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The purpose of this article is to demonstrate new generalized k-fractional Hadamard and Fejér-Hadamard integral inequalities for
(a, h —m)-convex functions. To prove these inequalities, k-fractional integral operators including the generalization of the
Mittag-Leffler function are used. The results presented in this article can be considered an important advancement of previously

published inequalities.

1. Introduction

Theory of convexity offers an effective and charming area of
research and is also a theory that featured prominently and
surprisingly in distinct disciplines such as mathematical
analysis, optimization, economics, finance, engineering and
game theory. Convexity theory is very closely related with
the theory of inequalities. Many inequalities well known in
the literature are direct applications of the properties of
convex functions. The usage of fractional integral operators
for getting the generalized types of classic inequalities has
become an important method in advanced mathematical
studies of inequalities.

One of the convexity theory studies in the literature
belongs to Gao et al. [1]. They presented a new type of
functions called n-polynomial harmonically exponential
type convex, and specified some of their algebraic features.
Mehrez and Agarwal [2] established new type of integral
inequalities for convex functions and indicated new in-
equalities for some special and g-special functions. Tariq
[3] defined the concept of p~harmonic exponential type
convex functions. Also, they investigated some integral
inequalities in the form of applications for some means.
Another study on convexity theory and inequalities was

presented by Butt et al. [4]. They presented the notion of
m-polynomial p-harmonic exponential type convex
functions and demonstrated various new integral in-
equalities. Srivastava et al. [5] obtained a new class of the
bi-close-to-convex functions described in the open unit
disk by using the Borel distribution series of the Mit-
tag-Leffler type. Also, the authors demonstrated the
Fekete-Szego type inequalities via the bi-close-to-convex
function class.

Fractional calculus, which is the study of integrals and
derivatives of fractional order, has expanded significantly
over the late nineteenth century. It ranges from chemical,
viscoelasticity, and statistical physics to electrical and me-
chanical engineering. The fundamental working doctrine of
fractional analysis is to present new fractional derivative and
integral operators, and to analyze the benefits of these op-
erators through the instrument of modeling studies, and
collations. Integral operators, which form a significant part
of fractional calculus, are now resources of many fields such
as inequality theory, engineering, statistics, mathematical
biology, and modeling, which take advantage of fractional
analysis. Many inequalities have been generalized through
the instrument of fractional integral operators and provide
construction of new approximations.
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One of the fractional calculus studies in the literature
belongs to Abdeljawad et al. [6]. They obtained generalized
Hermite-Hadamard type inequalities and generalized
Simpson type inequalities for (s,m)-convex functions with
the help of local fractional integration. Akdemir et al. [7]
used generalized fractional integral operators. By using these
operators, they proved new and general variants of Che-
byshev’s inequality. Butt et al. [8] established a general in-
tegral identity to acquire new integral inequalities of several
Hadamard types. For this purpose, they used a new version
of the Atangana-Baleanu integral operator. Khan et al. [9]
explored two fractional integral operators related to Fox
H-function owing to Saxena and Kumbhat. They proved
series expansion of the images of the M-series with the help
of these fractional operators. Another study to k-fractional
integrals was presented by Qi et al. [10]. They constructed
some generalized fractional integral inequalities of the
Hermite-Hadamard type via (a, m)-convex functions. Also,
they demonstrated that one can get and expand some
Riemann-Liouville fractional integral inequalities and
classical integral inequalities of Hermite-Hadamard’s type.
Tunc et al. [11] presented the generalized k-fractional in-
tegrals of a function with respect to the another function that
generalizes many several types of fractional integrals. Also,
they studied trapezoid inequalities for the functions whose
derivatives in absolute value are convex. Onalan et al. [12]
proved many Hermite—-Hadamard type integral inequalities
for functions whose absolute values of the second derivatives
are s-convex and s-concave using fractional integral oper-
ators with the Mittag-Leffler kernel. Zhu et al. [13] explored
a weighted integral identity of Simpson-like type. Relying on
this identity, they obtained some estimation-type results
connected with the weighted Simpson-like type integral
inequalities for the first order differentiable functions. Sri-
vastava et al. [14] established the homogeneous g-shift
operator and the homogeneous g-difference operator. Based
on these operators, they searched generalized Cauchy and
Hahn polynomials.

2. Preliminaries
Now let us define some important functions.
Definition 1 (see [15]). A function ¢: [a,b] — R is called a
convex function, if
¢ (e + (1 =mx) <ne () + (1 - ne(x) (1)
holds for all 1,k € [a,b] and # € [0, 1].
Definition 2 (see [16]). The function ¢: [0,b] — R, b>0, is
called the (a,m)-convex function, if
e(+mQ-mr)<n o) +m(1-1")e(x) (2)
holds for all 1, € [0,b],7% € [0,1] and (a,m) € [0, 112

Definition 3 (see [17]). A function ¢: [0,b] — R is said to
be (s,m)-convex, if
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em+m(l-mr)<re)+m(l-71")p(x) (3)
holds for all 1,k € [0,b], n € [0,1] and (s,m) € (0, 1].

Definition 4 (see [18]). A function ¢: [0,b] — R is said to
be (s, m)-convex in the second sense, if

e +m1 =)< () +m(1-n)’e(x) (4)
holds for all 1,k € [0,b] , # € [0,1] and (s,m) € (0, 112

Definition 5 (see [19]). Let JCR be an interval including
(0,1) and let h: ] — R be a nonnegative function. Then the
function ¢: [0,b] — R is called the (h —m)-convex func-
tion, if

om+m(1 -nx)<h(me () + mh(1 -n)e(x) (5)
holds for all 1, x € [0,b], n € [0,1] and m € [0,1].

Definition 6 (see [20]). Let J SR be an interval including
(0,1) and let h: ] — R be a nonnegative function. Then the
function ¢: [0,b] — R is called the (a,h—m)-convex
function, if

e(+m(1—mr)<h(n")e () + mh(1-1")g(x) (6)
holds for all ;,x € [0,b], 7 € [0,1] and (a,m) € [0, 112

Remark 1

(i) By takingm = a = 1 and h(x) = n in (6), we obtain
the definition of convex function (1).

(ii) By taking h(n) = n in (6), we obtain the definition of
(a, m)-convex function (2).

(iii) By taking h(n) = n and a = s in (6), we obtain the
definition of (s, m)-convex function (3).

(iv) By taking h(n) = n° and a = 1 in (6), we obtain the
definition of (s,m)-convex function in the second
sense (4).

(v) By taking a =1 in(6), we obtain the definition of
(h, m)-convex function (5).

(vi) By taking a =m = h(n) =1 in (6), we obtain the
definition of p-function described by Dragomir et al.
in [21].

Now let us represent some definitions of fractional in-
tegral operators that will form the basis for this article.

Definition 7 (see [22]). Let y,c,w, o, 1, € C,R (1), R (a) >0,
R@)>R(y)>0 with y,6>0, p>0, and 0<v<§+py. Let
¢ € L, [a,b], 1 € [a,b]. In that case, the generalized fractional
operators are defined by

(Fﬂii’,zv,i,udp) (5p) = L (=) EL S (w(e = ) B)o (n)dn,

b
(Fiove,0)wp = j (=0 "Ejo} (wln — 0 B)g (mdn,
(7)
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where
e X B=(y+nv,c—y) c n
B (1) = ) 2 ©u_ 1 (g)

B(y,c—y)

is generalized extended Mittag-Leffler function, and 5~
is the expansion of beta function described as below:

T(un+a) (1,5

n=0

1 -
ﬁ'};(l, K) = J ;1:—1 (1- rl)x—lef(p/n(lfn))dr]) (9)
0

$,7,0,v,¢ L=y : ¢(1//(l) - l//(77))
<V’Fﬂ>lx,l,w,u+¢> (la P) = Ja 1//([) _ W(T’]) E
b
,y,0:v,¢ L=y (/)(1//(77) - 1//(1))
<WF[4>06,1,1.U,177(P> ([’p) - j‘l 1//(7]) _ 1//([) E

Definition 9 (see [23]). Let ¢, y: [a,b] — R with0<a<b,
be the functions such that ¢ be positive and ¢ € L, [a, b] and
v be differentiable and strictly increasing. Let y,c,w,a,

where R (1), R (x), R (p) > 0.

Definition 8 (see [23]). Let ¢, y: [a,b] — R with0<a<b,
be the functions, ¢ be positive, ¢ € L, [a,b] and v be dif-
ferentiable and strictly increasing. Let (¢/1) be an increasing
on [a,00), y,c,w,a,l € C,R(),R(a)>0,R(c)>R(y)>0
with 4,6>0,p>0, and O<v<y+d. In that case, for
1 € [a,b], the fractional operators are described by

PO (w (y ()~ y () B)yr (e (),
(10)
VO (w (y ()~ w05 B (g (m)d.

LeC,R(ID,R(a)>0,R(c)>R(y)>0, 4,6>0,p>0, and
0<v<u+ 0. In that case, for 1 € [a,b], the united operators
are described by

(WFZ:i:Z’;mso) (1P) = j (W) =y )" ELr (w(y () = y () B (ne (dn,
‘ (11)
b
SO o)) = | (W) =y )T ELS (w(y (n) - w () B (0 (n)dn.
Iz , Iz

Recently, Yue et al. defined generalized k-fractional
operators including a further extension of Mittag-Leffler
function in [24] as noted below:

Definition 10. Let @,y: [a,b] — R with 0<a<b; be the
functions such that ¢ be positive and ¢ € L,[a,b] and y be

P50,v,¢ alk)—

(brrsren) 67 = [ -y

Fy,&v,c ( . ~) _ b
gk ‘u,(x,l,w,b—(P I7p

(v () = w ()

The following inequality is the admitted Hadamard
inequality.

Theorem 1. Let ¢: [a,b] — R with a<b, be a convex
function. In that case, the below inequality occurs:

()= .
0] < jq)(l)dlS

a+b
2

¢(a) er <P(b)_ (14)

b-

a

differentiable and strictly increasing. Let y,c,w, a, 1, € R and
a>k L,a>0,c>y>0with0<v<d+u, p20andu,§>0. In
that case, for 1 € [a,b], the right-left generalized k-fractional
operators (kprove @) and (’J,Fz v @) are defined by

v palwa+ Lol w,b—

EROT (w(y () = y ()5 BYyr (e ()dn, (12)
TUELOTE (w (y () - w ()" B)yr (g (n)dr. (13)

Theorem 2. Let ¢: [a,b] — R be a convex and
y: [a,b] — R be nonnegative and symmetric in respect of
((a + b)/2) and integrable. In that case, the below inequality

()]

b b

v (1)de

(15)

a+b
2

b
vodis [ poyas? 220 |

a



This inequality in [25] presented by Fejér is known as a
weighted type of Hadamard’s inequality.

Many authors have been established several refinements
and extensions of the Hadamard and the Fejér-Hadamard
inequalities for various fractional integral operators (for
details see, [2, 7, 11, 16, 17, 19-21, 26-34] and references
therein). This article aims to derive the Hadamard and
Fejér-Hadamard inequalities about generalized k-fractional
integrals  involving  Mittag-Leffler = functions via
(a, h — m)-convex functions. In the upcoming section, we
will  utilize k-fractional integral operators and
(a, h — m)-convexity to prove the two versions of the
Hadamard inequality and the Fejér-Hadamard inequality.

(p(ll/(a) +my (b) ) (kFy,S,v,c

2 v wrlwat

1)(mw(b); 5)
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3. The k-Fractional Inequalities of Hadamard
and Fejér—-Hadamard Type

In this section, we first describe the below generalized
k-fractional Hadamard’s inequality.

Theorem 3. Let h: ] — R is nonnegative, nonzero and
integrable function and @, y: [a,b] — R, 0<a <mb, be the
functions such that ¢ € L, [a,b] and ¢ be positive and y be
differentiable and strictly increasing. If ¢ is (a, h — m)-con-
vex, the below inequalities for k-fractional operators (12) and
(13) occur:

Sh(zl )R 0y ) Gny (8): ) +m“”<+‘h(22—;1>( RO @ w)(‘““);;,>

< [h<2—1a>(p(w(a)) +m(™ “h( a

+m[ ( )<p<w(b)>+m“”"“h<

where W = (w/ (my (b) — y(a))¥) for all 4 € [a,b].

Proof. Since ¢ is (a,h—m)-convex on [a,b], for all
I,k € [a,b], we have

¢<7W(I) * mW(K)) <h( )<p(w(:)) + mh(

5 >(p(1//(K)) (17)

Setting v (1) = ny(a) + m(1 — n)y(b) and y (x) = (y(a)/m)
(1 -#) + ny(b) in above inequality, we have

)so(w(b))] j \Cs
o

(a) . Ve _
V@ | [ o ELYY (wit's PR (1 -
0

m
(16)

ED (wit's PR (77 dy

n")dn,

(Tt

. )_h( Jo v (@) +m(1 -y o)

2% —1 y(a)
+mh< o )¢(7(1—n)+ng(b)>.

(18)

Multiplying both sides of (18) by 57k~ lEy 0 (wnts p),
then integrating over [0, 1], we have

(a)+m (b) 1 /k)— v,c
(p(u) Jon”") CELYY (wn'; B)dn

2

1
<he) [ A B s Bhony @) + m1 =y By

(19)

2°-1\ (! e
+mh( = )Jon”k) B (wr p)(p( )(1—11)+f11//(b)>
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By specifying v (1) = qy(a) + m(1 —n)y(b) and y(x) =
(y(a)/m)(1 -#) +ny(b) in (19), we have

v (my (b))
¢<M) J (rmy (b) — y (1) O EL2Y (@ (my (b) - w ()5 B)yr ()ds

v~ (my (b))
< h(%) j (my (B) -y () OB (@ (my (B) - v () B (w () (O (20)

a

a_ b
+m(T/k)+1h(2 - I)J o )(1//(")_?)(%) 1Ey6vc<— y(w(K) y(a )> >(P(w(K))1//I(K)dK
uli a)im

2
By usage k-fractional operators (12) and (13), the first To evidence the second side of (16), once again
side of (16) is achieved. (a, h — m)-convexity of ¢ over [a,b], for 5 € [0,1], we
achieve

W )go(w(a>+m<1—n)w<b>)+m‘f”‘“h(22 ) ((1— (@) )+w(b)>
sh(n“)[ (5 )cp(w(a))+m“”‘”h(22—;l><p(w(b>)] (21)

« 1 /k)+ 2°-1 (a)
+mh(1-7 )[h<?><p(w(b))+m( 1K) 1h<2—a>‘/’(wm(21 )]

Multiplying both sides of (21) by 5 (™/¥)- 1EY - 1 (wrts p),
next integrating over [0, 1], we achieve

1 ! 1/k)- v,c ~
h(5e) [ a7 L (wns B Gy (@) + ma (1 =y B

e (251 . e u
(2 [ e - Y e Jan

(22)
< [h(%)go(u/(a)) +m(”k)”h<22—;1)¢(w(b))] J (et lEzfzw(w’?”%?)h(’?a)dﬂ

+ m[h(z—i)so(w(b)) + m“’k)*‘h<22—21)¢( ‘”‘?)] jo 1 B (s B (1~ o)

m

Setting w (1) = yy(a) +m(1 - )y (b) and y(x) = (1-  Corollary 1. By usage (16), anymore k-fractional inequalities
n (v (a)/m) +ny(b) in (22), in that case by utilizing are offered as noted below:

k-fractional operators (12) and (13), the second side of (16) is
achieved. O (i) By choosing w = I and p = w = 0, we obtain
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mb
(P(a +2mb> J (mb — )P4,

1 mb 20‘ ~-1 b (t/k)-1
< h<?> J (mb - 1) o (Ddi + m(ﬂkmh( = ) Ja (K - %) ¢ (x)dx

2
" (23)
1 0(
a_ 1
N m|:h<21[x)(,0(b) " m(r/k)+1h<22[x1>(p(a2):| j n(‘r/k)—lh(l _ ﬂa)dr]
m 0
(ii) By choosing w = I and p = 0, we obtain
mb
(P(a +2mb>J (b — 1) - Ey(SVC(w(mb_l)y)
1 mb (1/k)— 1 y,0,v,¢ (— u
sh(?>I (mb — )07 B (3 (mb — 1)) (1)l
(e (25 =1 Jb ( _g)wk)‘l y,5,v,c<_ ,,( _g)“)
+m h(—2“ ) . K - EW’I wm”( k - ¢ (r)dk (24)
< |:h<21a)(,0(a) +m ‘r/k)+1h< 2 ) (b)] J- (1/k)- lEY(SVC(wI’]H)h(Y]a)dﬂ
2% -1 1
+m ( )fp(b) +m ™ =2 o J O R (wi)h (1 - ) dy.
2 m 0
(iii) By setting m = 1 and y = I, we obtain
a+b b (t/k)= 1 y,0,v,¢ u, =
o “57) | @0 B @ - s B
1y (® (e1k)- yavc =
<h(ye) | -0 B @0 05 Po)d
2" -1 ()= 1 yduvc f— b =
+h 5 J-a (k—a) Ey,‘r,l (W(x—a); p)e(x)dx (25)

<[ s (o] [ e e

| )e® (2 Yo | [ a0 B s =),

(iv) By choosing h(n) = and p = w = 0, we obtain
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(4‘”(“) ;’”‘““) |’ T ) -y )y (0
<G e - v o 0
(Y = gy g (26)
[( )(p (y(a)) +m'™ “(2‘; 1>q)(1//(b))] (T fak)
om [( <)oy ) + (22; l)so(‘”r;?))](ﬂffzak))
(v) By setting a = 1 and y = I, we get
so(“ e ) [ =0 5 s
<h(5) j'ﬂb (b — 0O BT (@5 b — ' ) (1)
en ) (e (e P
<[5 )o@+ m™ (3o @] [[ n B ot Bty
+m [ ( Jo®) +m “hG)fp(%)] JO OB (wis PR (1 - ndn
(vi) By setting a =m =1, h(n) =y and v = I, we get
q)(”;b)J (b= 0™ B (@ (b — s p)ds
%“ (b= OO (@ (b - s B (1)di + jb (k= a) OB (@ (1 - a)”;f?)q)(x)dx] (28)
< (ba) ; (P(b))“; nVED (wnt's B)dn + j O BN (wr's B) (1 - ﬂ)dﬂ]

Remark 2. 'The above k-fractional inequalities are farther in
line with already known conclusions as noted below: (i) By
choosing k = 1 in Corollary 1 (v), an inequality for extended
generalized fractional integrals is acquired. (ii) By choosing

k=1 and p =0 in Corollary 1 (v), Theorem 2.1 of [28] is
acquired. (iii) By choosingm = 1, and h () = 5 in Corollary 1
(v), Theorem 2.1 of [27] is acquired. (iv) By choosing p = w =
0 in Corollary 1 (v), Theorem 2.1 of [20] is acquired.



Remark 3. (i) By choosingk = 1 and p = 0 in Remark 1 (iii),
an inequality for extended generalized fractional integrals is
acquired. (ii) By choosing k = 1 and p = w = 0 in Remark 1
(iii), Theorem 2 of [29] is acquired. (iii) By choosing k = 1 in
Remark 1 (iv), Corollary 2.2 of [20] is acquired.

The below lemma is beneficial to offer the
Fejér-Hadamard’s inequality for generalized k-fractional
integrals.

k p.0,v¢ o ~ k y,0,v,¢ o
(b5 Yo 09 = (SR
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Lemma 1. Let ¢,y: [a,b] — R with 0<a<mb, be the
functions such that ¢ € L,[a,b] and ¢ positive and y be
differentiable and  strictly increasing. If @ (y (1) =
o(y(a) +my(b) —y (1), in that case for generalized
k-fractional operators (11) and (12), we get

v(a) _
m 7p)

(29)

1 »0,V,C ° = ,0,V5C ° (a) -
=3 [(;F};,imm‘/’ g) (my (b); p) +<I;Fz,i,l,wmﬂ,b7¢ W)(w ;P)],

for all 7 € [a,b].

('LFZZ‘:ZZ%M"W) (my (b); p)
J'wl (my (b))

a

J'll/‘l (my (b))

a
,1(

m

Proof. By description of generalized k-fractional operators
(12) and (13), we get

(my (b) -y (1)) O ELY (@ (my (b) - y (0); B) (97w) (yr (1)d

(30)

(my (B) = y (1) O ELY (@ (my (B) -y (0); B)e (v (0)yr ()d

g~ (my (b)) (t/k)=1 5y,0,v,¢ (— H. 5
- | (my (b) =y () ™ ELT (@ (my (B) = y (05 P (y (@) + my (b) =y (0)yr ().

Setting y(x) =y(a) +my(b)—y() in the above

equation and using ¢ (v (1)) = ¢ (v (a) + my(b) — v (1)), we
have

(SFrtie 0y oy ;)

b
| )=y @) B

v (y(a)m
b
JW’ Ly (a)/m)

This implies
,0,v,¢ o = ,0,v.¢ o (a) -
(SF1oe v ) omy  B) = (S5 0 w)("/?;p).
(32)

) 8,5
By addlng (IJ,F ,);,T,Z;,m
(32), we have

T/k)- 1 Ey,&v,c

(my (1) - v(a))' ot

¢ y) (my (b); D) on both sides of

(@ (my () - y(a); p)e (w () (n)dy (31)

(@ (my () - y (@) ) (¢"y) (w1 ()dy.

2(1;%2%“&01#) (my (0); P) = (IJF D PV )(w;a); ?’>

k y:0:v,¢ o L=
+(V/Fz,1,l,w,a+()0 V/) (I’Yﬂ// (b)7 P)
(33)

From equations (32) and (33), the result can be
obtained. O



Journal of Mathematics 9

The first type of Fejér-Hadamard inequality is endued  differentiable and strictly increasing, r is a nonnegative and
through generalized k-fractional integrals as noted below: integrable function. If ¢ is (a,h—m)-convex and
o(v() =¢(y(a) +my((b) — (1)), in that case the below
Theorem 4. Let h: ] — R be nonnegative, nonzero, and  inequalities for generalized k-fractional operators (12) and
integrable function and @, y: [a,b] — R, 0 <a <mb, be the (13) occur:
functions such that ¢ € L, [a,b] and ¢ be positive and y be

(M)[(WFZ‘E{;M" )(mw(b) P+ (V Pt w)(w,(;);?ﬂ
gzh(zl J(EEL 07y ) oy ;)
+2m (r/k)+1h< = )( Fro ¢rw)<$§f’>
sz[h(z—i)sv(wa»+m<f”‘>“h<22—;1)so(w(b))] (34)
x[;n‘”’” YEVS Y (wis B)r (ny (@) + m (1 = )y (b)) (n*)dy
. 2m[h(zia)¢<w<b» . m‘f’k)*1h<zz—;1)¢(ﬁ?))]

1
x JO ETOTL R (wi's B)r (ny (@) + m (1= )y (B))h (1= n%)dn

where W = (w/ (my (b) — y(a))") for all € [a,b]. Multiplying both sides of (18) by
5 (7R- IEV‘SVC (wrt; P)r (ny(a) + m(1 - n)y (b)) and then
Proof. We demonstrate the claim as follows: 1ntegrat1ng over [0, 1], we have

1
«’(W) [ A B ot B O @)+ m (1 =y )

= h(%”‘) Jo TR (wit's B (ny (@) + m (1= )y (b)r (ny (@) +m (1 = )y (b))dn (35)

+mh<2 2_1)Ion’/k) 15,3?1”(%’2?)(/}( ¥ )+111//(b))r(f1w(a)+m(1— Dy (B)dn.

By specitying v (1) = yy (a) + m(1 — n)y (b) and y (k) = (1-nmy(a)+myy(b), in (35), then wusing ¢(y
(1= (y(a)im)+ny(b), that is y(a)+my®)-y()= () =¢(y(a)+my(b)-y()), we have

(P(l//(a)+mw(b)

v~ (my (b)) ()= 1 b "
3 )L (my (b) —y (1)) EW (w(my (b) -y (0); ) (r'v) (Dyr (e

v~ (my (b))
< h(%) J (my (B) -y (0) ™0 B (@ (my (B) - v (0) B) (9°9) () (F9) Dy (O (36)

a

21\ (° 1/’( )\ (e/k)-1 yavc< M( _M) )
e[ 0L g ) e
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This implies

(P(M)(szf;;w w)(ml//(b) p)<h< )(; z‘j;;M(prw)(mw(b);ﬁ)

2
(37)
06 1 O VsC W(a) —
n m(r/k)+lh<2—u><$FZleW b go r 1//)(7; Pl
Using Lemma 1 in the above inequality, we have the first To demonstrate second side of (34), multiplying both
side of (34). parts of (21) by 2ph- IEMVC (wrt; P)r (v (a)+

m (1 —n)y (b)) and then integrating over [0,1], we have

1
2h( ) [ O B s B v @)+ (1= )y (6 Gy (@) 4 m 1=y (D)
(a)

e, (25 =1\ ' (2 v -
+2m™ 1h<—> Jon( OB (wn'; B)r (ny (a) + m(1 —11)1//(b))<P<(1 —’1)1//7

P + ‘/’(b)>d’7

sz[h(zia)wtp(a)) “/k“h( )go(w(b))]

(38)
x joﬂ”’k) CERYY (wit's B)r (qy (@) + m (1 = )y (b)h (17)dy
1 e (25 -1
+2m[h(?)q>(w(b>> m 1h<—2a )<p<‘”ni?)>]
1
X .[o n(T/k)flevc (wr; P)r (ny (a) + m(1 = n)y (B)A (1 - 1*)dn.
Setting y () =ny(a)+m(A-n)y() and y(k) =
(1 -n)(w(a)/m) +ny(b), then using ¢ (v (1) = ¢ (y(a)+
my (b) — v (1)) in (38), we have
1 L V,C ~
2’1(2—)(51’251“& r w) (my (b); )
ram W E L e ) (Y5
1 k) +
SZ[h(z—u)sv(w(a)) ™ h( )go(w(b))]
(39)

x IO OB (wn; B)r (ny (a) + m (1 = )y (0))h (n")dy

eam (e oty +m o Z (1)

1
x [ 0 B s By @)+ m (L= )y 6D (L= )
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By usage Lemma 1 in the above inequality, we have the =~ Corollary 2. By using (34), some more k-fractional in-
second side of (34). O equalities are offered as noted below:

(i) By choosing y =1 and p = w = 0, we obtain

mb
‘P(a +2mb) J (mb - 1) ()ds

mb _ (t/k)-1
< zh(i“) J (mb = 1)1 (9o r) ()t + 2m T/k>+1h<2 _ 1) J (K - 3) (9or) (1)dx
2 2 (alm) m

a

(40)
SZ[h(zia)(p(a)+m(T/k)+lh( ) (b)“ @010 (na + m (1 - o)k (5%)dn

a 1
+ 2m[h<%><p(b) + m(T/k)+1h<22—ul><p(i2>] J 70 (na + m(1 - n)b)h (1 - 7%)dy.
m 0

(ii) By choosing p = 0 and v = I, we obtain

mb
¢<“ +2mb> J (mb — )"0 X (@ (mb — i )r (1)d

< 2h<2ia) me (mb — )™ lEl’:ﬁ:lV’c (W (mb 1)) (por) (de

a

(s (251 J' ( _ﬁ)wk)*l NVC( .‘4( _7>> R
+am h< 2" > @m " m By \wm\ k=2, (por)(r)ds (41)

< 2[h(%>(p(a) + m(T/k>+1h< ) (b)] J (w/ho- 1Ey8” (wy)r (na + m(1 — pb)h (4*)dn

1 e (251 a L 1 omdine .
+ Zrn[h(?)(p(b) +m P lh<7><p<ﬁ>] Jory( i IEZ:Z (wr)r (na+m (1 —npb)h(1 - 5%)dn.

(iii) By choosing m = 1 and y = I, we obtain

<a+b)J — o= Eyﬁvc(w(b—t)” p)r(nde

b
th(z—la J (b - ) O LEYY (Wb — 1) ) (por) (1)di

wt,l

wrl

oa b
v ) [ e e ) o) (s “

1 2% -1 e ~ «
sz[h(?>¢(a)+h( )(p(b)] JO (WOLERON (wn'; B)r (na + (1 = mb)h (")dn

+2[h<21a><p(b)+h(2 >(a)“ (C=LEIE (s B)r (na -+ (1 - bR (L - 17)d
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(iv) By choosing p = w = 0 and h(n) = 5, we obtain

5 (my (b) — v (1) ™ (ro y) (Dyr (D

a

(p(V’(a) + mv/(b)> J"”]('"‘”(b))

v (my (b))
) <211> I (my (B) =y )T (porey) Oyr ()ds

a_ b
+m<1/k)+1<22a11) jW(M) (v (x) - yia )) TR=1(goroy) (K)y! (k)dx (43)

m

<2 (e tvion e (E otw ] [ travier e vy

”’”[(z%“’““’m*m(ﬁk)“(—z 2;1)4’(&?)“0 O (@) + m (1= )y (0)) (1 - 17)dn.

m

(v) By choosing « = 1 and y = I, we obtain

mb
(,,(“ +2mb> J (mb — ) PO ERS (@ (mb — s B)r (1)ds

mb
<2h(3) J (mb - ) OB (@ (mb — 1 ) (p o) ()l

a

1 b a (1/k)-1 a\¥#
(t/k)+1 - _“ POvie [ —  u A R 44
+2m h(z) j(a/m) (;c m) Ey) (wm (K m) ,P) (por)(x)dx (44)

SZ[h(%)(p(u)+m(ﬁk)+1h(%>(p(b)]J;n(r/k) LEPY (wrfs B)r (na + m (1 - pb)h (n)d

+ Zm[h(%)(p(b) + m(T/k)“h<%)(p<iz>} J n(ﬂk Eyévc(wq P)r(na+m(1—nbh(l-n)dy.
0

m

(vi) By choosing « = m = 1, h(y) = n and, we obtain

b b V\C
(P<a; )J (b= L (@b - 05 p)r (0

b
< “ (b= TOER (@ (b - 15 ) (per) (1d

b
+J (k=)™ B (@ (- ) B) (9o 1) (00 (45)

< (p(@)+ 9 ()] j (0 B2 (wr; B)r (na + (1 = p)b)dn

+ Jo 5 1EZ$;C (wr"; p)r (na + (1 = n)b) (1 - n)dy].
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(vii) By choosing « =k =1 and y = I, we obtain
b mb c _
<p(“ +2m )J (mb — )" EVS (@ (mb — 1 p)r (s
1 mb yﬁvc u.
£2h<§>J' (mb-1)" E) (@(mb - )" p) (por) (1)ds
w1y (1 b a\— ,8,v,¢ " a\# _
+2m h<5>L / )(K—a) Eyy (wm <x—a) ;p)((por)(x)d;c (46)

<2[ (3 )o@ +m™'n(; )cp(b)H Tl

i s () [

Remark 4. The above k-fractional inequalities are farther in
line with foreknown conclusions as noted below: (i) By
choosing k =1 in Corollary 2 (vi), Theorem 2.2 of [27] is
acquired. (ii) By choosing p =0 in in Corollary 2 (vii),
Theorem 2.5 of 28] is acquired. (iii) By choosingk =1, p =
w =0 and h(n) =1 in Corollary 2 (v), an inequality for
m-convex functions via Riemann-Liouville integrals is ac-
quired. (iv) By choosingk = 1 and p = 0 in in Corollary 2 (vi),
an inequality for extended generalized fractional integrals is
acquired. (v) By choosingk = 1 and p = w = 0 in in Corollary
2 (vi), Theorem 4 of [26] is acquired. (vi) By choosing h (1) =

in in Corollary 3.2 (vii), Theorem 3.1 of [27] is acquired.

¢<W(ﬂ) + ml//(b)><k Fy,&v,c

2 v owrlw,y

(wr; P)r (na + m(1 - n)b)h(n)dy

T— lEy(Svc

e (Wi p)r (na+m(1—mb)h(1 - n)dn.

In the subsequent theorem, we offer another type of
Hadamard’s inequality.

Theorem 5. Let h: ] — R is nonnegative, nonzero and
integrable function and @, y: [a,b] — R, 0<a <mb, be the
functions such that ¢ € L, [a,b] and ¢ be positive and y be
differentiable and strictly increasing. If ¢ is (a, h —m)-con-
vex, in that case for generalized k-fractional operators (12)
and (13), we acquire

! (my (b)+y (a)/2)+ >(m‘/’(b) p)

1 k y:0.v,¢ o L=
s h(?)(melfv,w” (mw(b)+w(a)/2)+¢ V’) (my (b): p)

(wky+1y 2% 1 k prévc w(a).~
o T % J\ Y wrlwmty ! (my (b)+y (a)/2m) ‘/"V m 3P (47)

< [h(%)go(l//(a)) N m(T/k)+1h<20¢

where W = 24w/ (my (b) — y(a))*) for all n € [a,b].

Proof. Setting y (1) = (/2)y(a) + m(2-n/2)y(b) and
v(x) = (2 -1/2)(y(a)/m) + /2y (b) in (3.2), we have

)go(y/(b))] j
i e

v(a)

AL

T ,0,v,¢ ~ ¢
OB (wr” ;p)h(%)dn

’Y(T/k) lEzf{C(wﬂﬂ;f’)h(z - -f )dq,
o252 g e(zrw (7))
+mh<2“2; 1)¢(<2;n) Wr(:)%w(b))‘

(48)
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Multiplying both parts of (48) by #(/F- 1EY6VC (wn*; p)
and then integrating over [0, 1], we have

(a) + my (b) ! /k)— R ~
e | e

sh<21a> jo W(T/k) 1Ezf;6(wﬂﬂ;f,)¢(gw(a) + m(z;zﬂ>1//(b)>d’7

2" -1 (1/k)=1 y,0.v,¢ U, = 2-m\y(a) 1
+mh< = )Joﬂ Eyor (wn'; P (—2 )—m +2y(0) Jdy

By taking w() = (5/2)y(a)+m(2-yn/2)y(b) and To demonstrate the second side of (47), once again
v (x) = (2 -1/2)(y(a)/m) + /2y () in (49), in that case by

(a, h — m)-convexity of ¢ over [a,b], for 5 € [0, 1], we get
usage k-fractional operators (2.12) and (2.13), the first side of
(47) is acquired.

(49)

w(5e)o(Lvi@+m(25 v ) + ‘”k’“h<2a2;1)¢((2;”)w::)+gw(b))
gh(Z—)[ ( )g)(w(a))+m“”‘“h(22—;1>¢(w(b))]

(50)
(2T ot sn(Z ()]
m
Multiplying both sides of (50) by 57k~ ') Dne 1 (wn; p),
then integrating over [0, 1], we acquire
1 ! 1/k)— ,0,v,¢ 2-
) [ 2 o {25 o
+m"”‘)“h(—2 2ZI)J 0O ERL (s P)sv( —w gw(b))dﬂ
0
(51)

a 1 06
<[( )so(w(ammf/k“h(z zal)q)(w(b))]jo LB (o p)h( )

1 + 20‘—1 ! 1/k)— v,c (X
+m[h(2—a)cp(wb)>+m“’k> 1h<7)<p(‘”ni‘§)>”0n“’” B (wr p)h( )dn

v() = (52)y(a)+m(2-9n/2)y(b) and Corollary 3. By using (47), anymore k-fractional inequalities
v (x) = (2 -1/2)(y(a)/m) + /2y (D) in (51), in that case by are offered as noted below:

usage k-fractional operators (12) and (13), the second side of
(47) is acquired.

Choosing

0 (i) By choosing y =1 and p = w = 0, we have
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T

a+mb\ (M ——1
b-0Dk d
(P( 2 ) Ja+mb/2 (m [) !
T T T
1 mb —-1 —+1 /2%_1 a+mb/2 ave— 1
) [ 0 e (-2
T T (52)
1 —+1 (2-1 L= 1 [y
= h(y)(ﬁ(mmk | =5 Jo ®) j ke h( Lg )y
0 2
1 T+1 2% -1 1 f 1 /2% _ %
— k - a I P -1
+mlh(2a)¢(b)+m h( 5 )go(mz)] N h( 5 )dq,
(ii) By choosing p = 0 and v = I, we have
b\ (™ z
a+m " T Bvc
Nk V> _ M
(P( 2 )Lmk/z (mb =) E (@ (mb - 1))
1 m Z_ 1 S v,¢ (=
= h(?) me (mb—ok " EL (@(mb - 1)) ()ds
T a+mb T .
PR 2" -1 ZAYVEE Ve
+ mk h( o )Ji 2 (K—;)k EW (wm"(x——) )(p(K)dK (53)
m
1 z+1 2% -1 1 I 1 7
< [h(za)so(a)mk h( 7 >¢<b)] jonk E;E;C(wnﬂ)h(?)dq
! £+1 2°-1 d ' £_1 vowe sy (25 =1
+m h(z—a)¢(b)+m h< 5 >(P<F) Jon E,r (wy )h( - >d;1.
(iii) By choosing m = 1 and y = I, we acquire
a+b b (t/k)= 1 zy,0,v,¢ U=
(p< 2 >J,(u+b/2) (b_l) E’“Tl (U)(b—l) ’p)dl
1 b T/IK)— Ve (— ~
Sh(?) J-(a+b/2) (b= IE;ZZ‘:ZI’ (@b -0 p)p (s
20‘_1 b (t/k)= 1 y,0,v,c U, =
+h G j (k—a) E;y (W(x—a);p)e(x)dx (54)

s[( )<p<a>+h<2a 1>¢(b)]j (- ‘Elffc(wn“;ﬁ)h@—:)dn

+[( )(p(b)+h<2a 1><p(a)]j (701 8 (' p)h<2a2‘a’7 )dn.
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(iv) By choosing p = w = 0 and h(n) =y, we have

(my (b))
(M)J w (my (B) =y ()™ yr ()
~1(y (a)+my (b)/2)

1 y ! (my (b)) (eh)-1
<(3)] (my (6) = w ()™ g (y (D1 (e
Y= (y (a)+my (b)/2)

2% -1 ' (y (@) +my (b)/2m)
+ m(r/k)+1< 5 ) J (v (%) - W(a))(r/k)_l‘P(V/(K))llll (0)dx (55)
v~ (y(a)/m) m

1 w25 -1 k
< [(?)?’(V’(a» +m (2—a>¢(1l/(b)):| (m)

1 @i (25 =1\ (y(@\](k k
+m[<2“>"’("’(b))+m ( 2° )“’( m >]<T 2“(T+(xk)>'

(v) By choosing « =1 and y = I, we have

a+mb\ (M o) e — _
“’( 2 )J (b =) B (@ (mb — s P

mb
< h(l) J (mb — 1) ™0 B (T (b — 1), B)g () ds
2 a+mb/2 oo

1 (a+mb)/2 a\ (k-1 a\#
(T/k)+lh<*> J ( _7) Ey5v5<_ I4< _7> . ~> d 56
+m ) e ;D)o (x)dx (56)

<(3)otar e m ™ r )] [0 gy ot (L)

l (1/k)+1 i J (t/k)= 1 y,0,v,¢ ~ 2- n
+mh<2>[q)(b)+m ¢(m2>] OB (wn ,p)h<—2 )dn.

(vi) By choosinga =m =1, h(n) = nand y = I, we have

b\ (* _
q)(“ * ) J (b—1) 0" 1E;:f;,”(w (b—1); p)ds

2 (a+b/2)

1 ’ (1/k)= 1 2p,0,vs¢ v =
SE [ J(mb/z b-1) El”l (w (b-1) 7P)¢(l)dl
(57)

(a+b/2) -1 e ~
+ J (k—a)'" EZTI (W (x—a); p)o (x)dx]

a

(@+9®)\ (' « e
S(‘P - )JOW(/k) LELL) (wn's P)dn.
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Remark 5. The above k-fractional inequalities are farther in
line with foreknown conclusions as noted below: (i) By
choosing k = 1 in Corollary 3 (v), an inequality for extended
generalized fractional integrals is acquired. (ii) By choosing
k=1 and p =0 in Corollary 3 (v), Theorem 2.2 of [28] is
acquired.

The second type of the Fejér-Hadamard’s inequality for

generalized k-fractional integrals is dedicated as noted
below:

W(a) +my b))\« ,8,v,¢
(P(f (WFy,‘r,l,Tu,W’
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Theorem 6. Let h: | — R is nonnegative, nonzero and
integrable function and ¢, y: [a,b] — R, 0<a <mb, be the
functions such that ¢ € L, [a,b] and ¢ be positive and y be
differentiable and strictly increasing, r is a nonnegative and
integrable  function. If ¢ is (a,h—m)-convex and
o(v() =¢(y(a)+my((b) — y(1), in that case the below
inequalities for generalized k-fractional operators (12) and
(13) occur:

! <(mw(b)+w(a))/z)+ro‘l’> (my (b); p)

sh(zl )(’; iV (O () + Y (@)/2) 707 'y w) (my (b); )

2% -1 s
(t/k)+1 - k y.0,v,¢
o h( 2" )(WFWJ@W,W‘

< [h(%)(p(w(a)) N m(r/k)+1h< 0

Y-
XJ ’1(1/
0

oo \fv(a) -
(my Gy @y2m-P 7 w>( m ’P)

)?(W(b))]

(58)

8wt B)r( Ty @ + (2 )y ) ) (”a)dn

1 s, 201
+ m[h(z—a)(P(V/(b)) +m(™ lh(T>(p(wﬂ(;)>]

1
y J n(r/k
0

where w = (24w/ (my (b) — y(a))*) for all n € [a?,bP].

Proof. We demonstrate the claim as follows:

y(a) + my (b) (xlk)-
<p( 2 ) Jo 1

iz,

,V,C ~ 2-
L (' Py )+ m( =5

T ,V,C ~ 2
TR (wi's B)g ( w(a)+rn<

e (TN Gy T [ o

Multiplying (48) by 5™~ LEI 1 (wnt; B)r (n/2)y (a) +
m(2 —#/2)y (b)) and then 1ntegrat1ng over [0, 1], we have

Do) )dn
Dy ) )r(Ly @+ m(*"

Dy o) )an (59)

o) L () B Bt

By setting (1) = (#/2)y(a) +m(2-5/2)y(b) and

v (k) = (2 -4/2)(y(a)m) + /2y (b), that is,

v(@) +my®) - y() = 2-w2y(@ + mp2y®), i

(59), in that case by usage

o (v (1) = ¢(y(a) + my (b) — v (1)) and k-fractional integral
operators (12) and (13), the first side of (58) is acquired.

To demonstrate the second side of (58), multiplying both

parts of (50) by
- Ezflvc(wnu;f,) ( v (a) +m<2 )V’(b)) (60)

and then integrating over [0, 1], we have
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\V,C ~ 2 -
B (s By @)+ m( =

1
h<2_o¢> Jon(r/k
m(r/k +1h<2 2; 1) J W(T/k
0

< |:h<%)(/)(1//(a)) +m T/k)+lh( zx

y J ’1(T/k
0

+ m[h(;t)fp(llf(b)) + m(T/k)”h(—2 2_

y J ﬂ(r/k
0

Setting v (1) = (#/2)y(a) + m(2 — n/2)y (b) and v (k) =
2-7n/2)(y(a)/m) +n/2y(b) in (59), then by using
o (v (1) = ¢(y(a) + my (b) — v (1)) and k-fractional integral
operators (12) and (13), the second inequality of (58) is
obtained. O

)SD(V/(b))]

a+mb\ (™
b—
go( 2 )J((u+mb)/2) (m :

1 mb
< h(—) J (mb
2 ((a+mb)/2)

®_ (
+m(‘l’/k)+1h(2 - 1>J
2
1 2 -1
< [h(?>q)(a) + m(T/k)“h(z—a)q)(b)]

1 2 ¢
x J W(T/k)_lr@a + m(—ﬂ>b>h<n—a)d’7
0 2 2 2

D@ )r(Ly @) +m(*"

{5 ) o5

_ )R-

Journal of Mathematics

D)y

(61)

525 s (Lt (25w )i 2 Y

)

05 s Ly + (25w ®) (zaz‘a”“)dn.

Corollary 4. By using (58), some more k-fractional in-
equalities are offered as noted below:

(i) By choosing y =1 and p = w = 0, we obtain

)01 ()

1((p“r) (1ds

(a+mb)/2) a\@h-1
(K - —) (¢r)(x)dx
m

(alm)

(62)

1 e (251
+m[h<2a>¢(b) +m ™ lh(za>‘/’(:lz)]

1 _ o o
x I ﬂ(r/k)_lr@a + m(—z n)b)h(z a
0 2 2 2

(ii) By choosing y = I and p = 0, we obtain
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a+mb\ (™ . e
¢< 5 )L(Mmb)/z) (mb — 1) 70~ EZ‘j, (@ (mb — )" Yr (1)ds

mb
<) | (b - )0 EY (@ (mb — ) (por) (0ds

2%) ) (armb)2) wrl

20‘ -1 ((a+mb)/2) (t/k)-1 _
+m(T/k)+1h(—a>J (K_ﬂ> Ey,a,lv,c<wmﬂ(x__> )(q)or)(;c)dx
2 (alm) m #o m
1 2" -1
< [h<?)¢(a) +m(f”‘)”h( N )(p(b)] (63)
XJI g5 (oL (2 Yo )a
0 T’] ‘u‘rl wl’] a m 2 20( ’1
1 2°-1
o2 )
2 2 m

(7/k)- 1 2,0, v,¢ n (2_’7> ) 20‘_71“
xjon Eyy (wn)( a+m(— bh 5 dn.

(iii) By choosing m = 1 and y = I, we obtain

+b\ (b ) » )
(p<a2 >J<+hxz> (b= ™ B (@ - s P)r (0

1 ! (t7k)= 1 p,0,v,¢ u. =
S”(?)LM)( )L (G (b - 1) B) (g0 r) (0

,T5l

«_ b
+h(_22w1>J (k= a) O BTN (T (k- @) B) (o) ()l (64)

S[ <1>‘P(“)+h<2“ 1)€0(b)“ (w0 lEzfzvc(wn";ﬁ)r(Zm(z;”)z:);;(gj)dq
5 e

(iv) By choosing p = w = 0 and h(n) =y, we obtain
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(my (b) = v () ™ (w ()1 (de

W(a) + m'(//(b) ”’”/’(b))
o)L

v (y(a)+my (b)/2)

1\ (v (my(®) —
<(3)] (mp (0) =y () O (per o) W1 ()
v (y(a)+my (b)/2)

s 2 1 v (v (a)+my (b)/12m) a) o
v~ (y(a)2) m

1 g [ 2% -
< [(?)so(w(a)) +m 1( >¢<w<b)>]

R C= ]

L v

(v) By choosing « = 1 and y = I, we get

(65)

b mb Ve — ~
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+mh< )[f(b)+ (T/k)”(/’(%)] J;ﬂwk)_lEZ:i,”(wq p)r( a+m(2;’7>b)h(2;—’7)dq.

(vi) By choosing a =m = 1,h(y) = n and v = I, we get

b
g,(“ i b) [ a0 B @ o P

(a+b/2)
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1 (° RNCOE y8vc b ) d
[l -0 @ R e 0
(67)
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Remark 6. Those as mentioned above k-fractional inequal-  choosing k = 1 in Corollary 4 (v), an inequality for extended
ities are farther in line with foreknown conclusions as by  generalized fractional integrals is obtained.



Journal of Mathematics

Data Availability

There are no data required for this paper

Conflicts of Interest

The authors declare no conflicts of interest.

Authors’ Contributions

All the authors made equal contributions.

Acknowledgments

Science & Technology Bureau of ChengDu 2020-YF09-
00005-SN supported by Sichuan Science and Technology
program 2021YFHO0107 Erasmus+ SHYFTE Project 598649-
EPP-1-2018-1-FR-EPPKA2-CBHE-JP.

References

[1] W. Gao, A. Kashuri, A. Kashuri, S. Thsan Butt, M. Aslam, and
M. Nadeem, “New inequalities via n-polynomial harmonically
exponential type convex functions n-polynomial harmonically
exponential type convex functions,” AIMS Mathematics, vol. 5,
no. 6, pp. 6856-6873, 2020.

[2] K. Mehrez and P. Agarwal, “New Hermite-Hadamard type
integral inequalities for convex functions and their applica-
tions,” Journal of Computational and Applied Mathematics,
vol. 350, pp. 274-285, 2019.

[3] M. Tariq, “Hermite-Hadamard type inequalities via
p-harmonic exponential type convexity and applications,”
UJMA, vol. 4, no. 2, pp. 59-69, 2021.

[4] S. I Butt, M. Tarig, A. Aslam, H. Ahmad, and T. A. Nofal,
“Hermite-Hadamard type inequalities via generalized har-
monic exponential convexity and applications,” Journal of
Function Spaces, vol. 2021, Article ID 5533491, 12 pages, 2021.

[5] H. M. Srivastava, G. Murugusundaramoorthy, and S. M. El-

Deeb, “Faber polynomial coefficient estimates of bi-close-to-

convex functions connected with the borel distribution of the

Mittag-Leffler type,” J. Nonlinear Var. Analvol. 5, no. 1,

pp. 103-118, 2021.

T. Abdeljawad, S. Rashid, Z. Hammouch, and Y. M. Chu,

“Some new local fractional inequalities associated with gen-

eralized (s,m)-convex functions and applications,” Advances

in Difference Equations, vol. 2020, no. 406, pp. 1-27, 2020.

[7] A. O. Akdemir, S. I. Butt, M. Nadeem, and M. A. Ragusa,
“New general variants of Chebyshev type inequalities via
generalized fractional integral operators,” Mathematics, vol. 9,
no. 2, p. 122, 2021.

[8] S. I. Butt, S. Yousaf, A. O. Akdemir, and M. A. Dokuyucu,
“New Hadamard-type integral inequalities via a general form
of fractional integral operators,” Chaos, Solitons ¢ Fractals,
vol. 148, p. 111025, 2021.

[9] A. M. Khan, R. K. Kumbhat, A. Chouhan, and A. Alaria,
“Generalized fractional integral operators and M-series,”
Jurnal Matematika, vol. 2016, Article ID 2872185, 2016.

[10] F. Qi, P. O. Mohammed, J.-C. Yao, and Y.-H. Yao, “Gen-

eralized fractional integral inequalities of Hermite-Hadamard
type for ${(\alpha,m)}$-convex functions («,m)-convex
functions,” Journal of Inequalities and Applications, vol. 2019,
no. 1, p. 135, 2019.

[6

21

[11] T. Tung, H. Budak, F. Usta, and M. Z. Sarikaya, “On new
generalized fractional integral operators and related fractional
inequalities,” Konuralp J. Math.vol. 8, no. 2, pp. 268-278,
2020.

[12] H. K. Onalan, A. O. Akdemir, M. A. Ardig, and D. Baleanu,
“On new general versions of Hermite-Hadamard type inte-
gral inequalities via fractional integral operators with Mittag-
Leffler kernel,” Journal of Inequalities and Applications,
vol. 186, 2021.

[13] T.Zhu, P. Wang, and T. Du, “Some estimates on the weighted
Simpson-like type integral inequalities and their applica-
tions,” Journal of Nonlinear Functional Analysis, vol. 2020,
2020.

[14] H. M. Srivastava, S. Arjika, and A. Kelil, “Some homogeneous
q-difference operators and the associated generalized Hahn
polynomials,” Applied Set-Valued Analysis and Optimization,
vol. 1, pp. 187-201, 2019.

[15] C.P. Niculescu and L. E. Persson, Convex Functions and Their
Applications: A Contemporary Approach, Springer, New York,
NY, USA, 2006.

[16] M. K. Bakula, M. E. Ozdemir, and J. Pecaric, “Hadamard type
inequalities for m-convex and (a,m)-convex functions,”
Journal of Inequalities in Pure and Applied Mathematics,
vol. 9, no. 4, p. 12, 2008.

[17] M. V. Cortez, “Fejér type inequalities for (s,m)-convex
functions in the second sense,” Applied Mathematics & In-
formation Sciences, vol. 10, no. 5, pp. 1-8, 2016.

[18] N. Eftekhari, “Some remarks on (s,m)-convexity in the second
sense (s,m)-convexity in the second sense,” Journal of
Mathematical Inequalities, vol. 8, no. 3, pp. 489-495, 2014.

[19] M. E. Ozdemir, A. O. Akdemir, and E. Set, “On
(h — m)-convexity and Hadamard type inequalities,” Tran-
sylvanian Journal of Mathematics and Mechanics, vol. 8, no. 1,
pp. 51-58, 2016.

[20] G. Farid and A. U. Rehman, “Ain, k-fractional integral in-
equalities of Hadamard type for (h—m)-convex functions,”
Comput. Methods Differ. Equ.vol. 8, no. 1, pp. 119-140, 2020.

[21] S. S. Dragomir, J. Pecaric, and L. E. Persson, “Some in-
equalities of Hadamard type,” Soochow Journal of Mathe-
matics, vol. 21, no. 3, pp. 335-341, 1995.

[22] M. Andri¢, G. Farid, and J. Pecari¢, Analytical Inequalities for
Fractional Calculus Operators and the Mittag-Leffler Function,
Element, Zagreb, 2021.

[23] M. Yussouf, G. Farid, K. A. Khan, and C. Y. Jung, “Hadamard
and Fejér-Hadamard inequalities for further generalized
fractional integrals involving Mittag-Leffler functions,” Jurnal
Matematika, vol. 2021, Article ID 5589405, 13 pages, 2021.

[24] Y. Yue, G. Farid, A. K. Demirel, W. Nazeer, and Y. Zhao,
“Hadamard and Fejér-Hadamard inequalities for generalized
k-fractional integrals involving further extension of Mittag-
Leffler functions,” AIMS Math, vol. 7, no. 1, pp. 681-703, 2022.

[25] L. Fejér, “Uberdie fourierreihen II,” Math Naturwiss Anz
Ungar. Akad. Wiss, vol. 24, pp. 369-390, 1906.

[26] 1. Iscan, “Hermite-Hadamard-Fejér type inequalities for
convex functions via fractional integrals,” https://arxiv.org/
abs/1404.7722.

[27] S.M. Kang, G. Farid, W. Nazeer, and B. Tariq, “Hadamard and
Fejér-Hadamard inequalities for extended generalized frac-
tional integrals involving special functions,” Journal of In-
equalities and Applications, vol. 2018, no. 1, p. 119, 2018.

[28] A.Rehman, G. Farid, and Q. Ain, “Ain, Hadamard and Fejér-
Hadamard inequalities for (h—m)-convex functions via
fractional integral containing the generalized Mittag-Leffler


https://arxiv.org/abs/1404.7722
https://arxiv.org/abs/1404.7722

22

[29]

(30

[31

(32]

(33]

(34]

function,” Journal of Scientific Research and Reports, vol. 18,
no. 5, pp. 1-8, 2018.

M. Z. Sarikaya, E. Set, H. Yaldiz, and N. Bagak, “Hermite-
Hadamard’s inequalities for fractional integrals and related
fractional inequalities,” Mathematical and Computer Model-
ling, no. 57, pp. 2403-2407, 2013.

D. Baleanu, M. Samraiz, Z. Perveen, S. Igbal, K. S. Nisar, and
G. Rahman, “Hermite-Hadamard-Fejér type inequalities via
fractional integral of a function concerning another function,”
AIMS Mathematics, vol. 6, no. 5, pp. 4280-4295, 2021.

E. Set, A. O. Akdemir, and E. A. Alan, “Hermite-Hadamard
and Hermite-Hadamard-Fejér type inequalities involving
fractional integral operators,” Filomat, vol. 33, no. 8,
pp. 2367-2380, 2019.

F. Ertugral, M. Z. Sarikaya, and H. Budak, “On Refinements of
Hermite-Hadamard-Fejér type inequalities for fractional in-
tegral operators,” Applications and Applied Mathematics,
vol. 13, no. 1, pp. 426-442, 2018.

S. Turhan and I. f@can, “On new Hermite-Hadamard-Fejér
type inequalities for harmonically quasi convex functions,”
Communications Faculty of Sciences University of Ankara
Series Al-Mathematics and Statistics, vol. 68, no. 1, pp. 734-
749, 2019.

R. S. Ali, A. Mukheimer, T. Abdeljawad et al., “Some new
harmonically convex function type generalized fractional
integral inequalities,” Fractal Fract, vol. 5, no. 2, p. 54, 2021.

Journal of Mathematics



