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In this paper, a new approach for solving the system of fractional integro-differential equation with weakly singular kernels is
introduced. The method is based on a class of symmetric orthogonal polynomials called shifted sixth-kind Chebyshev
polynomials. First, the operational matrices are constructed, and after that, the method is described. This method reduces a
system of weakly singular fractional integro-differential equations (WSFIDEs) by the collocation method into a system of
algebraic equations. Thereupon, an upper error bound for the proposed method is determined. Finally, some numerical
examples are prepared to test the accuracy and efficiency of the presented method.

1. Introduction

The study of fractional calculus has applications andpopularity
in various and wide fields of biology, physics, and fluid
mechanics. Fractional calculus is actually integration and dif-
ferentiation of arbitrary orders [1–4]. In various problems of
physics and engineering, the fractional differential equations
havebeenproved tobe valuable tools inmodeling ofmanyphe-
nomena [5, 6]. As we know,manymathematical models of real
phenomena (arising in engineering and physics) are described
as linear or nonlinear systems. It is worthmentioning that with
the development of fractional calculus, the behavior of many
systems can be described using the fractional differential and
fractional integro-differential system [7, 8]. In recent years, sys-
tems of the fractional differential and integral equations are the
subjects of extensive study due to their frequent appearance in
many engineering and scientific disciplines [9–11]. However,
most of the fractional-order equations and integral equations
do not have analytic solutions or are hard to find. So, it is essen-

tial tofindnumericalmethods to get approximate or exact solu-
tions of a system of integro-differential equations. So far,
researchers haveutilizeddiverse numericalmethods for solving
a systemof fractional integro-differential equations. In [12], the
homotopy perturbation method was proposed for solving lin-
ear and nonlinear systems of fractional integro-differential
equations. Heydari et al. have used the Chebyshev wavelet
method for solving a class of systems of nonlinear fractional
singular Volterra integro-differential equation in [13]. In the
next year, for the first time, the hybrid functions composed of
the Block-pulse functions and Bernoulli polynomials were
applied for problems with fractional-order differential equa-
tions in [14]. Also, a novel technique based on iterative refine-
ment was presented to analytically approximate a system of
linear fractional integro-differential equations [15]. In 2018,
Hesameddini and Shahbazi developed the concept of [14]
and used it to solve the FDIE system in [16]. Also, Xie and Yi
presented the simple and fast method based on the Block-
pulse function to solve a nonlinear system of fractional
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Volterra-Fredholm integro-differential equations in the same
year [17]. In [18], the authors implemented the new Jacobi
operational matrices to reduce the complexity of calculations
to solve WSFDIEs. Next, the Haar wavelet method was
employed to solve a coupled system of FIDEs, and the
Muntz-Legendre wavelets were introduced to solve FIDVFEs
in [19, 20]. Also, the other authors applied the Chebyshev
Pseudo spectral method for solving fractional-order nonlinear
system of Volterra integro-differential equations and a least
square collocation Chebyshev technique for solving a system
of linear fractional integro-differential equations [21, 22]. In
this paper, we consider the following system of weakly singular
integro-differential equations:

Dνi ui xð Þ =F i x, u1 xð Þ, u2 xð Þ,⋯, um xð Þð Þ

+ 〠
m

j=1
θij

ðx
0

Kij x, zð ÞGij z, uj zð ÞÀ Á
x − zð Þαi j dz

+ f i xð Þ, i = 1,⋯,m, u kð Þ
i 0+ð Þ = u kð Þ

0i , k = 0, 1,
⋯ , r − 1, r − 1 < νi ≤ r,

ð1Þ

where uiðxÞ ∈ Cr½0, 1�, i = 1,⋯,m, are the unknown func-
tions, F i : ½0, 1� × ðCr½0, 1�Þm ⟶ℝ, Gij : ½0, 1� × Cr½0, 1�
⟶ℝ, and Kijðx, zÞ: ½0, 1�2 ⟶ℝ are continuous operators
and functions that satisfy Lipschitz conditions, and Dνi is the
Caputo fractional derivative operator where νi ∈ ð0, 1�. The
parameters θij, αij ∈ℝ such that jθijj ≤ 1, 0 < αij < 1, and i, j
= 1, 2,⋯,m. Moreover, f iðxÞ, i = 1,⋯,m, are known and suf-
ficiently smooth functions.

As usual, a way for solving functional equations is to
express the solution as a linear combination of the so-called
basis functions. In most researches, various polynomials such
as the Legendre, Chebyshev, Taylor, Hermit, and Bernstein are
used as basis functions. Among all of them, the Chebyshev
polynomials are the most important in the analysis and
numerical analysis. Chebyshev polynomials are orthogonal
on the interval ½−1, 1� and have good properties that are used
widely in the approximation of the functions. For this reason,
many studies are done based on the different kinds of Cheby-
shev polynomials. In [23], Masjed-Jamei introduced two half-
trigonometric orthogonal Chebyshev polynomials, and he
named them as the Chebyshev polynomials of the fifth and
sixth kinds. The basic formulas and properties of this class of
polynomials are displayed in [24, 25]. Up to now, many
researchers have used various kinds of Chebyshev polyno-
mials for the fractional-order differential and integro-
differential equations (see [26, 27]). However, there are only
a few works that have used the sixth-kind Chebyshev polyno-
mials. The main aim of this work is to introduce these polyno-
mials as a new basis function for solving WSFDIEs. In the
current paper, we apply the orthogonal shifted sixth-kind
Chebyshev polynomials together with the collocation method
for solving a system of weakly singular integro-differential
equations with fractional derivatives that, to the best of our
knowledge, is proposed here for the first time. For solving
these equations, we derive the fractional operational matrices

of fractional and integer orders and the product operational
matrix, as well. Also, we introduce an operational matrix to
approximate the integral term that has the weakly singular
kernel in Equation (1). As far as we can tell, this operational
matrix is presented for the first time. By substituting appropri-
ate approximations in Equation (1), the original equations
convert into algebraic equations that each of the equations of
algebraic systems is collocated at N + 1 roots of the ðN + 1Þ
th shifted sixth-kind Chebyshev polynomials (SSKCPs). By
solving these algebraic systems, the approximate solutions of
the original system are obtained. Although the calculation of
the operational matrices may be complicated, we show that
the obtained results are equal to other methods or are even
more accurate. Implementing these matrices leads to a
decrease in the number of required computations, and there-
fore, the computation time will be reduced.

The rest of the paper is organized as follows. In section 2,
some essential preliminaries are mentioned briefly. Section 3 is
devoted to constructing the operational matrices of SSKCPs.
The proposed numerical procedure is described in Section 4.
The error analysis of the proposed method is discussed in Sec-
tion 5. Some numerical applications are indicated in Section 6,
and conclusions are presented in Section 7.

2. Preliminaries and Notations

In this section, we recall some definitions and properties of
fractional integral and derivative operators which will be
used later. After that, some necessary definitions and funda-
mental properties of the shifted sixth-kind Chebyshev poly-
nomials are reviewed briefly.

2.1. Some Essentials of the Fractional Calculus

Definition 1. The Riemann-Liouville fractional integral oper-
ator Jα of order α is given by [2]

Jα f xð Þ = 1
Γ αð Þ

ðx
0
x − zð Þα−1 f zð Þ dz, α > 0, x > 0: ð2Þ

Definition 2. Let α ∈ℝ, n − 1 < α ≤ n, n ∈ℕ, and f ðxÞ be a
real-valued continuous function defined on ½0,∞Þ. Then,
the Caputo fractional derivative of order α > 0 is defined by [2]

0Dα
x f xð Þ = 1

Γ n − αð Þ
ðx
0

f n zð Þ
x − zð Þα+1−n dz,

f nð Þ zð Þ, α = n,

8><
>: ð3Þ

where ΓðxÞ is the Gamma function as

Γ xð Þ =
ð∞
0
e−zzx−1 dz, Re zð Þ > 0,

Γ x + 1ð Þ = xΓ xð Þ,

B u, vð Þ =
ð1
0
zu−1 1 − zð Þv−1 dz = Γ uð ÞΓ vð Þ

Γ u + vð Þ , Re uð Þ > 0, Re vð Þ > 0:

ð4Þ
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The last integral is often called the Beta integral. For α1, α2 > 0,
the Riemann-Liouville integral and Caputo fractional deriva-
tive operators satisfy the following properties:

(1) Jα1ðJα2 f ðxÞÞ = Jα2ðJα1 f ðxÞÞ = Jα1+α2 f ðxÞ
(2) Jαðλ1 f ðxÞ + λ2gðxÞÞ = λ1 J

α f ðxÞ + λ2 J
αgðxÞ

(3) JαðDα f ðxÞÞ = f ðxÞ −∑n−1
i=0 f

ið0Þðxi/i!Þ, n − 1 < α ≤ n, x
> 0

(4) Dαxγ =
0, α > γ,
ðΓðγ + 1Þ/Γðγ − α + 1ÞÞxγ−α, otherwise

(

(5) Jαxv = ððΓðv + 1ÞÞ/ðΓðv + α + 1ÞÞÞxv+α, v > −1

2.2. Shifted Sixth-Kind Chebyshev Polynomials and Their
Properties (SSKCPs)

Definition 3. The sixth-kind Chebyshev polynomials are
orthogonal functions on the interval ½−1, 1� and can be
determined with the following recursive formula [23, 24]:

Sj xð Þ = xSj−1 xð Þ − j j + 1ð Þ + −1ð Þj 2j + 1ð Þ + 1
4j j + 1ð Þ Sj−2 xð Þ, j ≥ 2,

S0 xð Þ = 1,
S1 xð Þ = x:

ð5Þ

Definition 4. The shifted sixth-kind Chebyshev polynomials
on ½0, 1� is defined by [23, 24]

S∗j xð Þ = Sj 2x − 1ð Þ, j = 0, 1, 2,⋯: ð6Þ

These polynomials have the following explicit analytic
form:

S∗j xð Þ = 〠
j

k=0
ρkjx

k, ð7Þ

where

ρkj =

22k−j
2k + 1ð Þ! 〠

j/2

i= k+1ð Þ/2b c

−1ð Þ j/2ð Þ+i+k 2i + k + 1ð Þ!
2i − kð Þ! , j even,

22k−j+1
2k + 1ð Þ! j + 1ð Þ 〠

j−1/2

i= k/2b c

−1ð Þ j+1ð Þ/2ð Þ+i+k i + 1ð Þ 2i + k + 2ð Þ!
2i − k + 1ð Þ! , j odd:

8>>>>>><
>>>>>>:

ð8Þ

Moreover, the shifted polynomials S∗j ðxÞ are orthogonal on
½0, 1� with respect to the weight function VðxÞ = ð2x − 1Þ2ffiffiffiffiffiffiffiffiffiffiffiffi
x − x2

p
in the sense that

ð1
0
S∗i xð ÞS∗j xð ÞV xð Þdx = λiδij, ð9Þ

λi =

π

22i+5 , i even,

π i + 3ð Þ
22i+5 i + 1ð Þ , i odd:

8>><
>>: ð10Þ

Now, let hðxÞ ∈ L2½0, 1�; then, hðxÞ can be approximated
in terms of S∗j ðxÞ as

h xð Þ ≈ 〠
N

j=0
ϱjS

∗
j xð Þ = FTS xð Þ = ST xð ÞF, ð11Þ

where

S xð Þ = S∗0 xð Þ, S∗1 xð Þ,⋯, S∗N xð Þ½ �T , F = ϱ0, ϱ1,⋯, ϱN½ �T , ð12Þ

where the coefficients ϱj are given by

ϱ j =
1
λj

ð1
0
h xð ÞS∗j xð ÞV xð Þdx, ð13Þ

and λj is defined in Equation (10). Similarly, any continuous
two-variable function, Fðx, zÞ, defined on ½0, 1� × ½0, 1� can
be approximated by means of the double-shifted sixth-kind
Chebyshev polynomials as

F x, zð Þ ≈ 〠
N

j=0
〠
N

i=0
FijS∗i xð ÞS∗j zð Þ = ST xð ÞFS zð Þ, ð14Þ

where F is a ðN + 1Þ × ðN + 1Þ matrix, and its entries are
given by

F ij =
1

λiλj

ð1
0

ð1
0
F x, zð ÞS∗i xð ÞS∗j zð ÞV xð ÞV zð Þdxdz: ð15Þ

3. Operational Matrices of SSKCPs

In this section, the formulas of operational matrices with the
fractional order will be derived for the sixth-kind Chebyshev
polynomials. The following are the required lemmas.

Lemma 5. If r ≥ l, l ∈ℕ, then we have

ð1
0
xrS∗l xð ÞV xð Þdx = 〠

l

m=0

ρml

ffiffiffi
π

p
Γ r +m + 3/2ð Þð Þ

2Γ r +m + 5ð Þ
m2 +m + r2 + 2rm + 3 + r
À Á

:

ð16Þ

Proof. From the properties of the orthogonal polynomials, if
r ≤ l, we have

ð1
0
xrS∗l xð ÞV xð Þ dx = 0: ð17Þ

Hence, we suppose r ≥ l. The lemma can be easily proved
by the integration of the analytic form of SSKCPs in Equa-
tion (7).
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Theorem 6. Let SðxÞ be the SSKCP vector given by Equation
(12) and μ ∈ℝ; then,

JμS xð Þ ≈P μð ÞS xð Þ, ð18Þ

where P ðμÞ is the ðN + 1Þ × ðN + 1Þ operational matrix of the
fractional integration of the order μ in the Riemann-Liouville
sense which is defined by

P μð Þ =

~a00 ~a01 ⋯ ~a0N

~a10 ~a11 ⋯ ~a1N

⋮ ⋮ ⋱ ⋮

~aN0 ~aN1 ⋯ ~aNN

2
666664

3
777775, ð19Þ

~aij = 〠
i

l=0
ϖijl, i = 0⋯N , j = 0⋯N: ð20Þ

ϖijl are given by

ϖijl = ρli
Γ l + 1ð Þ

λjΓ l + μ + 1ð Þ〠
j

k=0
ρkj

ffiffiffi
π

p
Γ k + μ + l + 3/2ð Þð Þ
2Γ k + μ + l + 5ð Þ × k + μð Þ2 + 2l + 1ð Þ k + μð Þ + l l + 1ð Þ + 3

À Á
, i = 0⋯N , j = 0⋯N:

ð21Þ

Proof. By applying the Riemann-Liouville integral operator
to the SSKCPs’ analytic form, we have

Jμ S∗i xð Þð Þ = 〠
i

l=0
ρli

Γ l + 1ð Þ
Γ l + μ + 1ð Þ x

μ+l: ð22Þ

Now, we can express xμ+l in terms of the shifted sixth-kind
Chebyshev polynomials as follows:

xμ+l ≈ 〠
N

j=0
~CljS

∗
j xð Þ, ð23Þ

where the coefficients ~Clj are given by

~Clj =
1
λj

ð1
0
xμ+lS∗j xð ÞV xð Þdx: ð24Þ

According to Lemma 5, we can rewrite Equation (22) as

where ~aij is given in Equation (20). Rewriting the last rela-
tion in the vector form gives

JμS∗j xð Þ = ~ai0, ~ai1,⋯, ~aiN½ �S∗j xð Þ, i = 0, 1,⋯,N: ð26Þ

This leads to the desired result.

In the following, some useful and applicable lemmas are
presented to get the Chebyshev operational matrix of
product.

Lemma 7. If S∗j ðxÞ and S∗i ðxÞ are jth and ith shifted sixth-
kind Chebyshev polynomials, respectively, then we can write
the product of S∗j ðxÞ and S∗i ðxÞ as

Qi+j xð Þ = S∗i xð ÞS∗j xð Þ = 〠
i+j

k=0
χ

i,jð Þ
k xk: ð27Þ

Proof. See [18].

Lemma 8. If S∗i ðxÞ, S∗j ðxÞ, and S∗k ðxÞ are ith, jth, and kth
shifted sixth-kind Chebyshev polynomials, then

dijk =
ð1
0
S∗i xð ÞS∗j xð ÞS∗k xð ÞV xð Þdx

= 〠
j+k

r=0
〠
i

l=0

ffiffiffi
π

p
ρliχ

i,jð Þ
k Γ r + l + 3/2ð Þð Þ
2Γ r + l + 5ð Þ l + rð Þ l + r + 1ð Þ + 3ð Þ,

ð28Þ
where χði,jÞ

k is obtained by Lemma 7.

Proof. According to Lemma 7, we can write

Qj+k xð Þ = S∗j xð ÞS∗k xð Þ = 〠
j+k

r=0
χ j,kð Þ
r xr: ð29Þ

Then,

dijk =
ð1
0
S∗i xð Þ〠

j+k

r=0
χ j,kð Þ
r xrV xð Þ dx = 〠

j+k

r=0
χ j,kð Þ
r

ð1
0
S∗i xð ÞxrV xð Þ dx:

ð30Þ

The value of the last integral is obtained by Lemma 5.

JμS ∗ð Þ
j xð Þ ≈ 〠

N

j=0
〠
i

l=0
ρli

Γ l + 1ð Þ
λjΓ l + μ + 1ð Þ ×〠

j

k=0
ρkj

ffiffiffi
π

p
Γ k + μ + l + 3/2ð Þð Þ
2Γ k + μ + l + 5ð Þ k + μð Þ2 + 2l + 1ð Þ k + μð Þ + l l + 1ð Þ + 3

À Á)
S∗j xð Þ = 〠

N

j=0
~aijS

∗
j xð Þ,

(
ð25Þ
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Assuming that E is a ðN + 1Þ × 1 vector, we have

S xð ÞST xð ÞE ≃ ~E S xð Þ, ð31Þ

where ~E is a ðN + 1Þ × ðN + 1Þ matrix called the product
operational matrix. The next theorem presents a general
form for entries of the matrix ~E.

Theorem 9. The entries of the matrix ~E in Equation (31) are
as follows:

~Ejk =
1
λk

〠
N

i=0
Ei dijk, j, k = 0, 1,⋯,N , ð32Þ

where dijk is obtained by Lemma 8 and Ei is the element of the
vector E.

Proof. See [18].

In the following, we get an approximation for the inte-
gral part with the singular kernel in Equation (1). Before
that, we present a theorem.

Theorem 10. The following relation is determined for 0 < κ
< 1:

ðx
0

zr

x − zð Þκ dz = Γ r + 1ð ÞΓ 1 − κð Þ
Γ r − κ + 2ð Þ xr−κ+1, r = 0, 1, 2,⋯: ð33Þ

Proof. By performing Equation (33) and the substitution of
z = ξx into Equation (33) and then using the definition of
the Beta function, we obtain

xr−κ+1
ð1
0
1 − ξð Þ−κξr dξ = Γ 1 − κð ÞΓ r + 1ð Þ

Γ r − κ + 2ð Þ xr−κ+1, r = 0, 1, 2,⋯:

ð34Þ

Now, we present an approximation for the integral part
with a weakly singular kernel. For this purpose, see the fol-
lowing theorem.

Theorem 11. Suppose that uðxÞ is a continuous function on
the interval ½0, 1� and κ ∈ ð0, 1Þ and uðxÞ ≈ STðxÞF = FTSðxÞ
where SðxÞ and F are defined by Equation (12), then we have

ðx
0

u zð Þ
x − zð Þκ dz ≈ FTI κð ÞS xð Þ, ð35Þ

where IðκÞ is a ðN + 1Þ × ðN + 1Þ matrix as follows:

I κð Þ =

σ00 σ01 ⋯ σ0N

σ10 σ11 ⋯ σ1N

⋮ ⋮ ⋱ ⋮

σN0 ~aN1 ⋯ σNN

2
666664

3
777775, ð36Þ

and its entries are determined as follows:

I
κð Þ
ij = σij = 〠

i

l=0
ρli

Γ l + 1ð ÞΓ 1 − κð Þ
Γ l − κ + 2ð Þ

�Cj l−κ+1ð Þ, i, j = 0, 1,⋯,N ,

ð37Þ

where the quantities ρli and �Cjðl−κ+1Þ are introduced by rela-
tion (8) and Lemma 5.

Proof. By the definition of vector SðxÞ and Lemma 5, we can
write

ST xð Þ = S∗0 xð Þ, S∗1 xð Þ,⋯, S∗N xð Þ½ � = 〠
0

l=0
ρl0x

l,⋯, 〠
N

l=0
ρlNx

l

" #
:

ð38Þ

By applying Theorem 10, we have

Now, we approximate xl−κ+1 in terms of SSKCPs as fol-
lows:

xl−κ+1 ≈ 〠
N

j=0
�Cj l−κ+1ð ÞS

∗
j xð Þ,

�Cj l−κ+1ð Þ =
1
λj

ð1
0
xl−κ+1S∗j xð ÞV xð Þ dx, j = 0, 1,⋯,N ,

ð40Þ

where �Cjðl−κ+1Þ is obtained by applying Lemma 5. Thus,

〠
i

l=0
ρli

Γ l + 1ð ÞΓ 1 − κð Þ
Γ l − κ + 2ð Þ xl−κ+1

≈ 〠
N

j=0
〠
i

l=0

ρliΓ l + 1ð ÞΓ 1 − κð Þ�Cj l−κ+1ð Þ
Γ l − κ + 2ð Þ

( )
S∗j xð Þ

= 〠
N

j=0
σijS

∗
j xð Þ, i = 0, 1,⋯,N:

ð41Þ

ðx
0

ST zð Þ
x − zð Þκ dz = 〠

0

l=0

ðx
0
ρl0

zl

x − zð Þκ dz,⋯, 〠
N

l=0
ρlN

ðx
0

zl

x − zð Þκ dz

" #
= 〠

0

l=0
ρl0

Γ l + 1ð ÞΓ 1 − κð Þ
Γ l − κ + 2ð Þ xl−κ+1,⋯, 〠

N

l=0
ρlN

Γ l + 1ð ÞΓ 1 − κð Þ
Γ l − κ + 2ð Þ xl−κ+1

" #
: ð39Þ
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Equation (39) is then represented as follows:

ðx
0

ST zð Þ
z − xð Þκ dz ≈

σ00 σ01 ⋯ σ0N

σ10 σ11 ⋯ σ1N

⋮ ⋮ ⋱ ⋮

σN0 ~aN1 ⋯ σNN

2
666664

3
777775

S∗0 xð Þ
S∗1 xð Þ
⋮

S∗N xð Þ

2
666664

3
777775 =I κð ÞS xð Þ:

ð42Þ

4. Numerical Procedure

We consider the system of fractional integro-differential
equation with weakly singular kernels described in Equation
(1). To solve the system, we approximate the function Dνiu
in a matrix form

Dνiui xð Þ ≈ ST xð ÞFi, Fi = ϱi0, ϱi1,⋯, ϱiN
Â ÃT , i = 1, 2,⋯,m:

ð43Þ

Then, according to the initial conditions of the problem,

we can approximate the known function H iðxÞ =∑r−1
k=0ðuðkÞ0i

xk/ðΓðk + 1ÞÞÞ, k = dνie as follows:

H i xð Þ ≈ ST xð ÞC i, i = 1, 2,⋯,m: ð44Þ

Using Equations (43) and (44), we compute an approxi-
mate for uiðxÞ:

ui xð Þ ≈ ST xð ÞP νið ÞFi + ST xð ÞC i = ST xð ÞUi, i = 1, 2,⋯,m,
ð45Þ

where P ðνiÞ is the integral operational matrix presented in
Theorem 6. We have the following approximations for the
rest of the system:

F i x, u1 xð Þ, u2 xð Þ,⋯, um xð Þð Þ ≈XT
i S xð Þ,

Gij x, uj xð ÞÀ Á
≈ ST xð ÞV ij, i, j = 1, 2,⋯,m,

Kij x, zð Þ ≈ ST xð ÞKijS zð Þ:
ð46Þ

Using Theorems 9 and 11, we have

ðx
0

Kij x, zð ÞGij z, yj zð Þ
� �

x − zð Þαi j dz

≈
ðx
0

ST xð ÞKijS zð ÞST zð ÞV ij

x − zð Þαi j dz

≈ ST xð ÞKij
~V ij

ðx
0

S zð Þ
x − zð Þαi j dz ≈ ST xð ÞKij

~V ijI
αi jð ÞS xð Þ:

ð47Þ

Now, by substituting Equations (43)-(47) into Equation

(1), we obtain

ST xð ÞFi −XT
i S xð Þ − 〠

m

j=0
θijS

T xð ÞKij
~V ijI

αi jð ÞS xð Þ

− f i xð Þ ≈ 0, i = 1, 2,⋯,m:

ð48Þ

Each equation of algebraic system (48) is collocated at
N + 1 roots of the ðN + 1Þth shifted sixth-kind Chebyshev
polynomials. Thus, an algebraic system, including mðN + 1
Þ equations, is acquired. By solving the resultant algebraic
system, we can obtain an approximation for unknown vec-
tors Fi, i = 1, 2,⋯,m, and by substituting the vector Fi into
Equation (45), we obtain an approximation for uiðxÞ, i = 1,
2,⋯,m.

5. Error Analysis

In this section, we prove some theorems. Then, we obtain an
upper error bound for the approximation error. For this aim,
we need the following norms:

fk kL2 Ið Þ =
ð
I
f xð Þj j2V xð Þ dx

� �1/2
,

Xk k1 = 〠
n

i=0
xij j,

ð49Þ

where f ∈ L2ðIÞ is a square integrable function on the inter-
val I = ½0, 1� and X = ½x0, x1,⋯, xn�T is a vector.

Theorem 12. Suppose that YNðxÞ =∑N
i=0EiS

∗
i ðxÞ is an

approximation in SSKCPs to the continuous function YðxÞ
on the interval ½0, 1�. Then, the coefficients Ei, for i = 0, 1,⋯
,N , are bounded as

Eij j ≤ MY

λi
〠
i

m=0
ρmi

ffiffiffi
π

p
Γ m + 3/2ð Þð Þ
2Γ m + 5ð Þ m2 +m + 3

À Á
, ð50Þ

where MY denotes the maximum value of jYðxÞj on the
interval ½0, 1�.

Proof. Using Equations (7) and (9) for i = 0, 1,⋯,N , we have

Ei =
1
λi

ð1
0
Y xð ÞS∗i xð ÞV xð Þ dx = 1

λi

ð1
0
Y xð Þ 〠

i

m=0
ρmix

mV xð Þ dx

= 1
λi

〠
i

m=0
ρmi

ð1
0
Y xð ÞxmV xð Þ dx:

ð51Þ

Since YðxÞ is a continuous function on the interval ½0, 1�,
so it is bounded and there is a constant MY such that

∀x ∈ 0, 1½ �, Y xð Þj j ≤MY : ð52Þ
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Using Equations (51) and (52), inequality (50) is deduced.

Theorem 13. Suppose that YðxÞ is a continuous function and
YNðxÞ is an approximation to YðxÞ in terms of SSKCPs.
Then, the error bound can be achieved as follows:

Y xð Þ − YN xð Þk kL2 ≤ 〠
∞

i=N+1
Ωi

 !1/2

=ΩN , ð53Þ

where

Ωi =
M2

Y

λi
〠
i

m=0
ρmi

ffiffiffi
π

p
Γ m + 3/2ð Þð Þ
2Γ m + 5ð Þ m2 +m + 3

À Á� �2

: ð54Þ

Proof. Assume YðxÞ is an arbitrary function. So, YðxÞ and
YNðxÞ have the following forms using SSKCP series:

Y xð Þ = 〠
∞

i=0
EiS

∗
i xð Þ,

YN xð Þ = 〠
N

i=0
EiS

∗
i xð Þ,

ð55Þ

so,

Y xð Þ − YN xð Þ = 〠
∞

i=N+1
EiS

∗
i xð Þ: ð56Þ

Using Equations (9) and (56) and Theorem 12, we have

Y xð Þ − YN xð Þk k2L2 =
ð1
0
Y xð Þ − YN xð Þj j2V xð Þ dx

=
ð1
0

〠
∞

i=N+1
EiS

∗
i xð Þ

 !2

V xð Þ dx

=
ð1
0

〠
∞

j=N+1
〠
∞

i=N+1
EiE jS

∗
i xð ÞS∗j xð ÞV xð Þ dx

= 〠
∞

i=N+1
E2

i λi ≤ 〠
∞

i=N+1
Ωi:

ð57Þ

Theorem 14. Suppose that the continuous two-variable func-
tion Hðx, yÞ is approximated on the interval ½0, 1� × ½0, 1� in
terms of SSKCPs as HNðx, yÞ =∑N

i=0∑
N
j=0H ijS

∗
i ðxÞS∗j ðyÞ;

then, the coefficients H ij, for i, j = 0, 1,⋯,N , can be bounded

as follows:

H ij

�� �� ≤ MHπ

4λiλj
〠
i

m=0

ρmiΓ m + 3/2ð Þð Þ
Γ m + 5ð Þ m2 +m + 3

À Á

〠
j

r=0

ρr jΓ r + 3/2ð Þð Þ
Γ r + 5ð Þ r2 + r + 3

À Á
,

ð58Þ

where MH denotes the maximum value of jHðx, yÞj on the
interval ½0, 1� × ½0, 1�.

Proof. Using Equations (7) and (15), we have

H ij =
1

λiλj

ð1
0

ð1
0
H x, yð ÞS∗i xð ÞS∗j yð ÞV xð ÞV yð Þ dxdy

= 1
λiλj

ð1
0
〠
i

m=0
ρmix

mV xð Þ
ð1
0
H x, yð Þ〠

j

r=0
ρr jy

rV yð Þdy
 !

dx

= 1
λiλj

〠
i

m=0
ρmi 〠

j

r=0
ρr j

ð1
0

ð1
0
xmH x, yð ÞyrV xð ÞV yð Þdxdy:

ð59Þ

Since Hðx, yÞ is a bounded and continuous function on
the interval ½0, 1� × ½0, 1�, so there is a constant MH such
that

∀ x, yð Þ ∈ 0, 1½ � × 0, 1½ �, H x, yð Þj j ≤MH : ð60Þ

Using Equations (59) and (60), Theorem 14 is proved.

Theorem 15. Suppose that Hðx, yÞ is a continuous function
with two variables and HNðx, yÞ is the approximation to H

ðx, yÞ using SSKCPs. Then, the error bound can be obtained
as

H x, yð Þ −HN x, yð Þk kL2 ≤ 〠
N

i=0
〠
∞

j=N+1
ς2ijλiλj

 !1/2

+ 〠
∞

i=N+1
〠
∞

j=0
ς2ijλiλj

 !1/2

=ΛH ,

ð61Þ

where

ςij =
MHπ

4λiλj
〠
i

m=0
ρmi

Γ m + 3/2ð Þð Þ
Γ m + 5ð Þ m2 +m + 3

À Á

〠
j

r=0
ρr j

Γ r + 3/2ð Þð Þ
Γ r + 5ð Þ r2 + r + 3

À Á
:

ð62Þ

Proof. Suppose that Hðx, yÞ is an arbitrary function. SSKCP
series of Hðx, yÞ and its approximation in terms of SSKCPs
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have the following form:

H x, yð Þ = 〠
∞

i=0
〠
∞

j=0
H ijS

∗
i xð ÞS∗j yð Þ,HN x, yð Þ = 〠

N

i=0
〠
N

j=0
H ijS

∗
i xð ÞS∗j yð Þ:

ð63Þ

Thus,

H x, yð Þ −HN x, yð Þ = 〠
N

i=0
〠
∞

j=N+1
H ijS

∗
i xð ÞS∗j yð Þ + 〠

∞

i=N+1
〠
∞

j=0
H ijS

∗
i xð ÞS∗j yð Þ:

ð64Þ

Using Equations (9) and (64) and Theorem 14, we conclude

In the following theorem, we obtain an upper error bound
of the proposed method. First, suppose that for the uiðxÞ, yið
xÞ ∈ Cr½0, 1�, i = 1, 2,⋯,m, there exist positive constants ξir ,
ηji > 0 such that the following Lipschitz conditions hold.

(1) k F iðx, u1ðxÞ, u2ðxÞ,⋯, umðxÞÞ −F iðx, y1ðxÞ, y2ðxÞ,
⋯, ymðxÞÞkL2 ≤ ξi1ku1ðxÞ − y1ðxÞkL2 + ξi2
ku2ðxÞ − y2ðxÞkL2 +⋯ + ξimkumðxÞ − ymðxÞkL2 , i = 1,
2,⋯,m

(2) kGijðz, ujðzÞÞ −Gijðz, yjðzÞÞkL2 ≤ ηjikujðzÞ − yjðzÞkL2
, i, j = 1, 2,⋯,m

Theorem 16. Suppose that ~UðxÞ = ð~u1ðxÞ, ~u2ðxÞ,⋯, ~umðxÞÞ is
a set of approximate solutions obtained from the SSKCP collo-
cation method, UðxÞ = ðu1ðxÞ, u2ðxÞ,⋯, umðxÞÞ is the set of
exact solutions of system (1), E = ðku1ðxÞ − ~u1ðxÞkL2 ,⋯,
kumðxÞ − ~umðxÞkL2Þ is the error vector of approximate solu-
tions, and also riðxÞ, i = 1, 2,⋯,m denote the residual func-
tions associated to the approximate solutions that are named
perturbation terms. Assume that Hypotheses (1) and (2) are
satisfied; then, a bound for the method error can be achieved as

Ek k1 ≤
Γ∗
N +∑m

i=1∑
m
j=1γ

i
j

1 − Δ∗
N

, 0 < Δ∗
N < 1: ð66Þ

Proof. First, we apply the Riemann-Liouville integral operator
on Equation (1) and obtain the following equation:

ui xð Þ = gi xð Þ + 1
Γ νið Þ

ðx
0
x − zð Þνi−1F i z, u1 zð Þ, u2 zð Þ,⋯, um zð Þð Þ dz

+ 〠
m

j=1
θij

Γ 1 − αij
À Á

Γ νi − αij + 1
À Á ðx

0
x − zð Þνi−αi jKij x, zð ÞGij z, uj zð ÞÀ Á

dz,

ð67Þ

where

gi xð Þ = 〠
r−1

k=0

u kð Þ
0i

Γ k + 1ð Þ x
k + 1

Γ νið Þ
ðx
0
x − zð Þνi−1 f i zð Þ dz: ð68Þ

We can write the approximate equation of Equation (67)
as follows:

~ui xð Þ = gi xð Þ + 1
Γ νið Þ

ðx
0
x − zð Þνi−1F i z, ~u1 zð Þ, ~u2 zð Þ,⋯, ~um zð Þð Þ dz

+ 〠
m

j=1
θij

Γ 1 − αij
À Á

Γ νi − αij + 1
À Á ðx

0
x − zð Þνi−αi j ~Kij x, zð ÞGij z, ~uj zð ÞÀ Á

dz

+ ri xð Þ,
ð69Þ

where riðxÞ is the perturbation term. We subtract Equation
(69) from Equation (67) and obtain the following result:

H x, yð Þ xð Þ −HN x, yð Þk kL2 ≤ 〠
N

i=0
〠
∞

j=N+1
H ijS

∗
i xð ÞS∗j yð Þ



L2

+ 〠
∞

i=N+1
〠
∞

j=0
H ijS

∗
i xð ÞS∗j yð Þ



L2

=
ð1
0

ð1
0

〠
N

i=0
〠
∞

j=N+1
H ijS

∗
i xð ÞS∗j yð Þ

 !2

V xð ÞV yð Þdydx
 !1/2

+
ð1
0

ð1
0

〠
∞

i=N+1
〠
∞

j=0
H ijS

∗
i xð ÞS∗j yð Þ

 !2

V xð ÞV yð Þdydx
 !1/2

= 〠
N

i=0
〠
∞

j=N+1
H 2

ijλiλj

 !1/2

+ 〠
∞

i=N+1
〠
∞

j=0
H2

ijλiλj

 !1/2

≤ 〠
N

i=0
〠
∞

j=N+1
ς2ijλiλj

 !1/2

+ 〠
∞

i=N+1
〠
∞

j=0
ς2ijλiλj

 !1/2

:

ð65Þ

ri xð Þ = ui xð Þ − ~ui xð Þ + 1
Γ νið Þ

ðx
0
x − zð Þνi−1 F i z, u1 zð Þ, u2 zð Þ,⋯, um zð Þð Þ −F i z, ~u1 zð Þ, ~u2 zð Þ,⋯, ~um zð Þð Þð Þ dz

+ 〠
m

j=1
θij

Γ 1 − αij
À Á

Γ νi − αij + 1
À Á ðx

0
x − zð Þνi−αi j Kij x, zð ÞGij z, uj zð ÞÀ Á

− ~Kij x, zð ÞGij z, ~uj zð ÞÀ ÁÀ Á
dz:

ð70Þ
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First, we obtain a bound for the perturbation term, so by
taking the L2-norm on Equation (70), we get the following
inequality:

Using Hypothesis 1 and Theorem 13, we have

where

Noting that Kijðx, zÞ and Gijðz, ujðzÞÞ are continuous
and known functions, thus, there are constants MKij

and

NGij
such that

Kij x, zð Þ 
L2
≤MKij

, Gij z, uj zð ÞÀ Á 
L2
≤NGij

: ð74Þ

From Hypothesis 2, Theorem 13, Theorem 15, and
Equation (74), the following inequality is obtained:

where

ri xð Þk kL2 ≤ ui xð Þ − ~ui xð Þk kL2 +
1

Γ νið Þ
ðx
0
x − zð Þνi−1 F i z, u1 zð Þ,⋯, um zð Þð Þ −F i z, ~u1 zð Þ,⋯, ~um zð Þð Þð Þ dz



L2

+ 〠
m

j=1
θij

Γ 1 − αij
À Á

Γ νi − αij + 1
À Á × ðx

0
x − zð Þνi−αi j Kij x, zð ÞGij z, uj zð ÞÀ Á

− ~Kij x, zð ÞGij z, ~uj zð ÞÀ ÁÀ Á
dz



L2
:

ð71Þ

1
Γ νið Þ

ðx
0
x − zð Þνi−1 F i z, u1 zð Þ, u2 zð Þ,⋯, um zð Þð Þ −F i z, ~u1 zð Þ, ~u2 zð Þ,⋯, ~um zð Þð Þð Þdz



L2
≤Ψνi

〠
m

j=1
ξij uj zð Þ − ~uj zð Þ 

L2
≤Ψνi

〠
m

j=1
ξijΩ

j
N , ð72Þ

Ψνi
= 1
Γ νið Þ

4Γ 7/2ð ÞΓ 2νi − 1/2ð Þð Þ
Γ 2νi + 3ð Þ −

4Γ 5/2ð ÞΓ 2νi − 1/2ð Þð Þ
Γ 2νi + 2ð Þ + Γ 3/2ð ÞΓ 2νi − 1/2ð Þð Þ

Γ 2νi + 1ð Þ
� �1/2

: ð73Þ

〠
m

j=1
θij

Γ 1 − αij
À Á

Γ νi − αij + 1
À Á ðx

0
x − zð Þνi−αi j Kij x, zð ÞGij z, uj zð ÞÀ Á

− ~Kij x, zð ÞGij z, ~uj zð ÞÀ ÁÀ Á
dz



L2
≤

〠
m

j=1
θijΨνi−αi j MKij

ηij uj zð Þ − ~uj zð Þ 
L2
+NGij

ΛKij

� �
≤ 〠

m

j=1
θijΨνi−αi j MKij

ηijΩ
j
N +NGij

ΛKij

� �
,

ð75Þ

Ψνi−αi j =
Γ 1 − αij
À Á

Γ νi − αij + 1
À Á × 4Γ 7/2ð ÞΓ 2 νi − αij

À Á
+ 3/2ð ÞÀ Á

Γ 2 νi − αij
À Á

+ 5
À Á −

4Γ 5/2ð ÞΓ 2 νi − αij
À Á

+ 3/2ð ÞÀ Á
Γ 2 νi − αij
À Á

+ 4
À Á +

Γ 3/2ð ÞΓ 2 νi − αij
À Á

+ 3/2ð ÞÀ Á
Γ 2 νi − αij
À Á

+ 3
À Á

 !1/2

: ð76Þ
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Here, Δi
j and γij can be introduced as below:

Δi
j =Ψνi

ξij +Ψνi−αi jθijMKij
ηij, ð77Þ

γij =Ψνi−αi jθijNGij
ΛKij

: ð78Þ
From Equations (72)-(78), we can get the following

upper bound for riðxÞ:

ri xð Þk kL2 ≤Ωi
N + 〠

m

j=1
Δi
jΩ

j
N + 〠

m

j=1
γij, i = 1, 2,⋯,m: ð79Þ

By adding the above m inequalities, we have

〠
m

i=1
ri xð Þk kL2 ≤ 〠

m

i=1
Ωi

N + 〠
m

i=1
〠
m

j=1
Δi
jΩ

j
N + 〠

m

i=1
〠
m

j=1
γij = Γ∗

N : ð80Þ

We define the vector R as

R = r1k kL2 , r2k kL2 ,⋯, rmk kL2½ �T : ð81Þ

Thus, we have

Rk k1 = 〠
m

i=1
rik kL2 ≤ Γ∗

N : ð82Þ

Again, we consider Equation (70). So we have

ui xð Þ − ~ui xð Þk kL2 ≤ ri xð Þk kL2 + 〠
m

j=1
Δi
j ui xð Þ − ~ui xð Þk kL2

+ 〠
m

j=1
γij, i = 1, 2,⋯,m:

ð83Þ

Adding the above m inequalities leads to the following
inequality:

〠
m

i=1
ui xð Þ − ~ui xð Þk kL2

≤ 〠
m

i=1
ri xð Þk kL2 + 〠

m

i=1
〠
m

j=1
Δi
j ui xð Þ − ~ui xð Þk kL2 + 〠

m

i=1
〠
m

j=1
γij

= Rk k1 + Δ1
1 u1 xð Þ − ~u1 xð Þk kL2+⋯+Δ1

m um xð Þ − ~um xð Þk kL2
À Á

+ Δ2
1 u1 xð Þ − ~u1 xð Þk kL2+⋯+Δ2

m um xð Þ − ~um xð Þk kL2
À Á

+⋯+ Δm
1 u1 xð Þ − ~u1 xð Þk kL2+⋯+Δm

m um xð Þ − ~um xð Þk kL2
À Á

+ 〠
m

i=1
〠
m

j=1
γij

= Rk k1 + Δ1
1 + Δ2

1+⋯+Δm
1

À Á
u1 xð Þ − ~u1 xð Þk kL2

+⋯+ Δ1
m + Δ2

m+⋯+Δm
m

À Á
um xð Þ − ~um xð Þk kL2 + 〠

m

i=1
〠
m

j=1
γij:

ð84Þ

By defining the following quantities

Δ∗
N =Max 〠

m

i=1
Δi
j, j = 1,⋯,m

( )
,

E = u1 xð Þ − ~u1 xð Þk kL2 , u2 xð Þ − ~u2 xð Þk kL2 ,⋯, um xð Þ − ~um xð Þk kL2
Â ÃT ,

ð85Þ

we obtain the following upper bound for the method error:

〠
m

i=1
ui xð Þ − ~ui xð Þk kL2 ≤ Rk k1 + Δ∗

N 〠
m

i=1
ui xð Þ − ~ui xð Þk kL2 + 〠

m

i=1
〠
m

j=1
γij,

Ek k1 ≤
Γ∗
N +∑m

i=1∑
m
j=1γ

i
j

1 − Δ∗
N

, 0 < Δ∗
N < 1:

ð86Þ

6. Numerical Applications

In this section, three linear and nonlinear examples are pre-
sented to illustrate the practical implementation of our
numerical method. Also, the comparison of results obtained
from the proposed method with those of the other methods
is shown. All calculations are done with mathematical soft-
ware Maple 18.

Example 1. Let us consider the following linear system of
WSFIDE:

Dν1u1 xð Þ + u1 xð Þ +
ðx
0

u1 zð Þ
x − zð Þ1/2 dz −

1
2

ðx
0

xu2 zð Þ
x − zð Þ1/2 dz = f1 xð Þ,

Dν2u2 xð Þ + u2 xð Þ + 1
3

ðx
0

x2zu1 zð Þ
x − zð Þ1/2 dz + 1

3

ðx
0

u2 zð Þ
x − zð Þ1/2 dz = f2 xð Þ,

8>>>><
>>>>:

ð87Þ

where

f1 xð Þ = 2x + x2 + 2
5 x

5/2,

f2 xð Þ = 1 + x + 32
105 x

11/2 + 4
9 x

3/2,
ð88Þ

and 0 < νi ≤ 1, i = 1, 2, and the initial conditions are u1ð0Þ
= u2ð0Þ = 0. The exact solutions are u1ðxÞ = x2 and u2ðxÞ =
x if ν1 = ν2 = 1. According to the procedure presented in
Section 4, we reach the following approximations:
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where ~U1 and ~U2 are the operational matrices of the prod-
uct, corresponding to the vectors U1 and U2, respectively.

Setting above approximations in system (87) leads to the fol-
lowing linear algebraic system.

Figures 1 and 2 show a comparison between the exact and
numerical solutions and absolute error functions for ν1 = ν2
= 1 and N = 20. The maximum absolute errors are listed in
Table 1 in versus of N. It can be seen that our proposed
method shows good consistency between the numerical results
and analytic solutions and also this method can achieve a
higher convergence result when N increases. Figure 3 shows

the behavior of the numerical solutions for N = 20 and νi =
0:8,0:9,1, i = 1, 2: As seen from Figure 3, as νi ⟶ 1, the
approximate solutions are ~uiðxÞ⟶ uiðxÞ for i = 1, 2.

Here, we calculate a numerical error bound for the first
example. This result could confirm the correctness of the
analytical error bound. This validation could be accom-
plished similarly for the other cases, but the calculations
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Figure 1: The graphs of the exact and approximate solutions and the absolute error function of ~u1ðxÞ for N = 20 and ν1 = ν2 = 1 of Example 1.

Dν1u1 xð Þ ≈ ST xð ÞF1, u1 xð Þ ≈ ST xð ÞP ν1ð ÞTF1 = ST xð ÞU1,

Dν2u2 xð Þ ≈ ST xð ÞF2, u2 xð Þ ≈ ST xð ÞP ν2ð ÞTF2 = ST xð ÞU2,
x ≈ ST xð ÞK12S zð Þ, x2z ≈ ST xð ÞK21S zð Þ,ðx

0

u1 zð Þ
x − zð Þ1/2 dz ≈

ðx
0

UT
1 S zð Þ

x − zð Þ1/2 dz =UT
1

ðx
0

S zð Þ
x − zð Þ1/2 dz ≈UT

1I
1/2ð ÞS xð Þ,

ðx
0

xu2 zð Þ
x − zð Þ1/2 dz ≈

ðx
0

ST xð ÞK12S zð ÞST zð ÞU2
x − zð Þ1/2 dz = ST xð ÞK12

ðx
0

S zð ÞST zð ÞU2
x − zð Þ1/2 dz ≈ ST xð ÞK12 ~U2

ðx
0

S zð Þ
x − zð Þ1/2 dz ≈ ST xð ÞK12 ~U2I

1/2ð ÞS xð Þ,
ðx
0

x2zu1 zð Þ
x − zð Þ1/2 dz ≈

ðx
0

ST xð ÞK21S zð ÞST zð ÞU1
x − zð Þ1/2 dz = ST xð ÞK21

ðx
0

S zð ÞST zð ÞU1
x − zð Þ1/2 dz = ST xð ÞK21 ~U1

ðx
0

S zð Þ
x − zð Þ1/2 dz = ST xð ÞK21 ~U1I

1/2ð ÞS xð Þ,
ðx
0

u2 zð Þ
x − zð Þ1/2 dz ≈

ðx
0

UT
2 S zð Þ

x − zð Þ1/2 dz ≈UT
2

ðx
0

S zð Þ
x − zð Þ1/2 dz ≈UT

2I
1/2ð ÞS xð Þ,

ð89Þ

ST xð ÞF1 + ST xð ÞU1 +UT
1I

1/2ð ÞS xð Þ − 1
2 S

T xð ÞK12 ~U2I
1/2ð ÞS xð Þ − f1 xð Þ ≈ 0,

ST xð ÞF2 + ST xð ÞU2 +
1
3 S

T xð ÞK21 ~U1I
1/2ð ÞS xð Þ + 1

3U
T
2I

1/2ð ÞS xð Þ − f2 xð Þ ≈ 0:

8>><
>>: ð90Þ
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are long.

u1 xð Þ − ~u1 xð Þk kL2 = 8:93650018 × 10−9,
u2 xð Þ − ~u2 xð Þk kL2 = 1:81941246 × 10−8,

E = 8:93650018 × 10−9, 1:81941246 × 10−8
Â ÃT ,

Ek k1 = 2:71305687 × 10−8,

ξ11 = 0:4,
ξ12 = 0:3,
ξ21 = 0:8,
ξ22 = 0:62,

η11 = η21 = η12 = η22 = 1,
Ψν1

=Ψν2
= 0:31332853,

Ψν1−α11 =Ψν1−α12 = 0:31332834,
Ψν2−α21 =Ψν2−α22 = 0:31332834,

Δ1
1 = 0:43865995,

Δ2
1 = 0:25392268,

Δ1
2 = 0:12405832,

Δ2
2 = 0:29870654,

Δ∗
N =Max 〠

2

i=1
Δi
j, j = 1, 2

( )
= 0:69258263,

ΛK11
=ΛK12

=ΛK21
=ΛK22

= 14:31641021,

γ11 = 0:72969033,
γ12 = −0:43034788,
γ21 = 0:24323011,
γ22 = 0:28689859,

Γ∗
N = 2:71305877 × 10−8,

Γ∗
N +∑m

i=1∑
m
j=1γ

i
j

1 − Δ∗
N

= 2:69819226,

Ek k1 = 2:71305687 × 10−8 ≤ 2:69819226:

ð91Þ

Example 2. In this example, consider the following system of
linear WSFIDEs [13, 18]:

Dν1u1 xð Þ − u3 xð Þ −
ðx
0

xzu1 zð Þ
x − zð Þ1/2 dz −

ðx
0

u2 zð Þ
x − zð Þ1/2 dz = f1 xð Þ,

Dν2u2 xð Þ − u1 xð Þ −
ðx
0

u2 zð Þ
x − zð Þ1/3 dz −

ðx
0

u3 zð Þ
x − zð Þ1/3 dz = f2 xð Þ,

Dν3u3 xð Þ − u3 xð Þ −
ðx
0

u1 zð Þ
x − zð Þ1/4 dz −

ðx
0

x2zu2 zð Þ
x − zð Þ1/4 dz = f3 xð Þ,

ð92Þ

where 0 ≤ x ≤ 1 and

f1 xð Þ = 2x − 1 − x3 + 16
15 x

7/2 −
16
15 x

5/2 −
32
35 x

9/2,

f2 xð Þ = 2x − x x − 1ð Þ − 27
40 x

8/3 −
243
440 x

11/3,

f3 xð Þ = 3x2 − x3 + 16
21 x

7/4 −
128
231 x

11/4 −
512
1155 x

23/4,

ð93Þ

and 0 < νi ≤ 1, i = 1, 2, 3, the initial conditions are u1ð0Þ =
u2ð0Þ = u3ð0Þ = 0. The exact solutions are u1ðxÞ = xðx − 1Þ,
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Figure 2: The graphs of the exact and approximate solutions and the absolute error function of ~u2ðxÞ for N = 20 and ν1 = ν2 = 1 of Example 1.

Table 1: Maximum absolute errors for different values of N for
Example 1.

N u1 xð Þ u2 xð Þ CPU time

3 2:7867 × 10−5 3:0371 × 10−5 3.010

8 3:7450 × 10−6 4:7250 × 10−6 8.642

11 2:3054 × 10−7 7:7804 × 10−7 18.330

16 2:1369 × 10−7 3:0206 × 10−7 68.048

20 8:0541 × 10−8 1:1680 × 10−7 166.843
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u2ðxÞ = x2, u3ðxÞ = x3 if ν1 = ν2 = ν3 = 1. By assuming that
Dν1u1ðxÞ ≈ STðxÞF1, D

ν2u2ðxÞ ≈ STðxÞF2, and Dν3u3ðxÞ ≈
STðxÞF3 and using proper operational matrices, the follow-
ing approximations are obtained:

u1 xð Þ ≈ ST xð ÞP ν1ð ÞT F1 = ST xð ÞU1,

u2 xð Þ ≈ ST xð ÞP ν2ð ÞT F2 = ST xð ÞU2,

u3 xð Þ ≈ ST xð ÞP ν3ð ÞT F3 = ST xð ÞU3,

xz ≈ ST xð ÞK11S zð Þ, x2z ≈ ST xð ÞK32S zð Þ,ðx
0

xzu1 zð Þ
x − zð Þ1/2 dz +

ðx
0

u2 zð Þ
x − zð Þ1/2 dz ≈ ST xð ÞK11 ~U1I

1/2ð ÞS xð Þ +UT
2I

1/2ð ÞS xð Þ,
ðx
0

u2 zð Þ
x − zð Þ1/3

dz +
ðx
0

u3 zð Þ
x − zð Þ1/3

dz ≈UT
2I

1/3ð ÞS xð Þ +UT
3I

1/3ð ÞS xð Þ,
ðx
0

u1 zð Þ
x − zð Þ1/4 dz +

ðx
0

x2zu2 zð Þ
x − zð Þ1/4 dz ≈UT

1I
1/4ð ÞS xð Þ + ST xð ÞK32 ~U2I

1/4ð ÞS xð Þ,

ð94Þ

where ~U1 and ~U2 are the operational matrices of product,
corresponding to the vectors U1 and U2, respectively. By

substituting the above approximations into Equation (92),
we achieve the following algebraic system

ST xð ÞF1 − ST xð ÞU3 − ST xð ÞK11 ~U1I
1/2ð ÞS xð Þ −UT

2I
1/2ð ÞS xð Þ − f1 xð Þ ≈ 0,

ST xð ÞF2 − ST xð ÞU1 −UT
2I

1/3ð ÞS xð Þ −UT
3I

1/3ð ÞS xð Þ − f2 xð Þ ≈ 0,

ST xð ÞF3 − ST xð ÞU3 −UT
1I

1/4ð ÞS xð Þ − ST xð ÞK32 ~U2I
1/4ð ÞS xð Þ − f3 xð Þ ≈ 0:

ð95Þ

Solving the above system by the collocation method for
N = 9, we can determine the unknown vectors Fi, i = 1, 2, 3.
Table 2 displays the maximum absolute errors for various
N . The data in this table show that the numerical solutions
get close to the analytical solutions with the increase of
values of N . Table 3 shows a comparison between the SSKCP
collocation and Jacobi collocation methods. This table shows
that the results are approximately the same as reported by
[18]. Figures 4–6 display a graphical comparison between
approximate solutions and exact solutions and also absolute
error functions for N = 9. Figure 7 shows the behavior of the
numerical solutions for N = 9 and νi = 0:85,0:90,0:95,1, i =
1, 2, 3: From Figure 7, it can be seen that as νi ⟶ 1, the
approximate solutions are ~uiðxÞ⟶ uiðxÞ, i = 1, 2, 3:

Example 3. Consider the following nonlinear system of
WSFIDEs [13, 18]:

D3/4u1 xð Þ − u2 xð Þ −
ðx
0

u1 zð Þ
x − zð Þ1/2 dz −

ðx
0

u22 zð Þ
x − zð Þ1/2 dz = f1 xð Þ,

D1/2u2 xð Þ − u31 xð Þ −
ðx
0

u1 zð Þ
x − zð Þ2/3 dz −

ðx
0

u2 zð Þ
x − zð Þ2/3 dz = f2 xð Þ,

ð96Þ

where 0 ≤ x ≤ 1 and

f1 xð Þ = 2
Γ 9/4ð Þ x

5/4 − x3 −
Γ 3ð ÞΓ 1/2ð Þ
Γ 7/2ð Þ x5/2 −

Γ 7ð ÞΓ 1/2ð Þ
Γ 5/2ð Þ x13/2,

f2 xð Þ = Γ 4ð Þ
Γ 7/2ð Þ x

5/2 − x6 −
Γ 3ð ÞΓ 1/3ð Þ
Γ 10/3ð Þ x7/3 −

Γ 4ð ÞΓ 1/3ð Þ
Γ 13/3ð Þ x10/3:

ð97Þ
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Figure 3: Some illustrations for the exact and approximate solutions using different values of νi: νi = 0:8,0:9,1, i = 1, 2 in Example 1.

Table 2: Maximum absolute errors for different values of N for
Example 2.

N u1 xð Þ u2 xð Þ u3 xð Þ CPU time

4 8:1514 × 10−5 6:7763 × 10−5 1:0743 × 10−4 5.382

9 2:3334 × 10−6 1:8107 × 10−6 3:3112 × 10−6 17.457

12 6:8859 × 10−7 5:4537 × 10−7 1:1140 × 10−6 36.941

17 1:2296 × 10−7 9:5306 × 10−8 2:0253 × 10−7 115.316

20 5:9278 × 10−8 4:6454 × 10−8 1:0049 × 10−7 216.638

Table 3: Maximum absolute errors obtained by SSKCP collocation
and Jacobi collocation methods for N = 9, α = −1/2, and β = 1/2 in
Example 2.

Method u1 xð Þ u2 xð Þ u3 xð Þ
SSKCP collocation 2:3334 × 10−6 1:8107 × 10−6 3:3112 × 10−6

Jacobi collocation
[18]

2:0034 × 10−6 1:8376 × 10−6 2:0763 × 10−6
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Figure 4: The graphs of the exact and approximate solutions and the absolute error function of ~u1ðxÞ for N = 9 and ν1 = ν2 = ν3 = 1 of
Example 2.
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Figure 5: The graphs of the exact and approximate solutions and the absolute error function of ~u2ðxÞ for N = 9 and ν1 = ν2 = ν3 = 1 of
Example 2.
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Figure 6: The graphs of the exact and approximate solutions and the absolute error function of ~u3ðxÞ for N = 9 and ν1 = ν2 = ν3 = 1 of
Example 2.
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Example 2.

Table 4: Comparison between absolute errors of SSKCP
collocation and Jacobi collocation methods at equally spaced
points for N = 12 in Example 3.

xi
SSKCP collocation method

Jacobi collocation method
[18]

Error u1ð Þ Error u2ð Þ Error u1ð Þ Error u2ð Þ
0.0 1:7182 × 10−5 9:8329 × 10−7 9:2840 × 10−6 6:2830 × 10−7

0.1 5:5657 × 10−6 3:3268 × 10−6 1:5202 × 10−6 1:6472 × 10−7

0.2 5:5935 × 10−6 6:9555 × 10−6 7:0504 × 10−7 9:8923 × 10−8

0.3 8:1095 × 10−6 1:2777 × 10−5 8:7678 × 10−7 2:9284 × 10−7

0.4 1:1355 × 10−5 2:2448 × 10−5 4:8193 × 10−7 4:5120 × 10−7

0.5 2:0566 × 10−5 3:9797 × 10−5 8:8367 × 10−7 7:7271 × 10−7

0.6 3:2387 × 10−5 7:0527 × 10−5 3:7500 × 10−7 1:3807 × 10−6

0.7 5:7063 × 10−5 1:2877 × 10−4 1:0664 × 10−6 2:4661 × 10−6

0.8 1:1121 × 10−4 2:5191 × 10−4 2:2537 × 10−6 4:8902 × 10−6

0.9 2:3722 × 10−4 5:4688 × 10−4 4:7116 × 10−6 1:0475 × 10−5

1.0 5:7984 × 10−4 1:3758 × 10−3 1:2704 × 10−5 2:6197 × 10−5

Table 5: Maximum absolute errors obtained by SSKCP collocation
method for different values of N in Example 3.

N Error u1ð Þ Error u2ð Þ CPU time

8 2:8334 × 10−3 6:7948 × 10−3 5.772

12 5:7819 × 10−4 1:3597 × 10−3 23.587

16 1:8841 × 10−4 4:4719 × 10−4 97.048

20 7:8006 × 10−5 1:8536 × 10−4 164.409

25 2:9931 × 10−5 6:1196 × 10−5 483.681

Table 6: Values of absolute errors at equally spaced points for N
= 25 in Example 3.

xi Error u1ð Þ Error u2ð Þ
0.0 1:3659 × 10−6 3:2865 × 10−8

0.1 2:6535 × 10−7 1:7914 × 10−7

0.2 3:1410 × 10−7 3:8266 × 10−7

0.3 4:3165 × 10−7 7:0524 × 10−7

0.4 6:3587 × 10−7 1:2387 × 10−6

0.5 9:6524 × 10−7 2:1315 × 10−6

0.6 1:5052 × 10−6 3:6310 × 10−6

0.7 2:8039 × 10−6 6:5226 × 10−6

0.8 5:5119 × 10−6 1:2576 × 10−6

0.9 1:1848 × 10−5 2:7085 × 10−5

1.0 2:8779 × 10−5 6:9756 × 10−5
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The initial conditions are u1ð0Þ = u2ð0Þ = 0 and the
exact solutions for this example are u1ðxÞ = x2 and u2ðxÞ
= x3. We use the following approximations and convert
the system (96) into an algebraic system, which will be
described below:

D3/4u1 xð Þ ≈ ST xð ÞF1, u1 xð Þ ≈ ST xð ÞP 3/4ð ÞTF1 = ST xð ÞU1,

D1/2u2 xð Þ ≈ ST xð ÞF2, u2 xð Þ ≈ ST xð ÞP 1/2ð ÞTF2 = ST xð ÞU2,

u31 xð Þ ≈ ST xð ÞU3, U3 ≈ ~U
2
1

� �T
U1,

u22 xð Þ ≈ ST xð ÞU4, U4 ≈ ~U
T
2U2,ðx

0

u1 zð Þ
x − zð Þ1/2 dz +

ðx
0

u22 zð Þ
x − zð Þ1/2 dz ≈UT

1I
1/2ð ÞS xð Þ +UT

4I
1/2ð ÞS xð Þ,

ðx
0

u1 zð Þ
x − zð Þ2/3 dz +

ðx
0

u2 zð Þ
x − zð Þ2/3 dz ≈UT

1I
2/3ð ÞS xð Þ +UT

2I
2/3ð ÞS xð Þ,

ð98Þ

where ~U1 and ~U2 are operational matrices of the product,

corresponding to the vectors U1 and U2, respectively. So
we have

ST xð ÞF1 − ST xð ÞU2 −UT
1I

1/2ð ÞS xð Þ −UT
4I

1/2ð ÞS xð Þ − f1 xð Þ ≈ 0,

ST xð ÞF2 − ST xð ÞU3 −UT
1I

2/3ð ÞS xð Þ −UT
2I

2/3ð ÞS xð Þ − f2 xð Þ ≈ 0:

(

ð99Þ

Table 4 shows a comparison between the absolute
errors of the SSKCP collocation method and the Jacobi
collocation method at equally spaced points xi = 0:1i, i = 0
, 1,⋯, 10 for N = 12, which shows that the absolute errors
of the Jacobi collocation method are less than the pre-
sented method, but with increasing N , the errors of the
proposed method decrease. Maximum absolute errors for
different values of N and numerical results for N = 25
reported in Tables 5 and 6 confirm that the results are
close to those reported by [18]. Figures 8 and 9 show
the comparison between the numerical results and the
exact solutions and also the absolute error functions of
u1ðxÞ, u2ðxÞ for N = 25, respectively.

1
0.000025

0.000020

0.000015

0.000010

0.000005

1

0.8

0.6

u
1
(x
)

0.4

0.2

0.80.6
x

0.40.2
0

0 10.80.6
x

0.40.20

Ab
so

lu
te

 er
ro

r f
un

ct
io

n

Exact solution
Approximate solution

Figure 8: The graphs of the exact and approximate solutions and the absolute error function of ~u1ðxÞ for N = 25 of Example 3.
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7. Conclusion

In this paper, the shifted sixth-kind Chebyshev polynomials
together with the collocation method were used to solve a
class of the system of fractional integro-differential equa-
tions with weakly singular kernels. For this purpose, the
integral and product operational matrices were calculated,
and using the obtained approximations, the original system
of equations was transformed into a corresponding linear
and nonlinear system of algebraic equations that are easier
for solving. Choosing an appropriate value of N , each of
algebraic equations was collocated in the roots of S∗N+1ðxÞ,
and finally, for obtaining the unknown vectors Fi, i = 1, 2,
⋯,m, an algebraic system involving mðN + 1Þ algebraic
equations was solved. To eliminate the singularity of the ker-
nels of the equations under study, an operational matrix was
derived. Also, an error bound was determined for the pro-
posed method. To show the ability and efficiency of the pro-
posed method, three examples were presented and the
maximum absolute errors were calculated for different N ,
and graphs of the absolute error functions and numerical
solutions were plotted and numerical results showed a good
agreement between the approximate and exact solutions.
When the order of the fractional derivative ν was uncertain,
the numerical solutions for the various values of ν, 0 < ν ≤ 1,
were approached to the exact solutions as ν⟶ 1. The com-
parison of the proposed method with the Jacobi collocation
method [18] showed good implementation of SSKCP collo-
cation method for solving a system of linear fractional
integro-differential equations with weakly singular kernels
and for a system of nonlinear WSFIDEs; the error decreased
with increasing N . CPU times were computed for all exam-
ples. According to the numerical results which were
obtained in the relevant instances and compared with exact
solutions and those obtained from the Jacobi collocation
method, it can be concluded that the SSKCP collocation
method is very helpful to look for approximate solutions of
a system of WSFIDEs. This method can be applied to the
linear and nonlinear systems of fractional-order Volterra-
Fredholm integro-differential equations with weakly singu-
lar kernels, but additional operational matrices are required.
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