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In this work, considering the advantages of spectral conjugate gradient method and quasi-Newton method, a spectral three-term
conjugate gradient method with random parameter is proposed. The parameter in the search direction of the new method is
determined by minimizing the Frobenius norm of difference between search direction matrix and self-scaled memoryless BFGS
matrix based on modified secant equation. Then, the search direction satisfying the sufficient descent condition is obtained.
The global convergence of new method is proved under appropriate assumptions. Numerical experiments show that our
method has better performance by comparing with the up-to-date method. Furthermore, the new method has been
successfully applied to the optimization of low-carbon supply chain.

1. Introduction

Consider the following unconstrained optimization problem

min
x∈ℝn

f xð Þ, ð1Þ

where f : ℝn ⟶ℝ is continuous differentiable and
bounded from below.

Spectral conjugate gradient (SCG) method is one of
the most effective methods for solving (1). It has some
advantages, such as simple iterative scheme, low memory
requirement, and strong global convergence, as well as
the traditional conjugate gradient (CG) method [1], and
outperforms the traditional CG method in numerical per-
formance. SCG method generates a sequence of solutions
fxkg with the following formula:

xk+1 = xk + αkdk, k ≥ 0, ð2Þ

in which αk > 0 is the stepsize, and the search direction dk
is defined by

dk =
−gk, if k = 0,

−θkgk + βkdk−1, if k ≥ 1,

(
ð3Þ

where gk = ∇f ðxkÞ is the gradient of f ðxÞ at iterate point
xk, θk is the spectral parameter, and βk is the conjugate
parameter. The choices of θk and βk are crucial for the
global convergence and numerical performance of the
algorithm, which have been widely studied by many
scholars (see [2–9]).

Deng et al. [8] proposed an improved spectral conjugate
gradient (ISCG) method for nonconvex unconstrained optimi-
zation, where the parameters θk and βk in (3) are determined by

θk =

dTk−1 yk−1 − gkg
T
k sk−1/ gkk k2À ÁÀ Á

dTk−1�yk−1
, if dTk−1�yk−1 > η gk−1k k2,

dTk−1 yk−1 − gkg
T
k / gkk k2À Á

gk−1
À Á

−dTk−1gk−1
, otherwise,

8>>>><
>>>>:
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βk =

gTk yk−1 − sk−1ð Þ
dTk−1�yk−1

, if dTk−1�yk−1 > η gk−1k k2,

gT
k yk−1
gk−1k k2 , otherwise,

8>>>><
>>>>:

ð4Þ

where yk−1 = gk − gk−1, sk−1 = xk − xk−1, �yk−1 = ðI − ðgkgTk /
kgkk2ÞÞyk−1, and η is a small constant. The obtained search
direction dk satisfies the sufficient descent and approaches the
quasi-Newton direction. Numerical experiments showed that
ISCG algorithm was effective for solving large-scale problems.

Li et al. [9] proposed a spectral three-term conjugate gra-
dient method on three-dimensional subspace Ωk = spanfgk,
dk−1, yk−1g. The search direction dk is expressed as

dk =
−gk, if k = 0,

−θkgk + βMPRP
k dk−1 + νkyk−1, if k ≥ 1,

(
ð5Þ

where βMPRP
k = gTk yk−1/ðμjgTk dk−1j + kgk−1k2Þ and νk = gTk

dk−1/ðμjgTk dk−1j + kgk−1k2Þ (μ ≥ 0) are given by [10]. They
made dk close to general quasi-Newton direction and
obtained the expression for θk as

θJCJk =
θJCJ+k , if θJCJ+k ∈ τ1, τ2½ �,
1, otherwise,

(

or θJCJk =
θJCJ−k , if θJCJ−k ∈ τ1, τ2½ �,
1, otherwise,

( ð6Þ

in which 0 < τ1 < τ2, and

θJCJ+k =
1

μ gTk dk−1
�� �� + gk−1k k2 yTk−1dk−1 −

gT
k dk−1 yk−1k k2

yTk−1gk

� �

+
sTk−1gk

yTk−1gk

,

θJCJ−k =
1

μ gTk dk−1
�� �� + gk−1k k2 yTk−1dk−1 −

gT
k dk−1 yk−1k k2

yTk−1gk

� �
:

ð7Þ

In addition, they used modified secant equation [11]

Bksk−1 = zk−1, ð8Þ

where zk−1 = yk−1 + ρk−1ðmax fτk−1, 0g/sTk−1uk−1Þuk−1, τk−1 =
6ð f k−1 − f k−1Þ + 3ðgk + gk−1ÞTsk−1, uk−1 = ð1 − λkÞyk−1 +
λksk−1, and ρk−1 ∈ f0, 1g. If kskk ≤ 1, then ρk−1 = 1; otherwise,
ρk−1 = 0. Another way to choose spectral parameters was pro-
posed, in which θJCJ+k and θJCJ−k are obtained by replacing yk−1
with zk−1 in (7). Their methods had global convergence and
were superior to the three-term conjugate gradient method
proposed by Sun and Liu [10].

Neculai [6] proposed a new scaled conjugate gradient
(SCALCG) algorithm by using a hybridization of the
memoryless Broyden-Fletcher-Goldfarb-Shanno (MBFGS)
preconditioned CG method [12] and SCG method [13] for
solving large-scale unconstrained optimization. The search
direction dk+1 is defined by

dk+1 = −Dk+1gk+1

= −θk+1gk+1 + θk+1
gTk+1sk
yTk sk

� �
yk

− 1 + θk+1
yTk yk
yTk sk

� �
gT
k+1sk
yTk sk

− θk+1
gTk+1yk
yTk sk

� �
sk,

ð9Þ

where Dk+1 is called search direction matrix and θk+1 = sTk sk/
yTk sk is determined according to a two-point approximation
of the standard secant equation. Numerical experiments
showed that the SCALCG algorithm outperformed several
well-known CG algorithms [13–15].

Babaie-Kafaki and Ghanbari [16] rewrote the search
direction of Dai and Liao method [17] as

dk+1 = −Dk+1gk+1 = − I −
sky

T
k

sTk yk
+ tk

sks
T
k

sTk yk

� �
gk+1: ð10Þ

They obtained the following relation

dTk+1gk+1 = −gTk+1Dk+1gk+1 = −gT
k+1Ak+1gk+1, ð11Þ

in which

Ak+1 ≜
DT
k+1 +Dk+1

2
= I −

1
2
sky

T
k + yks

T
k

sTk yk
+ tk

sks
T
k

sTk yk
, ð12Þ

and analyzed the eigenvalues of the matrix Ak+1 to determine
the parameter tk.

Yao and Ning [18] proposed a three-term conjugate gra-
dient method, in which the search direction was expressed as

dk+1 = −Dk+1gk+1

= − I − tk
sky

T
k + yks

T
k

sTk yk
+

sks
T
k

sTk yk

� �
gk+1

= −gk+1 + β+
k dk + δkyk,

ð13Þ

where the optimal parameter tk was derived by minimizing
the distance between Dk+1 and the self-scaled memoryless
BFGS (ML-BFGS) matrix in the Frobenius norm, that is,

tk =min
1

1 + skk k2 ykk k2/ sTk yk
À Á2� � , sTk yk

ykk k2

8<
:

9=
;, ð14Þ

and the parameters β+
k =max fðtkgT

k+1yk − gTk+1skÞ/dTk yk, 0g,
δk = tkg

T
k+1sk/sTk yk. The search direction dk+1 was always suf-

ficiently descent at every iteration independent of any line
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search strategy, and this method had global convergence for
general nonconvex functions.

Based on the above work, it is shown that spectral
parameter plays an important role in improving the conju-
gate gradient method, and modified secant equation uses
more information of function value and gradient value.
Therefore, in order to obtain a new algorithm with good
numerical performance, especially for the objective function
with sharp curvature change, we introduce the spectral
parameter into (12) and construct the following search
direction matrix

Qk+1 = θk+1I −
1
2
sky

T
k + yks

T
k

sTk yk
+ tk

sks
T
k

sTk yk
, ð15Þ

and improve ML-BFGS matrix based on the modified secant
equation. The parameter tk in (15) is determined by mini-
mizing the Frobenius norm of difference between Qk+1 and
ML-BFGS matrix based on modified secant equation, and
we propose a spectral three-term conjugate gradient method
with random parameter. The contributions of this article are
listed as follows:

(i) A random parameter is introduced to simplify the
format of the parameter tk in the search direction,
and the search direction satisfying the sufficient
descent condition is obtained

(ii) Under appropriate assumptions, global convergence
of new method for general functions is given

(iii) The new method has good numerical performance
for the objective function with sharp curvature
change

(iv) The new method is applied to the low-carbon
supply chain optimization model, which shows that
the new method is effective

The rest of this paper is organized as follows: in the next
section, a new random parameter is given to present spectral
three-term conjugate gradient method. In Section 3, global
convergence of the new method for uniformly convex func-
tions and general functions is proved under appropriate
conditions. In Section 4, some numerical experiments are
implemented. In Section 5, the application of new method
in low-carbon supply chain optimization is studied. Conclu-
sions are made in the last section.

2. A Spectral Three-Term Conjugate Gradient
Method with Random Parameter

In this section, our main aim is to propose a new spectral
three-term conjugate gradient method based on modified
secant equation. Consider the following modified secant
equation:

Bk+1sk = zk, ð16Þ

where zk = yk + ðmax fτk, 0g/sTk ukÞuk, τk = 6ð f k+1 − f kÞ +
3ðgk+1 + gkÞTsk, and μk = yk; we design ML-BFGS matrix
based on modified secant equation as follows:

B−1
k+1 = θk+1I − θk+1

sky
T
k + yks

T
k

sTk yk
+

1
ρ+k

+ θk+1
ykk k2
sTk yk

� �
sks

T
k

sTk yk
,

ð17Þ

where ρ+k = 1 + ðmax fτk, 0g/sTk ykÞ.
The parameter tk is determined by minimizing the Fro-

benius norm of difference between search direction matrix
and ML-BFGS matrix based on modified secant equation,
that is,

min Qk+1 − B−1
k+1



 

2
F
, ð18Þ

where k⋅kF is the Frobenius norm and Qk+1 and B−1
k+1 are

determined by (15) and (17), respectively.
From (15) and (17), we have

Qk+1 − B−1
k+1



 

2
F
= tr Qk+1 − B−1

k+1
À ÁT

Qk+1 − B−1
k+1

À Á� �

=
skk k4
sTk yk
À Á2 t2 + 2 2θk+1 − 1ð Þ skk k2

sTk yk

"

−
1
ρ+k

skk k4
sTk yk
À Á2 − θk+1

ykk k2 skk k4
sTk yk
À Á3

#
t + ξ,

ð19Þ

where ξ is a constant independent of t. Therefore, the mini-
mum of problem (18) is

tk = arg min tr Qk+1 − B−1
k+1

À ÁT
Qk+1 − B−1

k+1
À Á� �n o

=
1
ρ+k

+
ykk k2 θk+1 − 2θk+1 − 1ð Þmkð Þ

sTk yk
,

ð20Þ

in which mk = cos2ηk, ηk = hsk, yki is the angle between sk
and yk. Instead of the mean value to cos2ηk = 1/2 in [19],
let mk be a random number in the interval ½c,�c�, where 0 <
c <�c < 1/2: Therefore, tk in (20) can be regarded as a random
parameter. There are many possible ways to choose θk+1;
we set

θk+1 = max 1,
skk k2
sTk yk

� �

or θk+1 = max 1,
sTk yk
ykk k2

� �
:

ð21Þ
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Substitute (20) into (15), and let dk+1 = −Qk+1gk+1; then,

dk+1 = − θk+1I −
1
2
sky

T
k + yks

T
k

sTk yk
+ t

sks
T
k

sTk yk

� �
gk+1

≜ −θk+1gk+1 + aksk + bkyk,
ð22Þ

where

ak =
1
2
yTk gk+1
sTk yk

−
1
ρ+k

+
ykk k2 θk+1 − 2θk+1 − 1ð Þmkð Þ

sTk yk

� �
sTk gk+1
sTk yk

,

bk =
1
2
sTk gk+1
sTk yk

:

ð23Þ

Based on the above analysis, a new spectral three-term
conjugate gradient (STCG) algorithm can be presented as
follows.

Algorithm 1. STCG algorithm.
Step 0. Given x0 ∈ℝn, ε > 0, 0 < c <�c < 1/2 and 0 < ω <

σ < 1. Compute f0 = f ðx0Þ and g0 = ∇f ðx0Þ; let d0 ≔ −g0
and k≔ 0.

Step 1. If kgkk ≤ ε, stop; else, go to step 2.
Step 2. Compute a step length αk satisfying strong Wolfe

line search conditions

f xk + αdkð Þ − f xkð Þ ≤ ωαgT
k dk, ð24Þ

gT xk + αdkð Þdk
�� �� ≤ −σgTk dk: ð25Þ

Step 3. Set xk+1 = xk + αkdk; calculate f k+1, gk+1, sk, yk,
and ρ+k .

Step 4. Compute tk by (20) and (21) and search direction
dk+1 by (22). Set k≔ k + 1 and go to step 1.

The following lemma shows that the search direction
satisfies the sufficient descent property, which plays an
important role in proving the convergence of the algorithm.

Lemma 1. Let the sequence fdk+1g be generated by STCG
algorithm; then, there exists a positive constant c, such that

gT
k+1dk+1 ≤ −c gk+1k k2: ð26Þ

Proof. From the search direction (22), we have

gTk+1dk+1 = −θk+1 gk+1k k2 + yTk gk+1g
T
k+1sks

T
k yk

sTk yk
À Á2

−
1
ρ+k

+
ykk k2 θk+1 − 2θk+1 − 1ð Þmkð Þ

sTk yk

� �
sTk gk+1
À Á2

sTk yk

≤ −θk+1 gk+1k k2 + 1
2

gT
k+1sk

À Á2 ykk k2 + sTk yk
À Á2 gk+1k k2

sTk yk
À Á2

−
1
ρ+k

+
ykk k2 θk+1 − 2θk+1 − 1ð Þmkð Þ

sTk yk

� �
sTk gk+1
À Á2

sTk yk

=
1
2
− θk+1

� �
gk+1k k2 − sTk gk+1

À Á2
sTk yk

Á 1
ρ+k

+
ykk k2
sTk yk

θk+1 − 2θk+1 − 1ð Þmkð Þ − 1
2

� �� �

≤
1
2
− θk+1

� �
gk+1k k2 − sTk gk+1

À Á2
sTk yk

Á 1
ρ+k

+
ykk k2
sTk yk

θk+1 − 2θk+1 − 1ð Þ�cð Þ − 1
2

� �� �

≤ −
1
2

gk+1k k2:

ð27Þ

The second of the above inequalities comes from the
factuTv ≤ 1/2ðkuk2 + kvk2Þ, in which u = gTk+1skyk and v =
sTk ykgk+1. In the fourth of the above inequalities, sTk yk > 0
can be ensured by the strong Wolfe line search, and ρ+k =
1 + ðmax fτk, 0g/sTk ykÞ > 0. Combining (21), the proof is
completed.

3. Convergence Analysis

To prove the global convergence of STCG algorithm, we give
the following assumptions.

Assumption 2. The level set Ω = fx ∈ℝn : f ðxÞ ≤ f ðx0Þg is
bounded; namely, there exists a positive constant δ such that
kxk ≤ δ, ∀x ∈Ω:

Assumption 3. The gradient of function f is Lipschitz contin-
uous in some neighborhood ℕ of Ω; namely, there exists
L > 0 satisfying

g xð Þ − g yð Þk k ≤ L x − yk k,∀x, y ∈ℕ: ð28Þ

Based on the above assumptions, we can easily have
that gðxÞ is bounded; i.e., there exists a positive constant
M such that

g xð Þk k ≤M,∀x ∈Ω: ð29Þ

Lemma 4. If Assumption 3 holds, then τk is bounded, i.e.,

τkj j ≤ 3L skk k2: ð30Þ

The proof of Lemma 4 is similar to the proof of
Lemma 2 in [20], so we omit it here.

According to Lemma 4, we can see 1/ρ+k = sTk yk/ðsTk yk +
max fτk, 0gÞ < = 1:
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Lemma 5. Let the sequence fdkg be generated by STCG
algorithm. If Assumption 3 holds, then

αk ≥
1 − σð Þ gTk dk

�� ��
L dkk k2

: ð31Þ

Proof. According to (25), we have gT
k+1dk ≥ σgTk dk, then both

side to subtracte gTk dk, and using Lipschitz condition, we get

σ − 1ð ÞgTk dk ≤ gk+1 − gkð ÞTdk = yTk dk ≤ ykk k dkk k ≤ αkL dkk k2:
ð32Þ

Since dk is a descent direction and 0 < σ < 1, (31) follows
immediately.

Lemma 6. Let the sequence fdkg be generated by STCG
algorithm. If Assumption 3 holds, we have

〠
∞

k=0

gT
k dk

À Á2
dkk k2

< +∞: ð33Þ

Proof. From the first inequality (24) of strong Wolfe condi-
tions, Assumption 3, and Lemma 5, we have

f k − f k+1 ≥ −ωαkg
T
k dk ≥ −ρ

1 − σð Þ gT
k dk

À Á2
L dkk k2

: ð34Þ

Since f ðxÞ is bounded from below, the proof is
completed.

Theorem 7. Suppose that Assumption 2 and Assumption 3
hold. The sequence fxkg is generated by STCG algorithm. If
f is a uniformly convex function on Ω, namely, there exists
a positive constant μ such that

∇f xð Þ−∇f yð Þð ÞT x − yð Þ ≥ μ x − yk k2,∀x, y ∈ℕ, ð35Þ

then we have

lim
k⟶∞

gkk k = 0: ð36Þ

Proof. From the Lipschitz condition (28), we have

ykk k = gk+1 − gkk k ≤ L skk k: ð37Þ

It follows (35) that

yTk sk ≥ μ skk k2: ð38Þ

Using Cauchy inequality and (38), we obtain μkskk2 ≤
yTk sk ≤ kykkkskk, i.e.,

μ skk k ≤ ykk k: ð39Þ

Then, from (37), (38), and (39), we have

1
L
=

skk k2
L skk k2 ≤

skk k2
skk k ykk k ≤

skk k2
sTk yk

≤
skk k2

μ skk k2 ≤
1
μ
, ð40Þ

μ

L2
≤

μ skk k2
L2 skk k2 ≤

μ skk k2
ykk k2 ≤

sTk yk
ykk k2 ≤

skk k ykk k
ykk k2 ≤

1
μ
: ð41Þ

Let θmax = max f1, 1/μg; we get θk+1 ≤ θmax. From (40),
we obtain

tk =
1
ρ+k

+
ykk k2 θk+1 − 2θk+1 − 1ð Þmkð Þ

sTk yk

≤ 1 +
L2

μ
θmax − 2θmax − 1ð Þcð Þ:

ð42Þ

Therefore, from (22), (37), (38), and (42), we have

dk+1k k = −θk+1gk+1 + aksk + bkykk k

≤ θmax gk+1k k + 1
2
sTk gk+1
sTk yk

����
���� ykk k

+
1
2
yTk gk+1
sTk yk

����
���� skk k + tkj j s

T
k gk+1
sTk yk

����
���� skk k

≤ θmax gk+1k k + 1
2

gk+1k k ykk k
μ skk k +

1
2

gk+1k k ykk k
μ skk k

+ 1 + L2

μ
θmax − 2θmax − 1ð Þcð Þ

� �
gk+1k k
μ

≤ 1 +
L + 1
μ

+ θmax − 2θmax − 1ð Þcð Þ L
2

μ2

� �
gk+1k k

≜M1 gk+1k k:
ð43Þ

From Lemma 1 and (43), we get

gTk+1dk+1
À Á2

dk+1k k2
≥
c2 gk+1k k2

M2
1

: ð44Þ

Combined with Lemma 6, then

〠
∞

k=0
gkk k2 <∞: ð45Þ

The proof is completed.

For general nonlinear functions, we can establish a
weaker convergence result:

liminf
k⟶∞

gkk k = 0: ð46Þ

Lemma 8. Suppose that Assumption 2 and Assumption 3
hold. Let the sequence fxkg be generated by STCG algorithm;
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then, we have dk ≠ 0 and

〠
∞

k=0
uk+1 − ukk k2 <∞, ð47Þ

whenever inf fkgkk: k ≥ 0g > 0, in which uk = dk/kdkk.

Proof. Define γ = inf fkgkk: k ≥ 0g, then kgkk ≥ γ > 0. From
the sufficient descent condition (26), we know dk ≠ 0 for
each k, so uk is well defined. To prove global convergence,
we define a+k =max fak′ , 0g, where ak′ = ð1/2ÞðyTk gk+1/dTk ykÞ
− ðð1/ρkÞ + ððkykk2ðθk+1 − ð2θk+1 − 1ÞmkÞÞ/sTk ykÞÞðsTk gk+1/d

T
k

ykÞ. By (22), we have

dk+1
dk+1k k =

−θk+1gk+1
dk+1k k + a+k

dk
dk+1k k + bk

yk
dk+1k k

= −θk+1gk+1 + bkyk
dk+1k k + a+k

dkk k
dk+1k k

dk
dkk k ,

ð48Þ

namely,

uk+1 = ωk + δkuk, ð49Þ

where

ωk =
−θk+1gk+1 + bkyk

dk+1k k ,

δk = a+k
dkk k
dk+1k k ≥ 0:

ð50Þ

Using the identity kuk+1k = kukk = 1, we have

ωkk k = uk+1 − δkukk k = δkuk+1 − ukk k: ð51Þ

Since δk ≥ 0, then

uk+1 − ukk k ≤ 1 + δkð Þuk+1 − 1 + δkð Þukk k
≤ uk+1 − δkukk k + δkuk+1 − ukk k
= 2 ωkk k:

ð52Þ

From (25), we have

σgT
k dk − σgT

k+1dk ≤ gTk+1dk − σgTk+1dk − σyTk dk

≤ 1 − σð ÞgTk+1dk
−σ
1 − σ

≤
gTk+1dk
yTk dk

,

gTk+1dk + σgT
k+1dk ≤ −σgTk dk + σgTk+1dkg

T
k+1dk + σgT

k+1dk

≤ σyTk dk
gTk+1dk
yTk dk

≤
σ

1 + σ
:

ð53Þ

Thus,

sTk gk+1
sTk yk

����
���� = dTk gk+1

dTk yk

�����
����� ≤ σ

1 − σ
, ð54Þ

ykk k ≤ gk+1k k + gkk k
gk+1k k gk+1k k ≤ 1 +

M
γ

gk+1k k: ð55Þ

By the definition of ωk, bk, (54) and (55), we get

ωkk k = −θk+1gk+1 + bkykk k
dk+1k k

≤
θk+1 gk+1k k + 1/2 sTk gk+1/sTk yk

�� �� ⋅ ykk k
dk+1k k

≤ θmax +
σ

2 1 − σð Þ 1 +
M
γ

� �� �
gk+1k k
dk+1k k :

ð56Þ

If kgk+1k > γ, from Lemma 1 and Lemma 6, we have

〠
∞

k=0

c2γ2 gk+1k k2
dk+1k k2

≤ 〠
∞

k=0

c2 gk+1k k4
dk+1k k2

≤ 〠
∞

k=0

gTk+1dk+1
À Á2

dk+1k k2
< +∞:

ð57Þ

Thus, (47) holds.

Property(∗). Consider a method of form (2) and (22),
and suppose

0 < γ ≤ gkk k ≤ �γ, k ≥ 0: ð58Þ

We call that a method has Property(∗) if there exist
constants b > 1 and λ > 0 such that jak′j < b and kskk ≤ λ⇒
jak′j ≤ 1/2b.

Lemma 9. Suppose that Assumption 2 and Assumption 3
hold. Let the sequence fdkg be generated by STCG algorithm;
then, STCG algorithm has Property(∗).

Proof. By (25) and (26), we obtain

dTk yk ≥ σ − 1ð ÞgT
k dk ≥ c 1 − σð Þ gkk k2: ð59Þ
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Using (29), (58), Assumption 2, and (59), we obtain

ak′
�� �� = 1

2
yTk gk+1
dTk yk

−
1
ρ+k

+
ykk k2 θk+1 − 2θk+1 − 1ð Þmkð Þ

sTk yk

� �
sTk gk+1
dTk yk

�����
�����

≤
1
2

ykk k gk+1k k
c 1 − σð Þ gkk k2

+
1
ρ+k

+
ykk k2 θk+1 − 2θk+1 − 1ð Þmkð Þ

sTk yk

� �
skk k gk+1k k

c 1 − σð Þ gkk k2

≤
1
2

gk+1 − gkk k gk+1k k
c 1 − σð Þ gkk k2

+ 1 +
gk+1 − gkk k2θmax

c 1 − σð Þ gkk k2
 !

skk k gk+1k k
c 1 − σð Þ gkk k2

≤
�γ2

c 1 − σð Þγ2 + 1 +
4�γ2θmax
c 1 − σð Þγ2

� �
2δ�γ

c 1 − σð Þγ2
≔ b:

ð60Þ

Let

λ≔
c2 1 − σð Þ2γ4

2�γ2 �γ + 1 + 4�γ2θmax/c 1 − σð Þγ2ð Þð Þ2δ½ � L/2ð Þ + 1 + 4�γ2θmax/c 1 − σð Þγ2ð Þð Þ½ � :

ð61Þ

If kskk ≤ λ, from (60) and (61), we obtain

ak′
�� �� ≤ 1

2
L skk k gk+1k k
c 1 − σð Þγ2 +

1
ρ+k

+
L2 skk k2θmax
c 1 − σð Þγ2

� �
skk k gk+1k k
c 1 − σð Þγ2

≤
1
2

L�γ
c 1 − σð Þγ2 + 1 +

4�γ2θmax
c 1 − σð Þγ2

� �
�γ

c 1 − σð Þγ2
� �

skk k

≤
1
2

L�γ
c 1 − σð Þγ2 + 1 +

4�γ2θmax
c 1 − σð Þγ2

� �
�γ

c 1 − σð Þγ2
� �

λ

=
1
2b

:

ð62Þ

In the next lemma, we show that if gradient sequence is
bounded away form zero, then a fraction of the steps cannot
be too small.. Let ℕ be the set of positive integers, Kλ ≔
fi ∈ℕ : i ≥ 1, ksik > λg, for λ > 0, namely, the set of integers
corresponding to steps greater than λ. Now, we need to
discuss groups of Δ consecutive iterates. Let Kλ

k,Δ ≔ fi ∈
ℕ : k ≤ i ≤ k + Δ − 1, ksik > λg, and jKλ

k,Δj denote the num-
ber of elements of Kλ

k,Δ.

Lemma 10. Suppose that Assumption 2 and Assumption 3
hold. Let the sequences fxkg and fdkg be generated by STCG
algorithm. When (58) holds, there exists λ > 0 such that

Kλ
k,Δ

��� ��� > Δ

2
, for Δ ∈ℕ, ð63Þ

where k ≥ k0, in which k0 is any index.

Proof. Suppose on the contrary that there exists λ > 0, such
that jKλ

k,Δj ≤ Δ/2 for Δ ∈ℕ and for any k ≥ k0.
By (54) and (55), we have

bkykk k = 1
2
sTk gk+1
sTk yk

����
���� ykk k

≤
σ

2 1 − σð Þ 1 +
�γ

γ

� �
gk+1k k

≜M2 gk+1k k:

ð64Þ

According to (22), we have

dk+1k k2 ≤ ak′ dkk k + −θk+1gk+1 + bkykk k
� �2

≤ 2ak′2 dkk k2 + 2 −θk+1gk+1 + bkykk k2
≤ 2ak′2 dkk k2 + 2 2 θmaxgk+1k k2 + 2 bkykk k2À Á
≤ 2ak′2 dkk k2 + 4 θ2max +M2

2
À Á

gk+1k k2:

ð65Þ

By induction, we have

dlk k2 ≤ c1 1 + 2al−1′ 2 + 2al−1′ 22al−2′ 2+⋯+2al−1′ 22al−2′ 2⋯ 2ak0′ 2
� �

,

ð66Þ

for any given index l ≥ k0 + 1, where c1 depends on kdk0−1k,
not on l. Next, we consider 2al−1′ 22al−2′ 2⋯ 2ak′2, where
k0 ≤ k ≤ l − 1. Now, we divide 2ðl − kÞ factors of (66) into
groups of each 2Δ elements; namely, if Λ≔ ðl − kÞ/Δ, then
(66) can be divided into Λ or Λ + 1 groups

2al1′ 2⋯ 2ak1′ 2
� �

,⋯, 2alΛ′ 2⋯ 2akΛ′ 2
� �

, ð67Þ

and a possible group

2alΛ+1′ 2⋯ 2ak′2
� �

, ð68Þ

where li = l − 1 − ði − 1ÞΔ for i = 1, 2,⋯,Λ + 1, and ki =
li+1 + 1 for i = 1, 2,⋯,Λ. It is clear that ki ≥ k0 for i = 1, 2,
⋯,Λ; from assumption condition, we get pi ≔ jKλ

ki ,Δj ≤ Δ/2:
Thus, there are pi indices j such that ksjk > λ and ðΔ − piÞ
indices j such that ksjk ≤ λ on ½ki, ki + Δ − 1�.

From (60), we have b > ð�γ2/ðcð1 − σÞγ2ÞÞ > 1, i.e., 2b2 > 1.
In conjunction with 2pi − Δ ≤ 0, we have 2ali′2⋯ 2aki′ 2 ≤
2Δb2pið1/2bÞ2ðΔ−piÞ = ð2b2Þ2pi−Δ ≤ 1: So every item in (67)
is less than or equal to 1, and so is their product. In

(68), we have 2alΛ+1′ 2⋯ 2ak′2 ≤ ð2b2ÞΔ. Then, we get

dlk k2 ≤ c2 l − k0 + 2ð Þ, ð69Þ
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where c2 > 0 and independent of l. Furthermore, ∑k≥0ð1/
kdkk2Þ =∞: But from (26), (33), and (58), we have

c2γ4〠
k≥0

1
dkk k2

≤ c2〠
k≥0

gkk k4
dkk k2

≤〠
k≥0

gT
k dk

À Á2
dkk k2

<∞: ð70Þ

It leads to a contradiction. The proof is completed.

Theorem 11. Suppose that Assumption 2 and Assumption 3
hold. Let the sequence fxkg be generated by STCG algorithm;
then, (46) holds.

Proof. The proof by contradiction is adopted. We can obtain
the proof similarly to Theorem 4.3 in [21].

4. Numerical Results

In this section, we show the numerical performance of
STCG algorithm. The test problems are unconstrained prob-

lems from CUTEr library [22] and Andrei [23], in which the
dimensions vary from 2 to 100000. All codes are written on
MATLAB R2015b and run on PC with 1.19GHz CPU pro-
cessor, 8.00GB RAM memory. We list these test problems
and their dimensions in Table 1.

We compare STCG algorithm against the descent Dai-
Liao (DDL) method [16] and the modified Polak-Ribière-
Polyak (PRP+) method [21], which have better numerical
performance. When θk+1 = max f1, kskk2/sTk ykg and θk+1 =
max f1, sTk yk/kykk2g are chosen, STCG algorithm is denoted
by “New1” and “New2,” respectively.

All test methods are terminated when satisfying the
following condition:

gkk k ≤ ε or f xk+1ð Þ − f xkð Þj j ≤ ε max 1:0, f xkð Þj jf g, ð71Þ

where ε = 10−6 and ω = 0:1 and σ = 0:6 in Wolfe conditions
(24) and (25).

The result of computational experiments from partial
problems in Table 1 are listed in Table 2. In Table 2, k, nf ,

Table 1: The test functions and dimensions.

Problems Functions Dimensions Problems Functions Dimensions

1 The penalty function I 1000 31 Variable dimension 1000

2 The penalty function I 5000 32 Variable dimension 10000

3 The penalty function I 10000 33 Variable dimension 50000

4 The penalty function I 50000 34 Watson 1000

5 The penalty function I 100000 35 Watson 10000

6 Boundary value function 1000 36 Watson 50000

7 Boundary value function 5000 37 Chebyquad 5000

8 Boundary value function 10000 38 Chebyquad 10000

9 Boundary value function 50000 39 Broyden banded 1000

10 Boundary value function 100000 40 Broyden banded 5000

11 Broyden tridiagonal function 1000 41 Broyden banded 10000

12 Broyden tridiagonal function 5000 42 Generalized Rosebrock 1000

13 Broyden tridiagonal function 10000 43 Generalized Rosebrock 5000

14 Broyden tridiagonal function 50000 44 Generalized Rosebrock 10000

15 Separable cubic function 1000 45 Boundary value 1000

16 Separable cubic function 5000 46 Boundary value 5000

17 Separable cubic function 10000 47 Boundary value 10000

18 Separable cubic function 50000 48 Integral equation 1000

19 Separable cubic function 100000 49 Integral equation 5000

20 The variable dimension function 1000 50 Integral equation 10000

21 The Chebyquad function 1000 51 Yang tridiagonal 1000

22 Nearly separable function 1000 52 Yang tridiagonal 5000

23 Nearly separable function 5000 53 Yang tridiagonal 10000

24 Schittkowski function 302 1000 54 Allgower 1000

25 Extended Rosenbrock 1000 55 Freudenstein and Roth 2

26 Extended Rosenbrock 10000 56 Powell badly scaled 2

27 Extended Rosenbrock 50000 57 Brown badly scaled 2

28 Extended Powell singular 1000 58 Beale 2

29 Extended Powell singular 10000 59 Helical valley 3

30 Extended Powell singular 50000 60 Wood 4
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Table 2: Partial numerical results of several methods.

P:
DDL PRP + New1 New2

k/nf/ng/CPUð Þ k/nf /ng/CPUð Þ k/nf /ng/CPUð Þ k/nf /ng/CPUð Þ
1 11/30/12/0.0313 13/39/15/0.0625 11/32/12/0.0313 12/34/15/0.0313

2 13/35/14/0.1094 18/50/23/0.1406 9/31/10/0.0313 12/40/16/0.1250

3 14/41/15/0.1406 12/44/17/0.1406 13/41/14/0.1250 12/39/14/0.1563

4 37/85/51/0.9531 16/49/19/0.3594 19/60/27/0.5000 11/44/15/0.2344

5 37/96/50/1.4844 18/55/19/0.8438 12/45/13/0.5469 14/49/15/0.6719

6 24/33/26/0.0469 9/19/11/0.0313 19/27/21/0.0156 17/27/20/0.0781

7 24/33/26/0.1094 9/19/11/0.0313 19/27/21/0.0938 18/27/21/0.1094

8 24/33/26/0.2656 9/19/11/0.0625 19/28/22/0.1250 21/31/24/0.1875

9 24/33/26/0.4219 9/19/11/0.2656 18/26/20/0.4531 20/30/23/0.3281

10 24/33/26/0.8438 9/19/11/0.2594 19/28/22/0.7813 19/26/21/0.7031

11 44/61/49/0.0625 37/67/47/0.0469 31/46/32/0.0313 31/46/32/0.0313

12 31/46/32/0.0938 44/76/53/0.1719 31/46/33/0.0625 31/46/32/0.1875

13 36/53/40/0.2969 18/42/25/0.1250 35/49/37/0.2813 34/46/36/0.2344

14 34/51/36/0.5625 41/75/50/1.0313 35/56/38/0.9219 36/59/39/0.7344

15 36/56/39/1.5781 49/81/58/2.1563 40/60/43/1.3125 40/62/43/1.7031

16 12/15/14/0.1719 7/16/11/0.1250 7/12/9/0.0938 7/12/9/0.0938

17 12/15/14/5.0625 13/22/18/6.2188 8/13/10/3.3125 8/13/10/3.2969

18 12/15/14/14.8906 12/21/16/17.1875 9/14/11/11.3906 9/14/11/11.4531

19 14/17/16/389.5625 14/22/18/438.8125 10/15/12/285.5156 8/13/10/234.6094

20 13/54/13/0.0156 13/54/13/0.0156 13/54/13/0.0313 13/54/13/0.0313

21 28/48/34/2.6409 10/21/13/0.9688 18/30/20/1.4375 15/25/17/1.1406

22 75/144/101/1.1406 15/45/23/0.3594 33/67/44/0.5313 35/71/44/0.5156

23 32/76/47/9.0000 59/145/98/18.7031 36/84/53/10.0156 41/88/54/10.3750

24 21/58/26/0.0156 18/56/25/0.0781 19/55/22/0.0156 25/62/29/0.0469
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Figure 1: The number of iterations.
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ng, and CPU stand for number of iterations, function evalu-
ations, gradient evaluations, and CPU time, respectively.
And based on the numerical results of all the test problems,
we present the performance profile (including number of
iterations, function evaluations, gradient evaluations, and
CPU time) introduced by Dolan and Moré [24] to show

the difference in numerical effects among the four algo-
rithms. In a performance profile plot, the horizontal axis
gives the percentage ðτÞ of the test problems for which a
method is the fastest (efficiency), while the vertical side gives
the percentage ðψÞ of the test problems that are successfully
solved by each of the methods.
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From Table 2, we can see that STCG is significantly
superior to DDL for 88 percent of the problems; STCG is
superior to PRP+ for 58 percent of the problems.
Figures 1–4 plot the performance profiles for the number
of iterations, the number of function evaluations, the num-
ber of gradient evaluations, and the CPU time, respectively.
They show that the performance of New1 and New2 is supe-
rior to DDL and PRP+ in all aspects. In the overall trend, the
performance of New1 is slightly better than New2. We deem
that New1 is more competitive than New2. In conclusion,
STCG method is competitive.

5. Application of STCG Algorithm in Low-
Carbon Supply Chain Optimization

In recent years, global warming has become increasingly
serious due to the dramatic increase in carbon emissions
caused by human activities. As an important means to
achieve sustainable development, energy conservation and
emission reduction are highly valued by the government,
enterprises, and consumers. Therefore, we use STCG algo-
rithm to study the optimal pricing, warranty decision, and
carbon emission level strategy of the two low-carbon supply
chain (LSCS) models under the centralized game structure
in [25].

As shown in Figure 5 [25], manufacturers sell products
through retailers and provide consumers with free after-
sales warranty services. Manufacturers produce greenhouse
gases when they produce products and provide warranty ser-
vices. The government will set a certain carbon emission
quota for each enterprise. When the enterprise carbon emis-

sion quota is insufficient or excessive, the enterprise can
trade in the carbon emission market.

For a better description of the model, the symbols are
shown in Table 3.

According to the assumptions given in [25], the object
problem can be transformed into profit maximization. The
warranty cost function is introduced as bθ2 (b > 0, θ > 0)
(see [26–28]). Market demand only depends on the warranty
period θ, the demand function is D = d − αp + nθ, and the
function expression for the number of products repaired
by the manufacturer during the warranty period is R = φ +
τθ. In centralized decision-making, we regard manufacturers
and retailers as subjects with identical interests, and both
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sides cooperate to maximize LSCS profits. Therefore, the
total profit function of LSCS is

max
p,θ

ΠT = p − cmð ÞD + k a − eD − εeRð Þ − bθ2: ð72Þ

We transform (72) into the following optimization
problem:

min
p,θ

ΠT = − p − cmð ÞD − k a − eD − εeRð Þ + bθ2: ð73Þ

Based on (72), the carbon emission reduction
level of the product is considered. The demand func-
tion of product D = d − αp + nθ + δλ is linear, where
n and δ are positive, inversely proportional to the
retail price p, proportional to the warranty period θ,
and the carbon emission reduction level λ. In the
production process, manufacturer needs to develop
carbon emission reduction technologies to increase
the carbon emission reduction level of products; the
investment cost function of carbon emission reduction
level is ð1/2Þbλ2 [29].

Table 5: Optimal decisions under different consumer price
sensitivity coefficients.

Sensitive coefficient α Initial point pC∗ θC∗ ΠC∗
T

α = 0:5 (1000; 40) 595.6001 0.0460 44145

(5000; 100) 595.7273 0.0388 44145

α = 0:8

(0; 0) 480.6638 -4.7658 53692

(50; 10) 480.2855 -4.7935 53692

(100; 20) 480.5973 -4.7755 53692

(1000; 40) 480.6685 -4.7647 53692

(5000; 100) 480.2986 -4.8443 53692

α = 1

(0; 0) 442.6351 -6.3651 65706

(50; 10) 442.6246 -6.3611 65706

(100; 20) 442.6080 -6.4392 65706

(1000; 40) 443.0113 -6.4115 65706

(5000; 100) 442.9677 -6.4097 65706

Table 3: Symbolic explanation table.

Symbolic variables

cm Unit production cost of new products

d Potential market demand

k Unit carbon emissions trading price

a The initial amount of carbon emissions allocated by the government

τ Warranty period sensitivity coefficient for quantity of repaired products

φ Potential product repair quantity

μ Carbon emission reduction investment cost coefficient

e Carbon emissions from the production of one unit of new product

b Warranty period investment cost coefficient

β Revenue sharing ratio

α Consumer sensitivity coefficient

D Market demand

R Total number of products returned for repair

Πi
T Profit function for the entire LSCS in the mode i

Decision variables

p Unit retail price

θ Warranty period

λ Carbon emission reduction level of product

Table 4: Optimal decisions under different consumer price
sensitivity coefficients.

Sensitive coefficient α Initial point pC∗ θC∗ ΠC∗
T

α = 0:1

(0; 0) 2052.4 61.2 220090

(50; 10) 2052.6 61.2 220090

(100; 20) 2052.5 61.3 220090

(1000; 40) 2052.7 61.7 220090

(5000; 100) 2052.8 61.2 220090

α = 0:3

(0; 0) 807.2950 8.9785 57435

(50; 10) 807.2954 8.9828 57435

(100; 20) 807.3985 8.8695 57435

(1000; 40) 808.8676 8.9162 57435

(5000; 100) 808.0076 8.9505 57435

α = 0:5
(0; 0) 595.3961 0.0524 44145

(50; 10) 595.3171 -0.0129 44145

(100; 20) 595.2176 0.0495 44145
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Considering the carbon reduction efficiency of a product
under centralized decision, the overall profit function of
LSCS is

max
p,λ,θ

ΠT = p − cmð ÞD + k a − eD − εeRð Þ − 1
2
μλ2 − bθ2: ð74Þ

Similarly, (74) is transformed into the following optimi-
zation problem:

min
p,λ,θ

ΠT = − p − cmð ÞD − k a − eD − εeRð Þ + 1
2
μλ2 + bθ2:

ð75Þ

Then, the STCG algorithm is used to calculate the
optimization problems (73) and (75), and choose different
initial points ðpC , θCÞ and ðpC0 , θC0 , λC0Þ, respectively. Based
on the average unit carbon emissions trading price of April
2020 in Fujian Province of China, let k = 9:1. With reference
to the setting of the remaining parameters in [30–32], we set
cm = 500, τ = 0:12, n = 0:84, δ = 0:8, a = 5000, e = 10, d = 300,
ε = 0:3, φ = 50, r = 0:4, μ = 15, b = 10, and β = 0:2; these
values ensure that the optimal value is meaningful, and the
results are shown in Tables 4–6.

Tables 4–6 show the optimal decision of LSCS under
different initial points and different consumer price sensitiv-
ity coefficients α. As far as the consumer price sensitivity
coefficient α is concerned, each optimal decision variable is
negatively correlated with the consumer price sensitivity
coefficient α. When α is small, indicate that the price has a
relatively small impact on the market demand. On the pre-
mise of ensuring after-sales service and carbon emission
reduction level of products, the retail and wholesale prices
of products can be appropriately raised. When α is large,
the price has become an important factor affecting market
demand, and each decision-making variable is reduced.
With the increase of α, the optimal profit shows a trend of
rising first and then falling.

In terms of different initial points, on the premise of the
same consumer sensitivity coefficient α, the STCG algorithm
is used to solve the supply chain optimization problem.
Numerical experiment results show that the solution
obtained by STCG algorithm is very close to the real
solution.

6. Conclusion

A new spectral three-term conjugate gradient method
with random parameter is proposed. By minimizing the

Table 6: Under the carbon emission reduction level of products, the optimal decision under different consumer price sensitivity coefficients.

Sensitive coefficient α Initial point pC0∗ θC0∗ λC0∗ Π
C0∗
T

α = 0:1

(0; 0; 0) 2562.2 82.6 105.1 281600

(50; 10; 10) 2562.9 82.6 105.2 281600

(100; 20; 20) 2561.1 82.6 105.0 281600

(1000; 40; 40) 2559.7 82.5 105.0 281600

(5000; 100; 100) 2564.8 82.7 105.3 281600

α = 0:3

(0; 0; 0) 825.3441 9.6797 12.4979 58522

(50; 10; 10) 824.7923 9.6693 12.4181 58522

(100; 20; 20) 825.3579 9.7176 12.4898 58522

(1000; 40; 40) 825.9481 9.7082 12.5336 58522

(5000; 100; 100) 825.7093 9.6906 12.5188 58522

α = 0:5

(0; 0; 0) 595.1347 -0.0185 0.1655 44145

(50; 10; 10) 595.2992 -0.0387 0.2185 44145

(100; 20; 20) 596.2103 0.0146 0.2719 44145

(1000; 40; 40) 596.4003 0.0473 0.2774 44145

(5000; 100; 100) 596.2731 0.0579 0.2949 44145

α = 0:8

(0; 0; 0) 477.1441 -4.9476 -6.0976 53960

(50; 10; 10) 477.2710 -4.9305 -6.0391 53960

(100; 20; 20) 477.2881 -4.9724 -6.0170 53960

(1000; 40; 40) 477.6123 -4.9022 -6.0851 53960

(5000; 100; 100) 477.8681 -4.8857 -5.9646 53960

α = 1

(0; 0; 0) 439.3399 -6.5715 -8.1051 66185

(50; 10; 10) 439.2198 -6.4765 -8.1148 66185

(100; 20; 20) 439.6549 -6.5136 -8.0531 66185

(1000; 40; 40) 439.8000 -6.5487 -8.0275 66185

(5000; 100; 100) 439.6809 -6.5573 -8.0730 66185

13Journal of Mathematics



Frobenius norm distance between search direction Qk+1 and
ML-BFGS matrix based on the modified secant equation,
the parameter tk in Qk+1 is determined, and the random
parameter is introduced to simplify the scheme of tk. The
search direction is sufficiently close to the quasi-Newton
direction and satisfies the sufficient descent property. Global
convergence of the new algorithm is proved under appropri-
ate assumptions. Some classical test problems are selected for
numerical experiments and compared with DDL and PRP+

to verify the effectiveness of the proposed algorithm. Using
STCG algorithm to solve supply chain optimization has a
certain practical prospect, which reflects the effectiveness of
the new algorithm. There are still many deficiencies in our
research; for example, the more efficient and widely used
spectral parameter θk is not taken into account. Therefore,
the idea of alternating direction method will be used in the
future work to explore the spectral parameter θk and param-
eter tk in the search direction. The use of alternating direction
method can better correct the approximate degree of search
direction and quasi-Newton direction and obtain a more
effective and robust method.
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