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Multivariate polynomials of �nite degree can be expanded into Bernstein form over a given simplex domain. �e minimum and
maximum Bernstein control points optimize the polynomial curve over the same domain. In this paper, we address methods for
computing these control points in the simplicial case of maximum degree L. To this end, we provide arithmetic operations and
properties for obtaining a fast computational method of Bernstein coe�cients. Furthermore, we give an algorithm for direct
determination of the minimum and maximum Bernstein coe�cients (enclosure boundary) in the simplicial multivariate case.
Subsequently, the implicit form, monotonicity, and dominance cases are investigated.

1. Introduction

�e enclosure of Bernstein function F estimates the range
of polynomials over a given simplex. In order to determine
the enclosure boundary, all Bernstein coe�cients of degree
L are needed in the traditional approach and their number
is large for Bernstein functions with moderately many
variables. �e problem of minimizing and bounding
polynomials for global optimization problems was con-
sidered in [1]. �e use of Bernstein expansion for a given
power form polynomial over a simplex (triangles) was
considered in [2–6]. Applications of a similar approach on
shape designs and geometric representations in computer-
aided geometric design were generalized in [7]. Further-
more, a computational method for reaction di�usionmodel
was addressed in [8]. In [9], the authors published results in
degree elevation and subdivision of the underlying simplex
of Bernstein basis for solving global optimization and
system problems. In [10, 11], the tensorial Bernstein case
over boxes was addressed for computing the enclosure

range of a given (multivariate) rational polynomial func-
tion, which is slow. Generally speaking, minimizing and
maximizing of Bernstein coe�cients provide bounds for
the range of its polynomial function F over any given
simplex, whereas the complexity of computing these co-
e�cients is high. In this paper, we simplify the computa-
tional of Bernstein coe�cients in high degree over a
multidimensional simplex. Moreover, we provide a fast
method for direct determination of the Bernstein enclosure
boundary depending on the indices.�is method covers the
monotonicity of indices, tolerance case, and implicit
Bernstein coe�cients. Since our results are mathematically
proven, we only give simple examples to be followed by
readers.

�is paper is organized as follows. In the next section, we
brie�y recall the simplical polynomial Bernstein form. In
Section 3, we present the Bernstein expansion and properties
over a simplex. �e main results about the optimization and
fast computation of Bernstein control points are given in
Section 4. Conclusions are given in Section 5.
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2. Background of Bernstein Expansion

We present the background and fundamental notations of
Bernstein basis over a nondegenerate simplex. From the
literature, we give the following definition of simplices.

Definition 1. Let σ0, . . . , σn be n + 1 points of Rn. (e list
v � [σ0, . . . , σn] defines a simplex of vertices σ0, . . . , σn. (e
convex hull of the vertex points σ0, . . . , σn of v is the set ofRn

defined as |v|.(e largest edge of |v| defines the diameter of v.

(roughout this work, the points σ0, . . . , σn are affinely
independent in which case the simplex v is nondegenerate.
For simplicity, we consider the standard simplex
Δ � [e0, e1, . . . , en], where e0 is the zero vector inRn and ei is
the ith vector of the canonical basis of Rn, i ∈ 1, . . . , n{ }. (is
is because any simplex v inRn can be linearly transformed to
Δ. We also recall that x ∈ Rn can be formulated as an affine
combination of σ0, . . . , σn with the barycentric coordinates
χ0, . . . , χn. If x � (x1, . . . , xn) ∈ Δ, then (χ1, . . . , χn) �

(x1, . . . , xn) and χ0 � 1 − 
n
i�1 xi. For every multi-index α �

(α0, . . . , αn) ∈ Nn+1 and χ � (χ0, . . . , χn) ∈ Rn+1, we write
|α| � α0 + · · · + αn and χα ≔ 

n
i�0 χ

αi

i . Let the entry-wise
relation ≤ be given, then for α, β ∈ Nn+1 with β≤ α, we
define

α

β
  ≔ 

n

i�0

αi

βi

 . (1)

If L ∈ N is the degree of any polynomial function such
that |α| � L, then we use the notation

L

α  � L!/(α0! · · · αn!).

Definition 2. (e Bernstein basis of maximum degree L over
v is defined as (SL

α)|α|�L, where

S
L
α �

L

α
 χα. (2)

Note that Bernstein basis takes nonnegative values on v

and |α|�LSL
α � 1. Let F be a power form polynomial of

degree l,

F(x) � 
|β|≤ l

cβx
β
. (3)

Since the Bernstein expansion forms a basis of the vector
space Rn[X] of polynomials of maximum degree L, see
Proposition 1.6 in [7], then F(x) can be expanded as (l≤L)

F(x) � 
|α|�L

Cα(F, L, v)S
L
α(x), (4)

where Cα(F, L, v) denote the simplicial coefficients of
Bernstein polynomial F of degree L over v.

Remark 1. Let Δ � v, the grid points of degree L associated
to Δ are the points

σα(L,Δ) �
α0e0 + · · · + αnen

L
∈ Rn

(|α| � L), (5)

where the associated control points to F are

σα(L,Δ), Cα(F, L,Δ)(  ∈ Rn+1
(|α| � L). (6)

Proposition 1 (see Proposition 2.7 [9]). For F ∈ Rn[X], the
following properties hold:

(1) Interpolation at the vertices is as follows:

CLei
� F σi( , i � 0, . . . , n; (7)

(2) Convex hull of control points: the graph of F over v is
convexly optimized by the convex hull of its associated
control points, see Figure 1.

(3) Enclosure bound property: the following bound for F

holds:

min
|α|�L

Cα(F, L, v)≤F(x)≤ max
|α|�L

Cα(F, L, v), x ∈ v. (8)

Theorem 1 (see Theorem 3.3 in [12]). Let F(x) be a
polynomial in Bernstein basis of degree L. �en, its power
form is

F(x) � 
|α|�L

cαx
α
, (9)

where

cα � 

α

β�0
(− 1)

α− β L

α
 

α
β

 C
(L)
β , |α| � L. (10)

3. Simplification of Bernstein

First, we provide the method of affine transformation of v

upon the standard simplex Δ, where the barycentric coor-
dinates χ can be transformed to Cartesian coordinates.
Subsequently, we simply express power form polynomials
into Bernstein form over simplices. Let v � (σ0, . . . , σn) and
σj � (x

j
1, . . . , x

j
n) for all j ∈ 0, . . . , n{ }. (erefore,

x � (x1, . . . , xn) � χ1(σ1 − σ0) + · · · + χn(σn − σ0) + σ0 and
x1 � (χ1(x1

1 − x0
1) + · · · + χn(xn

1 − x0
1) + x0

1), . . . , xn �

(χ1(x1
n − x0

n) + · · · + χn(xn
n − x0

n) + x0
n). (en, we have

x1

⋮

xn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

x
1
1 − x

0
1 . . . x

n
1 − x

0
1

⋮ ⋮

x
1
n − x

0
n . . . x

n
n − x

0
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

χ1
⋮

χn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

x
0
1

⋮

x
0
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (11)

from which we have

χ1
⋮

χn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

x1
1 − x0

1 . . . xn
1 − x0

1

⋮ ⋮

x1
n − x0

n . . . xn
n − x0

n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 1

.

x1

⋮

xn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ −

x
0
1

⋮

x
0
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(12)
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In the following, we simplify the method of expanding
power form polynomials in Bernstein form over a simplex.

Notation 1. Consider α � (α̂, α0) ∈ Nn+1 with χ ∈ Rn+1, and
from (3), we get 0≤ β1 ≤ l≕l1, 0≤ β2 ≤ l − β1≕ l2, . . . , 0≤
β̂n ≤ (l − (β1 + · · · + βn− 1))≕ln. Any polynomial power form
F(x) in (3) of degree l̂ � (l1, . . . , ln) can be expressed on Δ as

F(x) � ∑
β̂≤ l̂

c
β̂
xβ̂. (13)

From Notation 1, we can write ∑
|̂β|≤l

� ∑β1 ≤ l1 · · ·∑βn ≤ ln.
Additionally (|α̂| + α0 � L),

L

α̂, α0
( ) �

L

α1
( ).

L − α1
α2

( ) . . .
L − α1 + · · · + αn− 1( )

αn
( ).

L − α1 + · · · + αn( )
α0

( )

≕
L1

α1
( ) . . .

Ln

αn
( ).

L0

α0
( )≕

L̂

α̂, α0
 .

(14)

Proposition 2. For (α̂, α0) ∈ Nn+1 and L̂ ∈ Nn+1, the sim-
plicial Bernstein expansion of maximum degree L can be given
as

F(x) � ∑
α̂,α0( )≤ L̂

C(L̂)
α̂,α0( )(F)S

(L̂)
α̂,α0( )(x), (15)

where

S(L̂)
α̂,α0( )(x) �

L̂

α̂, α0

 xα̂(1 − |x|)α0 , (16)

C(L̂)
α̂,α0( )(F) � ∑

β̂≤ α̂

α̂
β̂

( )

L̂

β̂, β0
( )

c
β̂
, 0≤ α̂, α0( )≤ L̂. (17)

Proof. Let F be a polynomial power form of maximum
degree l. For β0 � L − |β̂|, we have (L≥ l)

F(x) � ∑
|̂β|≤ l

c
β̂
xβ̂

� ∑
β1 ≤ l1

· · · ∑
βn ≤ ln

c
β̂
xβ11 · · ·x

βn
n (|x| + 1 − |x|)L− |̂β|

� ∑
β1 ≤ l1

· · · ∑
βn ≤ ln

c
β̂
xβ11 · · ·x

βn
n ∑
|̂c|≤ L− |̂β|

L − |β̂|

ĉ

 

xĉ(1 − |x|)L− |̂β|− |̂c|

� ∑
β̂≤ l̂

∑
|̂c|≤ L− |̂β|

a
β̂

L − |β̂|

ĉ

 xĉ+β̂(1 − |x|)L− |̂β|− |̂c|

� ∑
β̂≤ l̂

∑
|̂α|≤ L

c
β̂

L − |β̂|

α̂ − β̂

 xα̂(1 − |x|)L− |̂α|

Convex hull

Graph of p

Grid points

0 1

Control points

Figure 1: �e curve of a univariate polynomial p, the colored convex hull of control points optimizes the polynomial curve, and the
minimum Bernstein value approximates the minimum range.
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� 

β≤l


|α|�L

cβ

α

β
⎛⎝ ⎞⎠

L

α, α0

⎛⎝ ⎞⎠

L

β
⎛⎝ ⎞⎠

x
α
(1 − |x|)

α0

� 

α,α0( )≤L



β≤α

cβ

α

β
⎛⎝ ⎞⎠

L

β, β0

⎛⎜⎝ ⎞⎟⎠

L

α, α0

⎛⎜⎝ ⎞⎟⎠x
α
(1 − |x|)

α0 .

(18)
□

4. Main Results

(e number of Bernstein coefficients of n-variable poly-
nomial F(x) of maximum degree L is equal to

D ≔ L + n

L
 . We aim to store and represent the minimum

and maximum Bernstein coefficients in a fast determination
method.

In the following proposition, we show the linear com-
bination property of Bernstein coefficients.

Proposition 3. Consider F be in the Bernstein basis over a
given simplex. �e coefficients of Bernstein of maximum
degree L obtain a linear combination of coefficients of lower
degree l.

Proof. Let the Bernstein form F of maximum degree l be
given on Δ,

F(x) � 

|α|+α0�l

C α,α0( )(F, l,Δ)S(l)

α,α0( )
.

(19)

We deduce from the Bernstein basis that

S
(l)

α,α0( )
�

l

α, α0
⎛⎝ ⎞⎠x

α
(1 − |x|)

l− |α|

�

l

α, α0
⎛⎝ ⎞⎠x

α
(1 − |x|)

α0(|x| + 1 − |x|)
L− l

, l≤ L

�

l

α, α0
⎛⎝ ⎞⎠x

α
(1 − |x|)

α0 

|c|+c0�L− l

L − l

c, c0

⎛⎝ ⎞⎠

x
c
(1 − |x|)

c0

� 

|c|+c0�L− l

l

α, α0
⎛⎝ ⎞⎠

L − l

c, c0

⎛⎝ ⎞⎠x
α+c

(1 − |x|)
α0+c0

α + c≕κ, α0 + c0≕κ0( 

� 

|κ|+τ0�L

l

α, α0

⎛⎝ ⎞⎠
L − l

κ − α, κ0 − α0

⎛⎝ ⎞⎠x
κ
(1 − |x|)

κ0

� 

|κ|+κ0�L

l

α, α0

⎛⎝ ⎞⎠
L − l

κ − α, κ0 − α0

⎛⎝ ⎞⎠
L

κ, κ0

⎛⎝ ⎞⎠

L

κ, κ0

⎛⎝ ⎞⎠

x
κ
(1 − |x|)

κ0

� 

|κ|+κ0�L

l

α, α0

⎛⎝ ⎞⎠
L − l

κ − α, κ0 − α0

⎛⎝ ⎞⎠

L

κ, κ0

⎛⎝ ⎞⎠

S
L

κ,κ0( )
,

(20)

from which we have

C κ,κ0( )(F, L,Δ) � 

|α|+α0�l

l

α, α0
⎛⎝ ⎞⎠

L − l

κ − α, κ0 − α0
⎛⎝ ⎞⎠

L

κ, κ0
⎛⎝ ⎞⎠

C α,α0( )(F, l,Δ).

(21)

□

Remark 2. Consider F(x) be a given polynomial of degree L

over a simplex. (e Bernstein coefficients of (zF/zxμ)(x)

can be calculated by taking linear combinations of Bernstein
coefficients of F of degree L − 1, i.e., for all |α| � L − 1,

Cα Fi
′, L − 1,Δ(  � L Cα+ei

− Cα . (22)

Example 1. Let F(x1, x2) ≔ 2x1x
2
2 − 0.6x2

1 + x1 + 0.5 be
given over the standard simplex Δ. (e computed Bernstein
coefficients of (zF/zx1)(x) are as follows:

Cα(F, l,Δ) �

1 1 3

0.4 0.4

− 0.2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (23)

For determining the enclosure boundary in only one
dimensional polynomial of degree 2, we need to compute 6
coefficients.

Remark 3. (e minimum value of the enclosure bound
optimizes the minimum range of its original polynomial (see
Figure 2). For positivity analysis of polynomial systems, if
the minimum enclosure is positive, then we certify the global
positivity of its polynomial over the given domain.
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4.1. �e Implicit Bernstein Form. In this subsection, we
provide a method of computing the implicit Bernstein co-
e�cients over Δ. Let

F(x) � F(x)(1) + · · · + F(x)(t), (24)

be a given polynomial power form comprising the mono-
mials F(x)(r), r � 1, . . . , t. Let β̂

(r)
∈ Nn, r ∈ 1, . . . , t{ }, then

F can be written as

F(x) � c
β̂
(1)xβ̂

(1)

+ · · · + c
β̂
(t)cβ̂

(t)

, with β̂
(r)∣∣∣∣∣∣
∣∣∣∣∣∣ � l, (25)

for some r ∈ 1, . . . , t{ }.
For avoiding the constant terms, we assume that

|β̂
(r)
|> 0 for all r � 1, . . . , t.
If F consists t terms of monomials, then each Bernstein

coe�cient of degree L can be added to the corresponding
Bernstein coe�cient of the next term:

C α̂,α0( )(F,L,Δ) �∑
t

r�1
C(r)

α̂
(r)
,α(r)0( )(F,L,Δ), α̂(r)

∣∣∣∣∣
∣∣∣∣∣+α(r)0 � L,

(26)

where C(r)
(α̂

(r)
,α(r)0 )

(F, L,Δ) are the coe�cients of the r th term

of Bernstein F.

Remark 4. Consider F(x) and P(x) be in Bernstein form of
the same degree L. �en, we have

F(x) + P(x) � ∑
|α|�L

Cα(F, L,Δ) + Cα(P, L,Δ)( )Sα(x). (27)

Example 2. Let F(x1, x2) � 2x1x2 − 0.1x31 + 5 of degree l �
3 be given over the standard simplex Δ � [e0, e1, e2]. Adding
Bernstein coe�cients to the corresponding coe�cients of
each term gives the total number of Bernstein coe�cients for
F(x):

Cα̂(F, l,Δ) �

0 0 0 0

0
1
3

2
3

0
2
3

0





+

0 0 0 0
0 0 0
0 0
− 0.1


 +

5 5 5 5
5 5 5
5 5
5




�

5 5 5 5

5
16
3

17
3

5
17
3

4.5





.

(28)

0

0.5

1 1 0.8 0.6
x2x1

Po
ly

no
m

ia
l

0.4 0.2 0

2

4

6

8

10

12

14

Figure 2: �e surface of a bi-variate polynomial over the standard simplex, the coe�cients of Bernstein marked by black points, and the
minimum enclosure bound (blue surface) bounds its polynomial surface over the whole domain.
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(e minimum and maximum values of Cα(F, l,Δ) ap-
proximate F, and the number of computed coefficients is
D � 10.

Remark 5. Let F(x) be of degree LF and p(x) be of degree
Lp with Lp ≤LF. (en, we have

F + p � 
|α|�LF

Cα F, LF,Δ( +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝



|β|�min Lp,|α| 

Lp

β
⎛⎝ ⎞⎠.

LF − Lp

α − β
⎛⎝ ⎞⎠

LF

α
⎛⎝ ⎞⎠

Cβ p, Lp,Δ 

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S
LF( )

α . (29)

4.2. Monotonicity of Monomial Coefficients. In this subsec-
tion, we show the monotonicity of Bernstein coefficients for
high dimensional monomials over a simplex. We assume t �

1 and F(x) is an n− variable monomial.

Lemma 1. Let F(x) � cβ
x

β, x ∈ Rn, be a monomial and
(e0, . . . , en) denote the canonical basis of Rn+1. �en, the
Bernstein coefficients C

(α,α0)
(F, L,Δ) are monotone with re-

spect to α, i.e.,

Cα(F, L,Δ)≤Cα+ei
(F, L,Δ), if cβ

> 0,

Cα(F, L,Δ)≥Cα+ei
(F, L,Δ), if cβ

< 0.
(30)

Proof. Let F(x) � cβ
x

β, 0< |β|≤ l, be a multivariate power
formmonomial of degree l on Δ. We can express F(x) in the
monomial Bernstein form of degree L≥ l. Assume without
loss the generality that cβ

> 0. (en, we conclude that

Cα(F, L,Δ) �

α

β
⎛⎝ ⎞⎠

L

β
⎛⎝ ⎞⎠

cβ
≤

α + ei

β
⎛⎝ ⎞⎠

L

β
⎛⎝ ⎞⎠

cβ
� Cα+ei

(F, L,Δ),

(31)

for. i ∈ 0, . . . , n{ }. □

4.3. Polynomials under Dominance. In this subsection, we
consider polynomials (of two terms)
F(x) � F(x)(+) + F(x)(− ) of orders β

(1)
, β

(2)
, respectively,

and c
β

(1) > 0, c
β

(2) < 0. Assume for simplicity that l � L. We

provide a direct determination of maxCα(F) andminCα(F)

that occur at some a+, a∗ ∈ Nn, respectively.

Proposition 4. If ∀|α|< l and |c| � l, c ∈ Nn,

Cα F
(− )

, l,Δ  + be0
F

(+)
, l,Δ 

>Cα+ei
F

(− )
, l,Δ  + Cc F

(+)
, l,Δ ,

(32)

then α+ � e0 and α∗ � α for some α obtains |α| � l with
α0 � 0.

If ∀|α|< l and |c| � l

Cc F
(− )

, l,Δ  + Cα+ei
F

(+)
, l,Δ 

>Ce0
F

(− )
, l,Δ  + Cα F

(+)
, l,Δ ,

(33)

then α∗ � e0 and α+ � α for some α obtains |α| � l with
α0 � 0.

Proof. We give the proof of (32) and the proof of (33) is
analogous. For all |α|< l and |c| � l, we have

Cα+ei
(F, l,Δ) � Cα+ei

F
(− )

, l,Δ  + Cα+ei
F

(+)
, l,Δ 

≤Cα+ei
F

(− )
, l,Δ  + Cc F

(+)
, l,Δ 

<Cα F
(− )

, l,Δ  + Ce0
F

(+)
, l,Δ 

≤Cα F
(− )

, l,Δ  + Cα F
(+)

, l,Δ  � Cα(F, l,Δ),

(34)

where Cα(F, l,Δ) are decreasing with respect to α and the
proof follows. □

4.4. Monotonicity of Polynomial Coefficients. (e determi-
nation of enclosure boundary for multivariate polynomials
in Bernstein form required D number of coefficients. (e
minimum Bernstein coefficient of multivariate polynomials
approximates the minimum range over the same domain
(see Figure 2). We dramatically reduce the search space of
coefficients by obtaining the monotonicity of Bernstein.

Remark 6. Consider F(x) and P(x) be polynomials in
Bernstein form of degree LF and LP, respectively. From [13],
we have
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F(x) · P(x) � 
|c|�LF+LP



|β|�min LF,|c|{ }

LF

β
⎛⎝ ⎞⎠

LP

c − β
⎛⎝ ⎞⎠

LF + LP

c

⎛⎝ ⎞⎠

·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Cβ F,LF( Cc− β P,LP( S
LF+LP( )

c (x)

� 
|c|�LF+LP

Cc(F · P)S
LF+LP( )

c (x).

(35)

Example 3. Let F(x1, x2) � 2x1x2 − 0.6x2
1 + x2

2 + 0.5 and
P(x1, x2) � 0.1x2

1 − 0.2x1x2 + x1 + 0.3 be given over Δ. (e
computed Bernstein coefficients of F · P of degree LF + LP �

4 are as follows:

Cc(F · P, 4,Δ) �

0.15 0.15 0.2 0.3 0.45

0.275 0.3167 0.4917 0.75

0.3783 0.6283 1.045

0.31 1.015

− 0.14

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(36)

(e number of computed coefficients of degree 4 is

D �
4 + 2
2  � 15.

In the following theorem, we generalize the method of
fast determination of Bernstein enclosure boundary to the
case of monotonicity.

Theorem 2. �e multi-indices α∗ and α+ of the minimum
and maximum coefficients of a Bernstein polynomial F(x)

over a simplex with power form coefficients c
β

(r) >

0 (c
β

(r) < 0 analogous) for all r � 1, . . . , t satisfy

α∗ � min
r�1,...,t

α∗
(r)

, (37)

α+
� max

r�1,...,t
α+(r)

. (38)

Proof. We give the proof of (37), and the proof of (38) is
entirely analogous. Assume that c

β
(r) > 0, r � 1, . . . , t. We

proceed by contradiction and assume there is some α∗,
0≤ |α∗|≤ l, from which

α∗ < α∗
(r)

, r ∈ 1, . . . , t{ }. (39)

It follows that

α∗ � e0. (40)

(erefore, we deduce that |α∗
(r)

|> 0, for all r ∈ 1, . . . , t{ }.
(en, the coefficients of Bernstein C

(r)

α
(r) (p, l,Δ) are

decreasing with respect to α(r) and |α∗
(r)

| � l for all
r ∈ 1, . . . , t{ }. Additionally, the coefficients Cα(F, l,Δ) �


t
r�1 C

(r)

α
(r) (F, l,Δ) are decreasing with respect to α and so

|α∗|> 0, which is a contradiction of (40). □

Example 4. Let F � 3x7 + x5 + 6x8 be a polynomial power
form given over I � [0, 1]. By application of(eorem 2 to F,
we directly find that α+ � 8 and α∗ � 0. Subsequently, the
respective maximum and minimum Bernstein values appear
at the corresponding values of α+ and α∗, which can be
computed using (17).

Corollary 1. Let F(x) be a (multivariate) power form
polynomial of t terms with coefficients c

β
(r) > 0, ∀r � 1, . . . , t.

�en, for all r ∈ 1, . . . , t{ }, the multi-indices of minimum and
maximum Bernstein coefficients are appeared as α∗

(r)

� e0

and α+(r)

� α(r), for some α(r) ≥ β
(r)

with |α(r)| � l. If the co-
efficients a

β
(r) < 0, ∀r � 1, . . . , t, then we have α+(r)

� e0, and

α∗
(r)

� α(r), for some α(r) ≥ β
(r)

with |α(r)| � l.

Corollary 2. By Lemma 1 and �eorem 2, the number of
coefficients that are needed to determine the enclosure
boundary of n− dimensional polynomials over a simplex does

not exceed 1 + n

1 .

5. Conclusions

In this work, we considered computing the minimum and
maximum Bernstein coefficients (enclosure boundary) that
optimize the range of polynomials over a simplex. We re-
duced the high complexity of computing all n-dimensional

Bernstein coefficients of degree L to 1 + n

1 . (erefore, we

covered the cases of monotonicity, dominance, and multi-
variate monotonicity of Bernstein coefficients. Finally, the
index of enclosure boundary was directly determined and
only the enclosure value computed. In the future work, we
consider generalizing this method to new classes of func-
tions such as rational polynomial functions over triangles.
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