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�is study consists of developing some closed and updated formulas derived from multiplicative graph invariants such as general
Randic index (GRI)Rλ0(8) for λ

0 � ± 1, ± 1/2{ }, ordinary general geometric-arithmetic (OGA), general version of harmonic
index (GHI), sum connectivity index (SI), general sum connectivity index (GSI), 1st and 2nd Gourava and hyper-Gourava indices,
(ABC) index, Shegehalli and Kanabur indices, 1st generalised version of Zagreb index (GZI), and forgotten index (FI) for the
subdivided Aztec diamond network. Aztec diamond is constructed based on the squares boxes. �ese square boxes are placed at
the centre point and nourish the condition |s − (1/2)| + |r − (1/2)|≤ n. Furthermore, we put a new vertex of degree-2 at each edge
of the small boxes, squares in shapes. A new structure is obtained that has the same properties as its parental graph and is called a
subdivided Aztec diamond and symbolised as Saztecn. Subsequently, we compute the multiplicative topological attributes to get
some new formulas. For this purpose, a simple, connected, and the �nite graph is considered by supposing it Y as the graph of the
Saztecn. �e order and size have also been discussed in this study and found three di�erent kinds of edges (2, 2), (2, 3), and (2, 4)
for computing. �e discussion on the networks mentioned above provides us with essential results that can be used in the
determination of bio and physio activities and can be interspersed with the molecular compounds and their graphical structures
better to understand their physical as well as biological properties.

1. Introduction

�e branch of mathematics concerned with graphs, their
application, and their correlation with chemical compounds
is known as chemical graph theory. In molecular modelling,
we use this tool of mathematics. First, the chemical com-
pound’s structure is drawn and compared with its mathe-
matical graphical structure. �is theory needs to be used as a
mathematical tool to recognise a particular molecular web’s
physical and biological features.

Vukicevi’c and Furtula’ developed the 1st GA [1] index in
2009 and formulated as

GA(Υ) � ∏
ro∈E(Υ)

2
������
dr × do
√

dr + do
. (1)

An OGA invariant [2] was determined in 2011 and
symbolised as given in the following ∀ real w:
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OGAw(Υ) � 􏽙
ef∈E(Υ)

�����
4dedf

􏽱

de + df

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

w

. (2)

In 2017, V.R. Kulli developed 1st and 2nd Gourava and
hyper-Gourava indices [3, 4] are computed by

GO1(Υ) � 􏽙
ef∈E(Υ)

de + df􏼐 􏼑 + dedf􏼐 􏼑􏽨 􏽩,

GO2(Υ) � 􏽙
ef∈E(Υ)

de + df􏼐 􏼑 dedf􏼐 􏼑􏽨 􏽩,

HGO1(Υ) � 􏽙
ef∈E(Υ)

de + df􏼐 􏼑 + dedf􏼐 􏼑􏽨 􏽩
2
,

HGO2(Υ) � 􏽙
ef∈E(Υ)

de + df􏼐 􏼑 dedf􏼐 􏼑􏽨 􏽩
2
.

(3)

Randic’ index was developed [5] by Milan Randic’ in
1975 and calculated by

R1/2(Υ) � 􏽙
ef∈E(Υ)

1
������
dedf􏼐 􏼑

􏽱 . (4)

)en, Erdos and Bollobas’ invented its general version,
familiarised with the general Randic’ index for λo, where
λo ∈ R [6], and evaluated by

Rλo (Υ) � 􏽙
ef∈E(Υ)

dedf􏼐 􏼑
λo

, for λo
� − 1, 1, −

1
2
,
1
2

􏼚 􏼛. (5)

Zhong [7], in 2012, gave the idea of the harmonic index
and familiarised by

HI(Υ) � 􏽙
ef∈E(Υ)

2
de + df

. (6)

Yan determined its generalised form [8] in 2015 and
symbolised as

HwI(Υ) � 􏽙
ef∈E(Υ)

2
de + df

􏼢 􏼣. (7)

ABC invariant was introduced in 1998 by Estrada et al.
[9]; that is,

ABC(Υ) � 􏽙
ef∈E(Υ)

���������
de + df − 2

dedf

􏽳

. (8)

SK, SK1, and SK2 invariants [10] were introduced by
Shegehalli & Kanabur that are

SK(Υ) � 􏽙
ef∈E(Υ)

de + df

2
,

SK1(Υ) � 􏽙
ef∈E(Υ)

dedf

2
,

SK2(Υ) � 􏽙
ef∈E(Υ)

de + df

2
􏼢 􏼣

2

.

(9)

In 2009, Lucic’ described (SI) [11] and computed it as

G− (1/2)(Υ) � 􏽙
ef∈E(Υ)

de + df􏽨 􏽩
− (1/2)

. (10)

)en, in 2010, Zhou and Trinajstic generalised it [8, 12]
as

Gk(Υ) � 􏽙
ef∈E(Υ)

de + df􏽨 􏽩
k
. (11)

Zheng, in 2005, developed the general version of the 1st
Zagreb index [13]

s
M1(Υ) � 􏽙

ef∈E(Υ)
d

s− 1
e + d

s− 1
f􏽨 􏽩, s ∈ R, s≠ 0 and s≠ 1. (12)

Furtula’ and Gutman [14] formulated an invariant
known as F-index

F(Υ) � 􏽙
ef∈E(Υ)

d
2
e + d

2
f􏽨 􏽩 (13)

2. Material and Methods

Aztec diamond is created based on the square lattices. )ese
square lattices are kept centred at (s, r), satisfying
|s − (1/2)| + |r − (1/2)|≤ n. In addition, we place a new node
having 2 as the degree at every edge of the small squares. In
this way, we get a new structure known as a subdivided Aztec
diamond Saztecn. Next, we evaluate the multiplicative to-
pological attributes in order to obtain new formulas. Let us
suppose Y is the graph of the Saztecn. )e cardinality of
Saztecn with respect to vertices is |V(Υ)| � 6n2 + 14n + 1,

and with respect to edges, is |E(Υ)| � 8n2 + 16n. )ere are
three different kinds of edges (2, 2), (2, 3), and (2, 4).

3. Results and Discussion

We have implemented various multiplicative graph in-
variants [15] over the given molecular structures.
Figures 1–4 have been depicted for better understanding.
We describe two essential components, nodes and edges.
Following, some theorems have been constructed with the
help of these particular graphical invariants. Let e � |E(Υ)|
be the cardinality of Y with respect to edge set. )e Saztecn is
established at the terminal nodes of every edge.

Let’s choose Y as a graph of the subdivided Aztec dia-
mond network Saztecn, defining the terms de and df as the
degrees of nodes e and f. We have developed the following
theorems.

Theorem 1. For Saztecn, its OGA can be developed as

ln OGAw(Υ)􏼂 􏼃 � (12w)ln
��
24​

√

5
􏼢 􏼣 + w 8n

2
+ 8n − 12􏼐 􏼑ln

��
32​

√

6
􏼢 􏼣.

(14)

Proof. With the help of Table 1, we infer
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OGAw(Υ) � ∏
ef∈E(Υ)

�������
4de × df​
√

de + df
 

w

,

OGAw(Υ) �
��
16​

√

2 + 2
[ ]

8nw

×
��
24​

√

5
[ ]

12w

×
��
32​

√

6
[ ]

w 8n2+8n− 12( )
,

OGAw(Υ) �
��
24​

√

5
[ ]

12w

×
��
32​

√

6
[ ]

w 8n2+8n− 12( )
.

(15)

By making some computations, we get

ln OGAw(Υ)[ ] �(12w)ln
��
24​

√

5
[ ] + w 8n2 + 8n − 12( )ln

��
32​

√

6
[ ].

(16)

□

Theorem 2. For Saztecn, 1st and 2nd Gourava descriptors can
be developed as

ln GO1(Υ)[ ] � ln[0.05535] +(8n)ln[112] + 8n2( )ln[14],

ln GO2(Υ)[ ] � ln 3.552 × 10− 3[ ] +(8n)ln[768] + 8n2( )ln[48].

(17)

Proof. With the help of Table 1, we infer

GO1(Υ) � ∏
ef∈E(Υ)

de + df( ) + dedf( )[ ],

GO2(Υ) � ∏
ef∈E(Υ)

de + df( ) dedf( )[ ].
(18)

After some calculations, we have

Figure 1: Saztec (1).

Figure 2: Saztec (2).

Figure 3: Saztec (3).

Figure 4: Saztec (4).

Table 1: Describes the partition of edges for graph Y.

(de, df) for ef ∈ E(Υ) Number of E(Υ)
(2, 2) 8n
(2, 3) 12
(2, 4) 8n2 + 8n − 12
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GO1(Υ) � 88n
× 1112 × 14 8n2+8n− 12( )

� 0.05535 1128n
× 148n2

􏼒 􏼓,

ln GO1(Υ)􏼂 􏼃 � ln[0.05535] +(8n)ln[112] + 8n
2

􏼐 􏼑ln[14],

GO2(Υ) � 168n
× 3012 × 48 8n2+8n− 12( )

� 3.552 × 10− 3 7688n
× 488n2

􏼒 􏼓,

ln GO2(Υ)􏼂 􏼃 � ln 3.552 × 10− 3
􏽨 􏽩 +(8n)ln[768]

+ 8n
2

􏼐 􏼑ln[48].

(19)

□
Theorem 3. For Saztecn, 1st and 2nd hyper-Gourava de-
scriptors can be developed as

ln HGO1(Υ)􏼂 􏼃 � ln 3.0644 × 10− 3
􏽨 􏽩 +(8n)ln[12544]

+ 8n
2

􏼐 􏼑ln[196],

ln HGO2(Υ)􏼂 􏼃 � ln 1.2621 × 10− 5
􏽨 􏽩 +(8n)ln[589824]

+ 8n
2

􏼐 􏼑ln[2304].

(20)

Proof. With the help of Table 1, we infer

HGO1(Υ) � 􏽙
ef∈E(Υ)

de + df􏼐 􏼑 + dedf􏼐 􏼑􏽨 􏽩
2
,

HGO2(Υ) � 􏽙
ef∈E(Υ)

de + df􏼐 􏼑 dedf􏼐 􏼑􏽨 􏽩
2
.

(21)

By making some computations, we get

HGO1(Υ) � 648n
× 12112 × 196 8n2+8n− 12( )

� 3.0644 × 10− 3 125448n
× 1968n2

􏼒 􏼓,

ln HGO1(Υ)􏼂 􏼃 � ln 3.0644 × 10− 3
􏽨 􏽩 +(8n)ln[12544]

+ 8n
2

􏼐 􏼑ln[196],

HGO2(Υ) � 2568n
× 90012 × 2304 8n2+8n− 12( )

� 1.2621 × 10− 5 5898248n
× 23048n2

􏼒 􏼓,

ln HGO2(Υ)􏼂 􏼃 � ln 1.2621 × 10− 5
􏽨 􏽩 +(8n)ln[589824]

+ 8n
2

􏼐 􏼑ln[2304].

(22)

□

Theorem 4. For Saztecn, GRI can be formulated as

Rλ0′ Saztecn( 􏼁 �

ln[31.5692] − (8n)ln[32] − 8n
2

􏼐 􏼑ln[8], for λ0′ � − 1,

ln[0.03703] − (4n)ln[48] − 4n
2

􏼐 􏼑ln[12], for λ0′ � −
1
2
,

ln[91.125] +(4n)ln[128] + 4n
2

􏼐 􏼑ln[8], for λ0′ �
1
2
,

ln[0.0316] +(8n)ln[32] + 8n
2

􏼐 􏼑ln[8], for λ0′ � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

Proof. We know that

Rλ′(Υ) � 􏽙
ef∈E(Υ)

de × df􏽨 􏽩
λ′

, for λ′ � ± 1, ±
1
2

􏼚 􏼛. (24)

□

Case 1. For λ′ � − 1, its RI can be formulated as

R− 1(Υ) � 􏽙
ef∈E(Υ)

1
de × df

. (25)

Using (24) and from Table 1, we get

R− 1(Υ) � 4− 8n
× 6− 12

× 8− 8n2+8n− 12( ). (26)

After some computations, we get

ln R− 1(Υ)􏼂 􏼃 � ln[31.5692] − (8n)ln[32] − 8n
2

􏼐 􏼑ln[8]. (27)

Case 2. For λ′ � − (1/2), its Randic’ index Rλ′(Υ) can be
computed as

R− 1/2(Υ) � 􏽙
ef∈E(Υ)

1
��������
de × df􏼐 􏼑

​
􏽱 . (28)

Using (24) and from Table 1, we know

R− 1/2(Υ) �
1
�
4​

√􏼢 􏼣

8n

×
1
�
6​

√􏼢 􏼣

12

×
1
��
12​

√􏼢 􏼣

8n2+8n− 12( )

. (29)

After some computations, we get

ln R− 1/2(Υ)􏼂 􏼃 � ln[0.03703] − (4n)ln[48] − 4n
2

􏼐 􏼑ln[12].

(30)
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Case 3. For λ′ � − (1/2), its Randic’ index Rλ′(Υ) can be
computed as

R1/2(Υ) � 􏽙
ef∈E(Υ)

��������

de × df􏼐 􏼑

􏽱

. (31)

Using (24) and from Table 1, getting

R1/2(Υ) �
�
4​

√
( 􏼁

8n
×

�
6​

√
( 􏼁

12
×

�
8​

√
( 􏼁

8n2+8n− 12( )
. (32)

By doing some calculations, we get

ln R1/2(Υ)􏼂 􏼃 � ln[91.125] +(4n)ln[128] + 4n
2

􏼐 􏼑ln[8]. (33)

Case 4. For λ′ � 1, its Randic’ index Rλ′(Υ) can be com-
puted as

R1(Υ) � 􏽙
ef∈E(Υ)

de × df􏼐 􏼑
1
. (34)

Using (24) and from Table 1, we know

R1(Υ) � 48n
× 612 × 8 8n2+8n− 12( ). (35)

By doing some calculations, we get

ln R1(Υ)􏼂 􏼃 � ln[0.0316] +(8n)ln[32] + 8n
2

􏼐 􏼑ln[8]. (36)

Theorem 5. For Saztecn, HI can be developed as

ln[HI(Υ)] � ln[8.9161] − (8n)ln[6] − 8n
2

􏼐 􏼑ln[3]. (37)

Proof. With the help of Table 1, we infer

HI(Υ) � 􏽙
ef∈E(Υ)

2
de + df

. (38)

After simplifications, we obtain

HI(Υ) �
1
2

􏼔 􏼕
8n

×
2
5

􏼔 􏼕
12

×
1
3

􏼔 􏼕
8n2+8n− 12( )

� 8.9161 6− 8n
× 3− 8n2

􏼒 􏼓,

ln[HI(Υ)] � ln[8.9161] − (8n)ln[6] − 8n
2

􏼐 􏼑ln[3].

(39)

□

Theorem 6. For Saztecn, GHI can be developed as

ln HwI(Υ)􏼂 􏼃 � (12w)ln[1.2] − (8nw)ln[6] − 8wn
2

􏼐 􏼑ln[3].

(40)

Proof. With the help of Table 1, we infer

HwI(Υ) � 􏽙
ef∈E(Υ)

2
de + df

􏼢 􏼣

w

. (41)

By making some computations, we get

HwI(Υ) �
1
2

􏼔 􏼕
8nw

×
2
5

􏼔 􏼕
12w

×
1
3

􏼔 􏼕
8n2+8n− 12( )w

� (1.2)
12w 6− 8nw

× 3− 8n2w
􏼒 􏼓,

ln HwI(Υ)􏼂 􏼃 � (12w)ln[1.2] − (8nw)ln[6] − 8wn
2

􏼐 􏼑ln[3].

(42)

□

Theorem 7. For Saztecn, the ABC index can be developed as

ln[ABC(Υ)] � (− 4n)ln[4] − 4n
2

􏼐 􏼑ln[2]. (43)

Proof. With the help of Table 1, we infer

ABC(Υ) � 􏽙
ef∈E(Υ)

���������
de + df − 2

de × df

​

􏽳

. (44)

By making some computations, we get

ABC(Υ) �
1
�
2​

√􏼢 􏼣

8n

×
1
�
2​

√􏼢 􏼣

12

×
1
�
2​

√􏼢 􏼣

8n2+8n− 12( )

� 4− 4n
× 2− 4n2

,

ln[ABC(Υ)] � (− 4n)ln[4] − 4n
2

􏼐 􏼑ln[2].

(45)

□

Theorem 8. For Saztecn, SK, SK1, and SK2 descriptors can be
developed as

ln[SK(Υ)] � ln[0.8333] +(8n)ln[6] + 8n
2

􏼐 􏼑ln[3],

ln SK1(Υ)􏼂 􏼃 � ln[0.75] +(8n)ln[8] + 8n
2

􏼐 􏼑ln[4],

ln SK2(Υ)􏼂 􏼃 � ln[0.6944] +(8n)ln[36] + 8n
2

􏼐 􏼑ln[9].

(46)

Proof. With the help of Table 1, we infer

SK(Υ) � 􏽙
ef∈E(Υ)

de + df

2
,

SK1(ξ) � 􏽙
ef∈E(ξ)

dedf

2
,

SK2(Υ) � 􏽙
ef∈E(Υ)

de + df

2
􏼢 􏼣

2

.

(47)

By making some calculations, we get
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SK(Υ) � 28n
×(2.5)

12
× 3 8n2+8n− 12( )

� 0.8333 68n
× 38n2

􏼒 􏼓,

ln[SK(Υ)] � ln[0.8333] +(8n)ln[6] + 8n
2

􏼐 􏼑ln[3],

SK1(Υ) � 28n
×(3)

12
× 4 8n2+8n− 12( )

� 0.75 88n
× 48n2

􏼒 􏼓,

ln SK1(Υ)􏼂 􏼃 � ln[0.75] +(8n)ln[8]

+ 8n
2

􏼐 􏼑ln[4],

SK2(Υ) � 48n
×(6.25)

12
× 9 8n2+8n− 12( )

� 0.6944 368n
× 98n2

􏼒 􏼓,

ln SK2(Υ)􏼂 􏼃 � ln[0.6944] +(8n)ln[36] + 8n
2

􏼐 􏼑ln[9].

(48)

□

Theorem 9. For Saztecn, SI can be developed as

ln SI− 1/2(Υ)􏼂 􏼃 � ln[2.9859] − (4n)ln[24] − 4n
2

􏼐 􏼑ln[6]. (49)

Proof. With the help of Table 1, we infer

SI− 1/2(Υ) � 􏽙
ef∈E(Υ)

de + df􏽨 􏽩
− 1/2

,

SI− 1/2(Υ) �
1
�
4​

√􏼢 􏼣

8n

×
1
�
5​

√􏼢 􏼣

12

×
1
�
6​

√􏼢 􏼣

8n2+8n− 12( )

.

(50)

By making some computations, we get

SI− 1/2(Υ) � 2.9859 24− 4n
× 6− 4n2

􏼒 􏼓,

ln SI− 1/2(Υ)􏼂 􏼃 � ln[2.9859] − (4n)ln[24] − 4n
2

􏼐 􏼑ln[6].

(51)

□

Theorem 10. For Saztecn, GSI can be developed as

ln GSIw(Υ)􏼂 􏼃 � (12w)ln[0.8333] +(8nw)ln[24] + 8wn
2

􏼐 􏼑ln[6].

(52)

Proof. With the help of Table 1, we infer

GSIw(Υ) � 􏽙
ef∈E(Υ)

de + df􏽨 􏽩
w

,

GSIw(Υ) � 48nw
× 512w

× 6 8n2+8n− 12( )w
.

(53)

By making some computations, we get

GSIw(Υ) � (0.8333)
12w 248nw

× 68n2w
􏼒 􏼓,

ln GSIw(Υ)􏼂 􏼃 � (12w)ln[0.8333] +(8nw)ln[24]

+ 8wn
2

􏼐 􏼑ln[6].

(54)

□

Theorem 11. For Saztecn, 1st GZI can be developed as

ln w
M1(Υ)􏼂 􏼃 � (8nw)ln[2] + 12 ln 2w− 1

+ 3w− 1
􏽨 􏽩

+ 8n
2

+ 8n − 12􏼐 􏼑ln 2w− 1
+ 4w− 1

􏽨 􏽩.
(55)

Proof. With the help of Table 1, we infer

w
M1(Υ) � 􏽙

ef∈E(Υ)
d

w− 1
e + d

w− 1
f􏽨 􏽩, w> 1,

w
M1(Υ) � 28nw

× 2w− 1
+ 3w− 1

􏼐 􏼑
12

× 2w− 1
+ 4w− 1

􏼐 􏼑
8n2+8n− 12( )

,

ln w
M1(Υ)􏼂 􏼃 � (8nw)ln[2] + 12 ln 2w− 1

+ 3w− 1
􏽨 􏽩 + 8n

2
+ 8n − 12􏼐 􏼑ln 2w− 1

+ 4w− 1
􏽨 􏽩.

(56)

□
Theorem 12. For Saztecn, F-index can be developed as

ln[F(Υ)] � ln 5.688 × 10− 3
􏽨 􏽩 +(8n)ln[160] + 8n

2
􏼐 􏼑ln[20].

(57)

Proof. With the help of Table 1, we infer

F(Υ) � 􏽙
ef∈E(Υ)

d
2
e + d

2
f􏽨 􏽩,

F(Υ) � 88n
× 1312 × 20 8n2+8n− 12( ).

(58)

By making some computations, we get

F(Υ) � 5.688 × 10− 3 1608n
× 208n2

􏼒 􏼓,

ln[F(Υ)] � ln 5.688 × 10− 3
􏽨 􏽩 +(8n)ln[160] + 8n

2
􏼐 􏼑ln[20].

(59)

□

4. Main Findings

(i) Consideration of the molecular structure of the
Aztec diamond network

(ii) Getting the subdivided version of the Aztec dia-
mond network for n� 1, 2, 3, 4 by inserting a new
node at each edge and placing the name of the new
derived molecular structure as Saztec4
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(iii) Association of the mathematical graph with the
chemical structure

(iv) Vertex labelling for each vertex with their degrees
(v) Edge partition of edge set according to their degrees
(vi) Computations of the degree of each vertex by

constructing the generalised formula
(vii) Construction of new closed formulas using many

various topological attributes such as general
Randic’ index Rλ′(Υ) for λ′ � ±1, ±1/2{ }, GHI,
OGAI, SHI, GSHI, 1st and 2nd Gourava and hyper-
Gourava descriptors, ABC invariant, SKs’ indices,
and F-index

5. Conclusions

)is work involves inventing many new formulas based on
multiplicative graph invariants. We have used many indices
such as GRI, OGA, GHI, SI, GSI, 1st and 2nd Gourava and
hyper-Gourava indices, ABC index, SKs’ indices, 1st GZI and
forgotten index (FI) for Saztecn )e above-evaluated for-
mulas can be interspersed with the molecular compounds
and their graphical structures to understand their physical
and biological properties better. More applications can be
investigated for these above-mentioned topological indices.
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FutureWork. )e latest topological indices can be found and
applied to more molecular and general mathematical
networks.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)e researchers would like to thank the Deanship of Sci-
entific Research, Qassim University for funding the publi-
cation of this project.

References

[1] D. Vukicevi’c and B. Furtula, “Topological index based on the
ratios of geometrical and arithmetic-al means of end-vertex
degrees of edges,” Journal of Mathematical Chemistry, vol. 46,
no. 4, pp. 1369–1376, 2009.

[2] M. Eliasi and A. Iranmanesh, “On ordinary generalized
geometric–arithmetic index,” Applied Mathematics Letters,
vol. 24, no. 4, pp. 582–587, 2011.

[3] V. R. Kulli, “)e Gourava indices and coindices of Graphs,”
Annals of Pure and Applied Mathematics, vol. 14, no. 1,
pp. 33–38, 2014.

[4] V. R. Kulli, “On hyper-Gourava indices and coindices,” In-
ternational Journal of Mathematical Archive, vol. 8, no. 12,
pp. 116–120, 2017.

[5] M. Randi’c, “Characterization of molecular branching,”
Journal of the American Chemical Society, vol. 97, no. 23,
pp. 6609–6615, 1975.

[6] B. Bollob’as and P. Erdos, “Graphs of extremal weights,” Ars
Combinatoria, vol. 50, pp. 225–233, 1998.

[7] L. Zhong, “)e harmonic index for graphs,” Applied Math-
ematics Letters, vol. 25, no. 3, pp. 561–566, 2012.

[8] L. Yan, W. Gao, and J. Li, “General harmonic index and
general sum connectivity index ofPolyomino chains and
nanotubes,” Journal of Computational and �eoretical
Nanoscience, vol. 12, no. 10, pp. 3940–3944, 2015.

[9] E. Estrada, L. Torres, L. Rodriguez, and I. Gutman, “An atom-
bond connectivity index: modelling the enthalpy of formation
of alkanes,” Indian Journal of Chemistry, vol. 37A, pp. 849–
855, 1998.

[10] V. S. Shegehalli and R. Kanabur, “Computation of new de-
gree-based topological indices of Graphene,” Journal of
Mathematics, vol. 5, 2016.
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