)o = 3y =3y =30, + 6%, + 3@0]]

R S S YS!
= —gsec h ((p)((l -y + Ty 1)>
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a[(ra-y+ <
W, (p,9) =L I[Wm[(wwp)o ~ 3%~ 38, 3T + 6L + 3%]]

1, yS?
= —Esec h (go)((l -9) +F(y+ 1)>

- [P =y +y) 11 3_ 3
U, (¢,3) =L 1[%"‘[5(%«)«))1 -3%, +5J1 +3%, +5%1 +3I, + 3.7, +3%1]

_ 2 g2y _ 234
1821tanh(<p)sec hz(q))< (1- y)2 + Y + 20 -yyS )

r2y+1) I'(y+1)

——
V(g9 = 1| LN HY)

. opp), — 3, = 3N, =30, +6X1+3@1]]

= %tanh((p)sec W ((p)( (1-yp)°+

S . 2(1 - p)yS?
r2y+1) T'(y+1)

al6ra-
W, (p,¥) =1L"" W[L[(thw)l

—3%R,-38, -3, +6%, + 3%]]

B 242 ) 5 2 yzszy 2(1 - Y)Ysy
=~ anh(g)sec h (¢)<(1‘Y) Tay+ " TG+ >

_ VW(l-y)+ 1 3 3
Us(p, ) =L I[WL[—(U‘PW)Z - 38, +E?2 +3%, +5%2 +31,+37,+ 3%2]]

2
B3 H () cosh (20) — 214 (1 = p) + (1 = )(1+7+2) 3w a-nsT yTeyrHS?
T yg et gleosnisp LR AR S A TR R Ny T(Gy+1)
LA -y)+
Vs (9, 8) ="' WI}_[(\/W?)Z—SM%—3/1/2—3@2+6x2+302]]
L2662, 5 N F 0 3 U-pST YR+ 1S
= 96 sec h” (@)[cosh(2¢) —2]1 (1 —y)”" +y(1 y)(1+y+2y)r(y+1)+ T+ D) + TGyel)
LA -y)+ ~
W, (p,S) =L W[L[(wqu)z—mz—asz—39‘2+65x2+3%]]
2662, 5 o ST 3HA-pST YTEy+1)S?
= gg Sec M (9)leosh(2¢) 2]{(1 v ya y)(l+y+2y)l"(y+l) T(2y+1) T(3y+1)

(75)

The modified decomposition technique result for Ex-
ample 3 is given as
IU((P)S) = [U()(q))‘\oj) + [Ul ((P)S) + [Uz(QD;S) + [U3(§0>3) R

1 U2 e ST
_2(2+tanh Q)+ 5 sec h ((p)((l Y)+F(y+1))

121 > L 8T 20 -ypyS
s tanh (¢)sec h ((p)((l ) +F(2y+l)+ Ty+1)

1331
+
48

o~ 201 _ N2y 3 o3
sech4(go)[cosh(2g0)—2]{(1—y)3+y(l—y)(1+y+2y2) il 3y (1 =y)S7 yl"(2y+1)\sy}

Ty+1)  TCQp+D) | TGp+1)

(76)



20 Journal of Mathematics

U@
U (0.3

FIGURE 1: The actual and analytical (MDM/NITM) result figure at U (¢, ) of Example 1 for ¢ = 1, p = 0.5, and 6 = 2.

V(.3)
V(®.3)

0.4

4 05

FIGURE 2: The actual and analytical (MDM/NITM) result figure at V(¢, J) of Example 1 for ¢ =1, p = 0.5, and § = 2.

Consequently, we get

1 11 7 121 S 2(1 - )y

S 3y a-pSY y3l"(2y+1)$3"}

1331, 3 2
—Ksech((p)[cosh(2¢)—2]{(1—y) +y(1—y)(l+y+2y)r(y+l)+ E PRI Tew

yS’
T'(y+1)

Y's$Y 20 —y)st>

121 R )
)+Ttanh((p)sech ((p)((l—y) +F(2y+1) T+

W (g, S) = (2 - tanhg) - %sec ' ((p)((l -P+

2662
96

[x34 3 2 1- <2 31" 2 1 3y
sec h4((p) [cosh (2¢) — 2]{(1 - y)3 +y(1- y)(l +y+ Zyz) r(;: D + yf((Zy _2})1‘; + Y 1“((3}1y++ 1))«5 }

(77)
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U(¢.3)
U (¢.3)

— 04

FIGURE 3: Analytical investigation of figure U (¢, J) for Example 1 for different fractional orders y = 1.0,0.8,0.6,0.4, p = 0.5, ¢ = 1, and
6=2.
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FIGURE 6: The analytical and exact (MDM/NITM) solution plot at V (¢, ) of Example 2 for p = 0.5, g =1, and § = 2.

By putting y = 1, we obtain the exact result of the
system of Korteweg-de Vries equation (2):

U(p, ) = (2+tanh (p—%))

V(p,3) =Z<2—tanh<(p E)) (78)

2

W(e,J) = (2 - tanh((p ?))
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FIGURE 7: Mathematical analysis of the plot of V (¢, ) for Example 2 for different fractional orders y = 1.0,0.8,0.6,0.4, p = 0.5, 0 = 1, and
d=2.
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FIGUure 8: Mathematical analysis of the plot of V (¢, ) for Example 2 for different fractional orders y = 1.0,0.8,0.6,0.4p = 0.5, ¢ = 1, and
d=2.
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FIGURE 9: The analytical and exact result plot at U(¢, ) of Example 3 for p = 0.5, ¢ =1, and § = 2.

Case II: now, we apply the new iterative transformation By using the suggested analytical method, we get

technique for Example 3.

1
Uy (9, 3) = 3 (2 + tanhg)

Vo (¢, ) = i (2 - tanhg)

W, (¢, ) = (2 — tanh ¢)

Y1 _ r1 53 2 2
U (9, 8)=L" [7@ L Y”) +7) L[ L9 [U3° - 3u§—a[u° + iwoa \/20 3o W i\/Oa M\Z/" + 3\/0W0—8[U° + 3U0wo—a\v° + 3[U0\/06—W°] ]
v 12 05 dp 2 " 3¢ dp Jdp 2 " 9¢ 09 09 09
11 ]
:?SCC hz ((P)u_ I[W_
Y(1- [ 2%V, v, 3 W v,
V(g3 [0 ), [0 o _3%Wo Ny _ 5y Ty _ 532 0Wo 1)y W, 320
v | J¢ op 0¢ o¢ o¢ 09 ¢

__E 2 _ yS’
- 8sech((p)((l y)+1"(y+l)>

Y 1- 3W W > v W
W, (¢, ) = [L'l[(v ( yy) +) IL[ 9 L _382;& %_3\/\/08 o _ 3wg?+6uowo%+3ug%“
v g ¢ ¢ g » 0 "
1 5 ysy
== sec h ((p)((l y)+1"(y+1)
a- 19 PV, L0V, oW W v w
lU2 ((P, S) ) L_I[M—}Mﬂ_[_a [U3I _3Uf%+iwla 21 + La : +§\/la 21 +3\/1W1%+3U1W1b+3u—]1\/16 1:|]
v 2 03 dp 2 Q¢ dp 0p 2 B¢ F) EN 39

-121

22y [+34
) , 7S 2(1-yS
tanh (¢)sec b ((p)((l—)/) +F(2y+ 1)+ T(y+1) )
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(' (1—y)+y 'V, _ouU, aV, U, ,0W, U, _ L0V,
v, (9, F) = L —3 gy Loyt V,— —L
2 (9, 3) [ o7 3a<p % -3 Tag? 3 o9 +6U, oy 3[U18(p
121 Y'SY 201 -y
-~ tanh 1-
g tanh(plsec b ("’)(( v’ r(2y+1)Jr T(y+1)
1— W W, ’ \Y W
W, (¢, S) =L" | 1|2 -3 ou, 9 3wla [Ul—3wza 1+6U1W1%+ fa !
¢ dp g 0¢” ) d¢ J¢
_242 Y’ST 201 -yyS?
“Ztanh h 1-
3 tanh (¢)sec ((p)(( y) +F(2y+l)+ T+ )
r Y _ 2 2
Uy (9, ) =1 a=-p+y)y 1a[U2 2, wa\/2 3V aw2+3vaw2 3w, W, 222 130w, 22 4 3,0, e
I v 12 058 op op 0 0¢” 2 d¢ * ¢ o¢
= e W (g lcosh (29) - 21 (1 1) 4y (1= (1 +y +27) S W a-pST yrey+ns?
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L v a(p3 a(p a(p a(p a a(p a
2662 4 5 o S 3 a-pSY YTRy+ 1S
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[(v (1 - [ o’W W, v, W
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! v o9 dp g o¢ 2 0g 99 99
-2662 . ~ e ~ o S 3HU-pSY YTRy+ 1S
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(79)

The series of results for Example 3 is given as

U9, 3) = Uy (9,3) + U (9, 3) + U, (9, T) + U3 (9, 3) +---U; (9, T)

_l E 2 _ Tl
_2(2+tanh Q)+ 5 sec h ((p)<(1 y)+1"(y+1)>

121 2 2 YZSZY 2(1— ) g
_?tanh((p)sech ((p)((l—y) +F(2y+1)+ Ty+1)

1331, s o S 3 A-pST YrEy+1)SY
+ 5 sec h” (¢)[cosh (2¢) 2]{(1 p) +y(1 y)(l+y+2y)r(y+1)+ T+ D) + TGy 1)

(80)
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FIGURE 10: The analytical and exact result plot at V (¢, ) of Example 3 for p = 0.5, ¢ =1, and § = 2.

Consequently, we get

1 11 3 12 250 21— S
V(p,9) = (2~ tanhg) - - -sec h2(¢)((1 -+ r(y\i 1)> +—tanh((p)sec h2(¢)< (1-p)’ r(yz;s+ 1) (r(yﬁ)\s )

1331 4 §' 3 A-pSY YTRy+ DS
_Ksech (¢)[cosh (2¢) - 2]{(1—)}) +y(1—y)(1+y+2y)r(y+l) T+ D) NEED .
=34 12 2 2(1- 37
Wi =2 - anhe) ——Sec g ((p)((l A (Y\S 1)) tanh((p)sec 4 ((P)< A=y 1"()/2):1 1) (F(Yz))lj)d )

—%sec ' (¢)[cosh(2¢) -

By putting y = 1, we obtain the exact result of modified
couple Korteweg-de Vries equation (2):

U(p,J) = (2 + tanh(q)

1
V(p,J) = 1 <2 - tanh(q) -

2]{(1—y)3+y(1—y)(1 +y+2y2)

3 3)/ (1 —y)“'zy YTy + 1)‘"3"}

T'(y+1) r2y+1) FGy+1)
(81)
us
2 b
113
T)) (82

W, ) = (2 - tanh(<p - ?))

In Figures 9-11, the actual and analytical solutions of
U(p, ),V (9, F), and W(g, J) are proved at § = 2, p = 0.5,
and ¢=1. In Figures 12-14, the surface and two-

dimensional figure for U (g, 3),V (@, ), and W (¢, J) for
numerous fractional orders are described which dem-
onstrate that the modified decomposition technique and
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FIGURE 12: The three and two dimensional different fractional order of Example 3 with respect to U (¢, ).

new iterative transformation technique approximated
obtained results are in close contact with the analytical
and the exact results. This comparison shows a strong
connection among the modified decomposition method
and actual solutions. Consequently, the modified

decomposition technique and new iterative transforma-
tion technique are accurate innovative techniques which
need less calculation time and are very simple and more
flexible than the homotopy analysis technique and
homotopy perturbation technique.
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FIGURE 13: The three and two dimensional different fractional order of Example 3 with respect to V (¢, ).
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7. Conclusion

In this article, we have considered the nonlinear fractional-
order Korteweg-de Vries equations in the sense of the
Atangana-Baleanu derivative which is able to perform more
extensive analysis due to the nonsingular kernel in its
structure. The mathematical solutions are obtained with the
help of the modified decomposition method and new it-
erative transformation method associated with the Atan-
gana-Baleanu derivative. The present analysis illuminates
the effectiveness of the considered derivative operator. We
can conclude from the analytical results that these are very
reliable, simple, and powerful methods for finding ap-
proximate results of many fractional physical models which
arise in applied sciences. In this approach, we do not need
the Lagrange multiplier, correction functional, and sta-
tionary conditions or to calculate heavy integrals because the
results established are noise free, which overcomes the
shortcomings of existing methods. It is remarkable that the
projected approaches are well-organized analytical methods
for finding approximate analytical solutions to complex
nonlinear partial differential equations. Finally, we conclude
that this scheme, in future, will be taken into account in
order to cope with other complex nonlinear fractional-order
systems of equations.
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