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For any n ∈ N and given nonempty subset V, the concept of n-superhypergraphs is introduced by Florentin Smarandache based
on Pn(V) (n-th power set ofV ). In this paper, we present the novel concepts supervertices, superedges, and superhypergraph via the
concept of �ow. �is study computes the number of superedges of any given superhypergraphs, and based on the numbers of
superedges and partitions of an underlying set of superhypergraph, we obtain the number of all superhypergraphs on any
nonempty set. As a main result of the research, this paper is introducing the incidence matrix of superhypergraph and computing
the characteristic polynomial for the incidence matrix of superhypergraph, so we obtain the spectrum of superhypergraphs. �e
�ow of superedges plays the main role in computing of spectrum of superhypergraphs, so we compute the spectrum of
superhypergraphs in some types such as regular �ow, regular reversed �ow, and regular two-sided �ow. �e new conception of
superhypergraph and computation of the spectrum of superhypergraphs are introduced �rstly in this paper.

1. Introduction and Preliminaries

�e theory of graph is a main and important theory for
modeling the real problem in the world, and this theory
extends in past years in this regard. �e disadvantage of a
graph is that it cannot connect more than two elements, so
this problem causes weakness in this theory. Berge gener-
alized the theory of graphs to the mathematical concept of
theory of hypergraphs with the motivation that hypergraphs
solve the con�icts, defects, and shortcomings of graph theory
around 1960 [1]. Hypergraphs have some applications in
other sciences and the real-world, one of the applications of
hypergraphs is a simulation for complex hypernetworks.
Today, hypergraphs have a vital role and important per-
formances, so are used in complex hypernetworks such as
computer science, wireless sensor hypernetwork, and social
hypernetworks. In this regards there has been a lot of re-
search about using hypergraphs to problems in real-world
such as hypergraph matching via game-theoretic hyper-
graph clustering [2], hypergraph matching via game-theo-
retic hypergraph clustering [3], hypergraph-based centrality
metrics for maritime container service networks, a

worldwide application [4], clustering ensemble via struc-
tured hypergraph learning [5], and hypergraph neural
network for skeleton-based action recognition [6]. �ere is
some main connection between graphs and hypergraphs via
the mathematical computational tools and basic theorems in
which these connections facilitate the modeling of other
sciences with mathematics. Further materials regarding
graphs and hypergraphs are available such as extending
factorizations of complete uniform hypergraphs [7], �nding
perfect matchings in bipartite hypergraphs [8], graphs and
hypergraphs [1], resilient hypergraphs with �xed matching
number [9], on the spectrum of hypergraphs [10], on the
distance spectrum of minimal cages and associated distance
biregular graphs [11], on the spectrum of the perfect
matching derangement graph [12], and probabilistic re-
�nement of the asymptotic spectrum of graphs [13]. Re-
cently, Hamidi and Saeid computed eigenvalues of discrete
complete hypergraphs and partitioned hypergraphs. �ey
de�ned positive equivalence relation on hypergraphs that
establishes a connection between hypergraphs and graphs,
and it makes a connection between a spectrum of graphs and
a spectrum of the quotient of any hypergraphs. �ey studied
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the construct spectrum of path trees via the quotient of
partitioned hypergraphs [14]. A hypergraph on any given set
considers a relationship between elements and the set
(as objects or hyper vertices) and describes this relationship
if it is a weighted hypergraph. It is an ideal condition if
proper weights are known, but in most situations, the
weights may not be known, and the relationships are hes-
itant in a natural sense. With the advent of the fuzzy graph,
the importance of this theory increased and fuzzy graph as a
generalization of a graph provides more information in real-
life problems. Based on Zadeh’s fuzzy relations [15], the
notion of hypergraph has been extended in the fuzzy theory
and the concept of fuzzy hypergraph was provided by
Kaufmann [16]. Recently, some researchers investigated the
concept of fuzzy hypergraphs and applications such as fuzzy
hypergraphs and related extensions [17], an algorithm to
compute the strength of competing interactions in the
Bering sea based on Pythagorean fuzzy hypergraphs [18] and
bipolar fuzzy soft information applied to hypergraphs [19].
Recently, Smarandache introduced a new the concept as a
generalization of hypergraphs to n-superhypergraph, pli-
thogenic n-superhypergraph {with supervertices (that are
groups of vertices) and hyperedges {defined on power set of
power set. . .} that is the most general form of a graph as
today}, which have several properties and are connected with
the real-world [20]. Indeed, n-superhypergraphs are a
generalization of hypergraphs, with the advantage that they
can communicate between the hyperedges.

Regarding these points, we consider a nonempty set
and make a partition of the given set into some subsets,
and relate this subset together with some maps. Indeed,
subsets will call supervertices, the mapping between them
will call superedges or flows and the system with super-
vertices and superedges will call a quasi superhypergraph.
'emain motivation of this the concept is a generalization
of graphs to hypernetworks such that all elements be
related together. In hypergraph theory, any hypergraph
can relate a set of elements, while without any details that
it makes some conflicts, defects, and shortcomings in the
hypergraph theory. 'us, by introducing superhyper-
graph, we try to eliminate defects of graph (sometimes
graph structures give very limited information about
complex networks) structures and hypergraph structures
(although the hypergraph structures are for covering
graph defects in the applications but in hypergraphs, the
relation between of vertices cannot be described in full
details). As a main result of the research, this paper is
introducing the incidence matrix of superhypergraph and
computing the characteristic polynomial for the incidence
matrix of superhypergraph, so we obtain the spectrum of
superhypergraphs. Indeed, we computed the number of
superedges of any given superhypergraphs and based on
superedges and partitions of an underlying set of
superhypergraph, we obtained the number of all super-
hypergraphs on any nonempty set. 'e flow of superedges
plays the main role in computing of spectrum of super-
hypergraphs, so we computed the spectrum of super-
hypergraphs in some types regular flow, regular reversed
flow, and regular two-sided flow.

Definition 1. [1] Let X be a finite set. A hypergraph on X is a
pair H � (X, Ei 

m

i�1) such that for all 1≤ i≤m,∅≠Ei ⊆X

and ∪m
i�1Ei � X. 'e elements x1, x2, . . . , xn of X are called

vertices, and the sets E1, E2, . . . , Em are called the hyperedges
of the hypergraph H. In hypergraphs, hyperedges can
contain an element (loop) two elements (edge) or more
than three elements. A hypergraph H � (X, Ei 

m
i�1) is called

a complete hypergraph, if for any x, y ∈ X there is 1≤ i≤m

such that x, y ⊆Ei. A hypergraph H � (X, Ei 
n

i�1) is called
as a joint complete hypergraph, if |X| � n for all
1≤ i≤ n, |Ei| � i and Ei ⊆Ei+1 element (loop). If for all
1≤ k≤m, |Ek| � 2, the hypergraph becomes an ordinary
(undirected) graph and n rows representing the vertices
x1, x2, . . . , xn, where for all 1≤ i≤ n and for all 1≤ j≤m, we
have mij � 1 if xi ∈ Ej and mij � 0 if xi ∉ Ej.

Definition 2. [20] Let m ∈ N and V � v1, v2, . . . , vm  be a set
of vertices, that contains single vertices (the classic alones),
indeterminate vertices (unclear, vague, unknown) and null
vertices (unknown, empty). Consider P(V) as the power set
of V, P2(V) � P(P(V)) . . ., and Pn(V) � P(Pn− 1(V)) be the
n-power set of the set V. 'en, the n-superhypergraph (n −

SHG) is an ordered pair n-SHG � (Gn, En), where for any
n ∈ N, Gn ⊆Pn(V) is the set of vertices and En ⊆Pn(V) is the
set of edges. 'e set Gn contains some type of vertices, such
as single vertices (the classical ones), indeterminate vertices
(unclear, vague, partially unknown), null vertices (totally
unknown, empty), and supervertices (or subset vertex), i.e.,
two or more (single, indeterminate, or null) vertices to-
gether as a group (organization). An n-supervertex is a
collection of many vertices such that at least one is a
(n − 1)-supervertex and all other supervertices in to the
collection if any have the order r≤ n − 1. 'e set of edges En

contains some type of edges such as single edges
(the classic alones), indeterminate (unclear, vague, partially
unknown), null-edge (empty, totally unknown), hyperedge
(containig three ormore single vertices), superedge
(containing two vertices atleast one of them being
a super vertex), n-superedge (containing two vertices,
atleast one being an n − super vertex and the other
of order r − super vertex with r≤ n), superhyperedge (con-
taining three or more vertices, at least one being a super-
vertex, n-superhyperedge (containing three
ormore vertices, atleast one being an n − super vertex
and the other r − super vertices with r≤ n), multiedges
(two ormore edges connecting the same two vertices), and
loop (an edge that connects an element).

2. On (Quasi) Superhypergraph

In this section, we introduce the concepts of supervertex,
superedge, superhypergraph, and investigate their proper-
ties. For any given superhypergraph, the lower and upper
bound of the set of their superedges is computed and proved
in a theorem. Also, we computed and proved the number of
all superhypergraphs constructed on any given nonempty
set. In the following, for any nonempty set X, will denote
P∗(X) � Y|∅≠Y⊆X{ }.
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In what follows, based on the concept of n-super-
hypergraph [20], recall, define, and investigate a special case
in n-superhypergraphs as the notation of quasi
superhypergraph.

Definition 3. Let X be a nonempty set. 'en,

(i) H � (X, Si 
k
i�1, φi,j 

i,j
) is called a quasi super-

hypergraph, if φi,j 
i,j
≠∅ and X � ∪ n

i�1Si, where

k≥ 2,
(ii) for all 1≤ i≤ k, Si ∈ P∗(X), is called a supervertex

and for any i≠ j, the map φi,j: Si⟶ Sj (say Si links
to Sj) is called a superedge,

(iii) the quasi superhypergraph H � (X, Si 
k

i�1, φi,j 
i,j

)

is called a superhypergraph, if for any Si ∈ P∗(X),
there exists at least one Sj ∈ P∗(X) such that Si links
to Sj (it is not necessary all super vertices be linked).

(iv) 'e superhypergraph H � (X, Si 
k
i�1, φi,j 

i,j
) is

called a trivial superhypergraph, if k �

1(S1 can’t link to itself).

Example 1. Let X � xi 
9
i�1. 'en, H � (X, Si 

4
i�1, φ1,2,

φ2,1,φ2,3,φ2,4}) is a quasi superhypergraph
(there is no any link between of S4 and S3) in Figure 1, where

φ1,2 � x1, x4( , x2, x5( , x3, x4(  ,

φ2,1 � x4, x3( , x5, x2(  ,

φ2,3 � x4, x6( , x5, x7(  ,

φ2,4 � x5, x9( , x4, x9(  .

(1)

Let H � (X, Si 
k

i�1, φi,j 
i,j

) be a superhypergraph. We

will denote Φ(H) � φi,j|i, j≥ 1  by the set of all superedges

of superhypergraph H. In what follows, compute and prove
the lower bound and upper bound of Φ(H), as set of all
superedges of superhypergraph.

Theorem 1. Let H � (X, Si 
k

i�1, φi,j 
i,j

) be a superhyper-
graph. 8en,

(k − 1)≤ |Φ(H)|≤ 
1≤i≠j≤n

Si




Sj



. (2)

Proof. Let H � (X, Si 
k
i�1, φi,j 

i,j
) be a superhypergraph.

Since, by definition, for any Si ∈ P∗(X), there exists at
least one Sj ∈ P∗(X) such that Si links to Sj, we have (k −

1) superedges. In addition, let Φ(Si, Sj) �

φi,j: Si⟶ Sj|i, j . For all 1≤ i≠ j≤ n, in one case, if
Si ∩ Sj � ∅, then, |Φ(Si, Sj)| � |Si|

|Sj| + |Sj|
|Si|. Hence, if

|Φ(S1, S2, . . . , Sk− 1)| � 1≤i≠j≤k− 1|Si|
|Sj|, then, for all

1≤ i≠ j≤ n, Si ∩ Sj � ∅ implies that

Φ S1, S2, . . . , Sk− 1, Sk( 


 � Φ S1, S2, . . . , Sk− 1( , Sk( 




� Φ S1, S2, . . . , Sk− 1( 




+ 
1≤i≤k− 1

Si




Sk| |
+ Sk




Si| |
 

� 
1≤i≠j≤ n

Si




Sj



.

(3)

In another case, if there exists some 1≤ i≠ j≤ n such that
Si ∩ Sj ≠∅, since for all 1≤ i≠ j≤ n, Si ∩ Sj ⊆ Si, for all
1≤ t≤ n, we get that Φ(Si ∩ Sj, St)⊆Φ(Si, St) and Φ(Si ∩ Sj,

St)⊆ Φ(Sj, St). So, in any cases, |Φ|≤1≤i≠j≤n|Si|
|Sj|. □

Example 2. Let |X| � xi 
4
i�1 and H � (X, Si 

3
i�1, φi,j 

i,j
) be

a superhypergraph, where |S1| � 2, |S2| � 1, |S3| � 1. 'en,
by 'eorem 1, 2≤ |Φ(H)|≤ 8 � (21 + 21 + 12+ 11 + 12 + 11),
where

φ1,2 � x1, x3( , x2, x3(  ,

φ1,3 � x1, x4( , x2, x4(  ,

φ2,1 � x3, x1(  ,

φ2,1′ � x3, x2(  ,

φ3,1 � x4, x1(  ,

φ3,1′ � x4, x2(  ,

φ2,3 � x3, x4(  ,

φ3,2 � x4, x3(  .

(4)

'e superhypergraph H � (X, Si 
3
i�1, φ1,2 3,2) with

minimum superedges is shown in Figure 2.

x1
x2

x3

S1

x4
x5

S2

x6
x7

x8

S3

x9

S4

φ1,2

φ2,3
φ 2,1

φ 2
,4

Figure 1: Superhypergraph H � (X, Si 
4
i�1, φ1,2,φ2,1,φ2,3,φ2,4 ).

x1
x2

S1

x3

S2

x4

S3φ1,2 φ3,2

Figure 2: Superhypergraph H � (X, Si 
3
i�1, φ1,2,φ3,2 ) with

|Φ(H)| � 2.
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Let X be a nonempty set, SH �

H|H is a superhypergraph onX  and SH(n1, n2, . . . , nk) �

(X, Si 
k
i�1, φi,j 

i,j
) ∈ SH||Si| � ni and for all i≠ j, Si ∩

Sj � ∅}. In what follows, compute and prove the number of
SH(n1, n2, . . . , nk), as the set of all superhypergraphs based
on any nonempty set X, where |X| � n.

Theorem 2. Let X be a nonempty set, r, n ∈ N and |X| � n.

(i) |SH(n)| � 1.
(ii) If 

r
i�1 ni � n and m � | i|ni � nj |, then, |SH(n1,

n2, . . . , nr)| � (1/m!) 
r
i�1(n − 

i− 1
j�1nj

ni

)(1≤i≠j≤rn
nj

i ).

Proof

(i) By definitions is clear.
(ii) Let |X| � n. Since SH(n1, n2, . . . , nk) � (X, Si 

k

i�1,

φi,j 
i,j

) ∈ SH||Si| � ni and for all i≠ j, Si ∩ Sj � ∅},
we get that S1, S2, . . . , Sk  ∈ P(X) is a partition of set
X, where |Si| � ni. Consider S1, then, the numbers of

selected vertices in S1 is equal to
n

n1
 . Because for any

1≤ i≤ k, Si ∩ Sj � ∅, the number of selected vertices in

S2 is equal to
n − n1

n2
 . It follows that the numbers of

ways to chosen the selected vertices between S1, S2 is

equal to n

n1
 

n − n1
n2

  for the case n1 ≠ n2 and is

equal to (1/2!)
n

n1
 

n − n1
n2

 , for the case n1 � n2.

'us, in the process of doing so and by induction, for all
1≤ i≤ k, |P(X)| � (1/m!) 

k
i�1(n − 

i− 1
j�1nj

ni

), where

m � | i|ni � nj |. In addition, by 'eorem 1, we have
|Φ(H)|≤1≤i≠j≤n|Si|

|Sj|, so |SH(n1, n2, . . . ,

nr)| � (1/m!) 
r
i�1(n − 

i− 1
j�1nj

ni

)(1≤i≠j≤rn
nj

i ). □

Theorem 3. Let X be a nonempty set and |X| � n. If α �

(n1, n2, . . . , nr)| 
r
i�1 ni � n, ni, r ∈ N  and m � | i|ni � nj |,

then,

|SH(X)| � 
α

1
m!



r

i�1
n − 

i− 1

j�1
nj

ni


1≤i≠j≤ r

n
nj

i
⎛⎝ ⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5)

Proof. It is clear by 'eorem 2. □

Example 3. Let X be an arbitrary set and |X| � 4. 'en,

|SH(X)| � |SH(4)| +|SH(3, 1)| +|SH(2, 2)|

+ |SH(2, 1, 1)| +|SH(1, 1, 1, 1)|

� 1 +

4

3
⎛⎜⎝ ⎞⎟⎠

1

1
⎛⎜⎝ ⎞⎟⎠ 31 + 13 

+
1
2!

4

2
⎛⎜⎝ ⎞⎟⎠

2

2
⎛⎜⎝ ⎞⎟⎠ 22 + 22 

+
1
2!

4

2
⎛⎜⎝ ⎞⎟⎠

2

1
⎛⎜⎝ ⎞⎟⎠

1

1
⎛⎜⎝ ⎞⎟⎠ 21 + 21 + 12 + 11 + 12 + 11 

+
1
4!

4

1
⎛⎜⎝ ⎞⎟⎠

3

1
⎛⎜⎝ ⎞⎟⎠

2

1
⎛⎜⎝ ⎞⎟⎠

1

1
⎛⎜⎝ ⎞⎟⎠ 11 + 11 + 11 4 � 101.

(6)

3. Incidence Matrix of Superhypergraphs

In this section, we introduce a square matrix as incidence
matrix associate with any given superhypergraph with sign
function. Indeed, in the incidence matrix associate to any
given superhypergraph the domain and range of any map
determine the sign function.

Let H � (X, Si 
k
i�1, φi,j 

i,j
) be a superhypergraph and

Ψ(H)⊆Φ(H). 'en, we have the following concepts.

Definition 4. Let H � (X, Si 
k
i�1, φi,j 

i,j
) be a superhyper-

graph and |X| � n. Define A(|S1|,|S2|,...,|Sk|) � (aij)n×(k+|Ψ(H)|) as
incidence matrix of H with k + |Ψ(H)| columns repre-
senting the supervertices S1, S2, . . . , Sk, superedges φi,j and n

rows representing the vertices x1, x2, . . . , xn, where n � (k +

|Ψ(H)|) and

aij �

1, if xi ∈ Si orxi ∈ Domain φi,j ,

− 1, if xi ∈ Range φi,j ,

0, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

Example 4. Let X � xi 
5
i�1. 'en, H � (X, Si 

3
i�1,

φ1,3,φ2,3 ) is a superhypergraph in Figure 3, where φ1,3 �

(x1, x5), (x2, x5)  and φ2,3 � (x3, x5), (x4, x5) .
'en, A(2,2,1) is the incidence matrix of H.

x1
x2

S1

x3
x4

S2

x5

S3

φ1,3

φ2,3

Figure 3: Superhypergraph H � (X, Si 
3
i�1, φ1,3,φ2,3 ).
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S1 S2 S3 ϕ1,3 ϕ2,3

1 0 0 1 0

1 0 0 1 0

0 1 0 0 1

0 1 0 0 1

0 0 1 −1−1

A(2,2,1) =

x1

x2

x3

x4

x5

(8)

3.1. Characteristic Polynomial for the Incidence Matrix of
Superhypergraph. In this subsection, we compute the
characteristic polynomial of the incidence matrix of any
given superhypergraph. Let H � (X, Si 

k

i�1, φi,j 
i,j

) be a
superhypergraph and so investigate the spectrum of the
superhypergraph.

From now on, let P(|S1|,|S2|,...,|Sk|)(x) be the characteristic
polynomial of the incidence matrix A(|S1|,|S2|,...,|Sk|) corre-
sponding to superhypergraph H and E(A(|S1|,|S2|,...,|Sk|)) �

x|is an eigenvalue of A(|S1|,|S2|,...,|Sk|) . In addition, for any
Si, Sj, if Φ(Si, Sj) � φi,j|φi,j: Si⟶ Sj, i, j≥ 1 , will say Si

flows to Sj and will denote by Si⇝Sj. In this case, will denote
A(|S1|,|S2|,...,|Sk|) by A⇝(|S1|,|S2|,...,|Sk|) and P(|S1|,|S2|,...,|Sk|)(x) by
P⇝(|S1|,|S2|,...,|Sk|)(x).

Theorem 4. Let |S1| � 1, |S2| � n, n≥ 2 and S1⇝S2. 8en,

(i) P⇝1,n(x) � (− x)n− 1(x2 + (n − 3)x − (n − 2)).

(ii) Spec (A⇝1,n) �
0 1 2 − n

n − 1 1 1 .

Proof

(i) Let n � 2. It is easy to see that
P⇝1,2(x) � (− x)(x2 − x). Suppose that k≥ 3 and
P⇝1,k− 1(x) � (− x)k− 2(x2 + (k − 4)x− (k − 3)). 'en,
A⇝1,k � [c1, c2, . . . , ck, ck+1], where c3 � · · · �

ck+1 � [1, − 1, . . . , − 1√√√√√√√√
k− times

]t. It follows that

P
⇝
1,k(x) � det A

⇝
1,k − I(k+1)×(k+1)X  � det B

⇝
1,k , (9)

such that B⇝1,k � [bij](k+1)×(k+1), where B⇝1,k � [c1′,
c2′, . . . , ck

′, ck+1′ ] that for all i ∈ 3, . . . , k + 1{ }, ci
′ �

[1, − 1, . . . ,√√√√ − 1(i− 2)− times, − 1 − x, − 1, . . . , − 1√√√√√√√√
(k− i+1)− times

]t. Now,

consider D⇝1,k � (dij)(k+1)×(k+1), where

dij �
bij, j≠ k + 1,

− ck
′ + ck+1′ , j � k + 1.

⎧⎨

⎩ (10)

'us, D⇝1,k � [c1′, c2′, . . . , ck− 1′ , ck
′, ck+1″], where ck+1″ �

[ 0, . . . , 0√√√√√√
(k− 1)− times

, x, − x]t � (x)[ 0, . . . , 0√√√√√√
(k− 1)− times

, 1, − 1]t. Based on

induction assumption and computations of deter-
minant based on column ck+1″ in matrix D⇝1,k, have

P
⇝
k,1(x) � det D

⇝
1,k − I(k+1)×(k+1)X 

� x − P
⇝
1,k− 1(x) +(− x)

k− 1
+(− x)

k− 2
 

� (− x)
k− 1

x
2

+(k − 3)x − (k − 2) .

(11)

(ii) It is clear by item (i). □

Theorem 5. Let |S1| � n, |S2| � 1, n≥ 2 and S1⇝S2. 8en,
P⇝n,1(x) � (− x)n− 1(x2 − (n − 2)x − 2).

Proof. Let n � 2. It is easy to see that P⇝2,1(x) � (− x)(x2 − 2).
Suppose that k≥ 3 and P⇝k− 1,1(x) � (− x)k− 2(x2− (k − 3)

x − 2). 'en, A⇝k,1 � [c1, c2, . . . , ck, ck+1], where c3 � · · · �

ck+1 � [1, 1, . . . , 1√√√√√√√√
k− times

, − 1]t. It follows that

P
⇝
k,1(x) � det A

⇝
k,1 − I(k+1)×(k+1)X  � det B

⇝
k,1 , (12)

such that B⇝k,1 � [bij](k+1)×(k+1), where B⇝k,1 � [c1′, c2′, . . . ,

ck
′, ck+1′ ] that for all i ∈ 3, 4, . . . , k{ }, ci

′ � [1, 1, . . . , 1√√√√√√√√
i− 1{ }− times

,

1 − x, 1, 1, . . . , 1√√√√√√√√
k− i{ }− times

, − 1]t and ck+1′ � [1, 1, . . . , 1√√√√√√√√
k− times

, − 1 − x]t.

Consider D⇝k,1 � (dij)(k+1)×(k+1), where

dij �
bij, j≠ k,

ck
′ − ck+1′ , j � k.

⎧⎨

⎩ (13)

'us, D⇝k,1 � [c1′, c2′, . . . , ck− 1′ , c′
′
k, ck+1′], where

c′
′
k � [0, . . . , 0√√√√√√

k− 1{ }− times

, − x, x]t � (− x)[ 0, . . . , 0√√√√√√
k− 1{ }− times

, 1, − 1]t. Based on

induction assumption and computations of determinant
based on column c′

′
k in matrix D⇝k,1, have

P
⇝
k,1(x) � det D

⇝
k,1 − I(k+1)×(k+1)X  � − xP

⇝
k− 1,1(x) +(− x)

k
.

(14)
□

Theorem 6. Let |S1| � n, |S2| � 2, n≥ 2 and S1⇝S2. 8en,
P⇝n,2(x) � (− x)n(x2 − (n − 3)x − 4).

Proof. Let n � 2. It is easy to see that P⇝2,1(x) �

x2(x2 + x − 4). Suppose that k≥ 3 and P⇝k− 1,1(x) �

(− x)k− 1(x2 − (k − 4)x − 4).'en, A⇝k,2 � [c1, c2, . . . , ck, ck+1,

ck+2], where c3 � · · · � ck+2 � [1, 1, . . . , 1√√√√√√√√
k− times

, − 1, − 1]t. It follows
that

P
⇝
k,2(x) � det A

⇝
k,2 − I(k+2)×(k+2)X  � det B

⇝
k,2 , (15)

such that B⇝k,2 � [bij](k+2)×(k+2), where B⇝k,2 � [c1′, c2′, . . . , ck
′,

ck+1′, ck+2′] that for all i ∈ 3, 4, . . . , k{ }ci
′ �

x1 x2

S1

x3

S2

φ1,2

Figure 4: Superhypergraph H � (X, Si 
2
i�1, φ1,2 ).
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[1, 1, . . . , 1√√√√√√√√
i− 1{ }− times

, 1 − x, 1, 1, . . . , 1√√√√√√√√
k− i{ }− times

, − 1, − 1]t, ck+1′ � [1, 1, . . . , 1√√√√√√√√
k− times

,

− 1 − x, , − 1]t and ck+2′ � [1, 1, . . . , 1√√√√√√√√
k− times

, − 1, − 1 − x]t. In addi-

tion, D⇝k,2 � (dij)(k+2)×(k+2), where

dij �
bij, j≠ k,

ck
′ − ck+2′ , j � k.

⎧⎨

⎩ (16)

'us, D⇝k,2 � [c1′, c2′, . . . , c′
′
k, ck+1′, ck+2′], where c′

′
k �

[0, . . . , 0√√√√√√
k− 1{ }− times

, − x, 0, x]t � (− x)[0, . . . , 0√√√√√√
k− 1{ }− times

, 1, 0, − 1]t. Based on

induction assumption and computations of determinant
based on column c′

′
k in matrix D⇝k,2 show that

P
⇝
k,2(x) � det D

⇝
k,2 − I(k+2)×(k+2)X  � − xP

⇝
k− 1,2(x) +(− x)

k+1
.

(17)□

Theorem 7. Let |S1| � n, |S2| � 3, n≥ 2 and S1⇝S2. 8en,
P⇝n,3(x) � (− x)n+1(x2 − (n − 4)x − 6).

Proof. It is similar to 'eorem 6. □

Corollary 1. Let |S1| � n, |S2| � m, n≥ 2, m≥ 1 and S1⇝S2.
8en,

(i) P⇝n,m(x) � (− x)n+m− 2(x2 − (n − m − 1)x − 2m).
(ii) Spec (A⇝n,m) � 0 (α +

��
α

√
( 2 + 8m )/2 (α −�������

α2 + 8m


)/2n + m − 211), where α � n − m − 1.
(iii) x∈E(A⇝n,m)x � 0 if and only if n � m + 1.

Example 5. Let X � x1, x2, x3 . 'en, H � (X, Si 
2
i�1,

φ1,2 ) is a superhypergraph as shown in Figure 4 and in-
cidence matrix of A⇝2,1 as follows.

MH =

S1 S2 ϕ1,2

x1

x2

x3

1 0 1

1 0 1

0 1 −1

(18)

'us, by 'eorem 5, we have P⇝2,1(x) � (− x)(x2 − 2)

and so Spec(A⇝2,1) �
0

�
2

√
−

�
2

√

1 1 1 .

3.2. Characteristic Polynomial for the Incidence Matrix of
Superhypergraph with Reverse Flows. In this subsection, we
compute the characteristic polynomial and spectrum of the
superhypergraph in the reverse flows to the previous section.

For any Si, Sj, if Φ(Sj, Si) � φi,j|φi,j: Sj⟶ Si, i, j≥ 1 ,
will say Sj flows to Si and will denote by
Si←Sj(reverse flows to Si⇝Sj) and so A|S1|,|S2|,...,|Sk| by
A←|S1|,|S2|,...,|Sk| and P|S1|,|S2|,...,|Sk|(x) by P←|S1|,|S2|,...,|Sk|(x).

Theorem 8. Let |S1| � 1, |S2| � n, n≥ 2 and S1←S2. 8en,

(i) P←1,n(x) � (− x)n− 1(x2 − (n + 1)x + n).

(ii) Spec (A←1,n) �
0 1 n

n − 1 1 1 .

Proof

(i) Let n � 2. It is easy to see that
P←1,2(x) � (− x)(x2 − 3x + 2). Suppose that k≥ 3 and
P←1,k− 1(x) � (− x)k− 2(x2 − kx+ (k − 1)). 'en,
A←1,k � [c1, c2, . . . , ck, ck+1], where c3 � · · · �

ck+1 � [− 1, 1, . . . , 1√√√√√√
k− times

]t. It follows that

P
←
1,k(x) � det A

←
1,k − I(k+1)×(k+1)X  � det B

←
1,k , (19)

such that B←1,k � [bij](k+1)×(k+1), where B←1,k � [c1′, c2′,
. . . , ck
′, ck+1′ ] that for all i ∈ 3, 4, . . . , k + 1{ }, ci

′ �
[− 1, 1, . . . , 1√√√√√√

(i− 2)− times

, 1 − x√√√√
i− th

, 1, . . . , 1√√√√√√
(k− i+1)− times

]t. Now, consider

D←1,k � (dij)(k+1)×(k+1), where

dij �
bij, j≠ k + 1,

− ck
′ + ck+1′ , j � k + 1.

⎧⎨

⎩ (20)

'us, D←1,k � [c1′, c2′, . . . , ck− 1′ , ck
′, ck+1″], where ck+1″ �

[ 0, . . . , 0√√√√√√
(k− 1)− times

, x, − x]t � (x)[ 0, . . . , 0√√√√√√
(k− 1)− times

, 1, − 1]t. Based on

induction assumption and computations of deter-
minant based on column c′

′
k+1 in matrix D←1,k, have

P
←
1,k(x) � det D

←
1,k − I(k+1)×(k+1)X 

� x − P
←
1,k− 1(x) − (− x)

k− 1
− (− x)

k− 2
 

� (− x)
k− 1

x
2

− (k + 1)x + k .

(21)

(ii) It is clear by item (i). □

Theorem 9. Let |S1| � n, |S2| � 1, n≥ 2 and S1←S2. 8en,
P←n,1(x) � (− x)n− 1(x2 + (n − 4)x + 2).

Proof. Let n � 2. It easy is to see that P←2,1(x) �

(− x)(x2 − 2x + 2). Suppose that k≥ 3 and P←k− 1,1(x) �

(− x)k− 2(x2 + (k − 5)x + 2).'en, A←k,1 � [c1, c2, . . . , ck,

ck+1], where c3 � · · · � ck+1 � [− 1, − 1, . . . , − 1√√√√√√√√√√√√
k times

, 1]t. It follows

that

P
←
k,1(x) � det A

←
k,1 − I(k+1)×(k+1)X  � det B

←
k,1 , (22)

such that B←k,1 � [bij](k+1)×(k+1), where B←k,1 � [c1′, c2′, . . . ,

ck
′, ck+1′ ] that for all i ∈ 3, . . . , k{ }, ci

′ � [− 1, . . . , − 1√√√√√√√√
(i− 1)− times

,

− 1 − x√√√√
ith

, − 1, . . . , − 1√√√√√√√√
(k− i)− times

, 1]t and ck+1′ � [− 1, − 1, . . . , − 1√√√√√√√√√√√√
k times

, 1 − x]t.

Moreover, consider D←k,1 � (dij)(k+1)×(k+1), where

dij �
bij, j≠ k,

ck
′ − ck+1′ , j � k.

⎧⎨

⎩ (23)
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'us, D←k,1 � [c1′, c2′, . . . , ck− 1′ , c′
′
k, ck+1′], where c′

′
k �

[0, . . . , 0√√√√√√
k− 1 times

, − x, x]t � (− x)[0, . . . , 0√√√√√√
k− 1 times

, 1, − 1]t. Based on induc-

tion assumption and computations of determinant based on
column c′

′
k in matrix D←k,1, have

P
←
k,1(x) � det D

←
k,1 − I(k+1)×(k+1)X  � − xP

←
k− 1,1(x) +(− 1)

k+1
x

k
.

(24)

□

Theorem 10. Let |S1| � n, |S2| � 2, n≥ 2 and S1←S2. 8en,
P←n,2(x) � (− x)n(x2 + (n − 5)x + 4).

Proof. Let n � 2. It is easy to see that P←2,1(x) �

x2(x2 − 3x + 4). Suppose that k≥ 3 and P←k− 1,1(x) �

(− x)k− 1(x2 + (k − 6)x + 4).'en, A←k,2 � [c1, c2, . . . , ck,

ck+1, ck+2], where c3 � · · · � ck+2 � [− 1, − 1, . . . , − 1√√√√√√√√√√√√
k times

, 1, 1]t. It

follows that

P
←
k,2(x) � det A

←
k,2 − I(k+2)×(k+2)X  � det B

←
k,2 , (25)

such that B←k,2 � [bij](k+2)×(k+2), where B←k,2 � [c1′, c2′, . . . , ck
′,

ck+1′, ck+2′ ] that for all i ∈ 3, . . . , k{ }, ci
′ � [− 1, . . . , − 1√√√√√√√√

(i− 1)− times

,

− 1 − x√√√√
ith

, − 1, . . . , − 1√√√√√√√√
(k− i)− times

, 1, 1]t, ck+1′ � [− 1, . . . , − 1√√√√√√√√
k− times

, 1 − x, 1]t, and

ck+2′ � [− 1, . . . , − 1√√√√√√√√
k− times

, 1, 1 − x]t. Consider D←k,2 �

(dij)(k+2)×(k+2) where

dij �
bij, j≠ k,

ck
′ − ck+1′ , j � k.

⎧⎨

⎩ (26)

'us, D←k,2 � [c1′, c2′, . . . , c′
′
k, ck+1′, ck+2′], where c′

′
k �

[ 0, . . . , 0√√√√√√
(k− 1)− times

, − x, x, 0]t � (− x)[ 0, . . . , 0√√√√√√
(k− 1)− times

, 1, − 1, 0]t. Based on

induction assumption and computations of determinant

based on column c′
′
k in matrix D←k,2 show that

P
←
k,2(x) � det D

←
k,2 − I(k+2)×(k+2)X  � (− x)P

←
k− 1,2(x) +(− 1)

k
x

k+1
.

(27)

□

Theorem 11. Let |S1| � n, |S2| � 3, n≥ 2 and S1←S2. 8en,
Pn,3(x) � (− x)n+1(x2 + (n − 6)x + 6).

Proof. It is similar to 'eorem 6. □

Corollary 2. Let |S1| � n, |S2| � m, n≥ 2, m≥ 1 and S1←S2.
8en,

(i) P←n,m(x) � (− x)n+m− 2(x2 + (n − m − 3)x + 2m).
(ii) Spec (A←n,m) � 0 (− α +

�������
α2 − 8m


)/2 (− α

−
�������
α2 − 8m


)/ 2n + m − 211), where α � n − m − 3.

(iii) x∈E(An,m)x � 0 if and only if n � m + 3.

Example 6. Let X � x1, x2, x3 . 'en, H � (X,

Si 
2
i�1, φ2,1 ) is a superhypergraph as shown in Figure 5 and

incidence matrix of A2,1 as follows.

−1

−1

1 0

1 0

0 1 1

.

S1 S2 ϕ2,1

MH =

x1

x2

x3

(28)

'us, by'eorem 9, we have P2,1(x) � (− x)(x2 − 2x +2)

and so Spec (A←2,1) �
0 1+ i 1 − i

1 1 1 .

3.3. Characteristic Polynomial for the Incidence Matrix of
Superhypergraph with Two-Sided Flows. In this subsection,
we compute the characteristic polynomial and spectrum of
the superhypergraph with two-sided flows.

For any Si, Sj, if Φ � φi,j|φi,j: Si↔Sj, i, j≥ 1 , will say Si

flows to Sj by two-sided and will denote by Si↭ Sj and so
A|S1|,|S2|,...,|Sk| by A↭|S1|,|S2|,...,|Sk| and P|S1|,|S2|,...,|Sk|(x) by
P↭|S1|,|S2|,...,|Sk|(x). When we will show that Si↭ Sj of type
[+, − , +, − , . . .], it means that the first map flows from Si to
Sj, the second map flows from Sj to Si, the third map flows
from Si to Sj, etc., respectively. We will show it in Figure 6,
where, n is an odd.

Theorem 12. Let |S1| � 1, |S2| � n, n≥ 3 and S1↭ S2 of type
[+, − , +, − , . . .]. 8en,

(i) P↭1,n(x) �
− (x

2k
)(x − 1) n � 2k

x
2k

(x − 1)
2

n � 2k + 1
 .

(ii) if n is an even, then Spec (A↭1,n ) �
0 1
n 1 .

x1 x2

S1

x3

S2

φ2,1

Figure 5: Superhypergraph H � (X, Si 
2
i�1, φ2,1 ).

(1)

(2)

(3)

x1
x2

Si Sj

y1
y2

ymxn

(m+n-2)φi,j

φi,j

φ i,j

φj,i

Figure 6: H � (X, Si, Sj , φ(1)
i,j ,φ(2)

j,i , . . . ,φ(m+n− 2)
j,i ).

Journal of Mathematics 7



(iii) if n is an odd, then Spec (A↭1,n ) �
0 1

n − 1 2 .

Proof

(i) Let n � 3 and n � 4. It is easy to see that P↭1,3(x) �

x2(x − 1)2 and P↭1,4(x) � − x4(x − 1). Suppose that k≥ 3 is
an odd and P↭1,k− 1(x) � x2k− 2(x − 1)2. 'en, A↭1,k � [c1,

c2, . . . , ck, ck+1], where for all i ∈ 3, 5, 7, . . . , k{ },

ci � [1, − 1, . . . , − 1√√√√√√√√
k− times

]t and where for all i ∈ 4, 8, . . . , k + 1{ },

ci � [− 1, 1, . . . , 1√√√√√√
k− times

]t. It follows that

P
↭
1,k(x) � det A

↭
1,k − I(k+1)×(k+1)X  � det B

↭
1,k , (29)

such that B↭1,k � [bij](k+1)×(k+1), where B↭1,k � [c1′, c2′,
. . . , ck
′, ck+1′ ], where for all i ∈ 3, 5, 7, . . . , k{ }, ci

′ �
[1, − 1, . . . , − 1√√√√√√√√

(i− 2)− times

, − 1 − x√√√√
(i)th

, − 1, . . . , − 1√√√√√√√√
(k− i+1)− times

]t and for all i ∈ 4, 8, . . . ,{

k + 1}, ci
′ � [− 1, 1, . . . , 1√√√√√√

(i− 2)− times

, 1 − x√√√√
(i)th

, 1, . . . , 1√√√√√√
(k− i+1)− times

]t. Now, consider

D↭1,k � (dij)(k+1)×(k+1), where

dij �

bij, 1≤ j≤ k − 1,

ck
′ + ck− 1′ , j � k,

ck+1′ − ck− 1′ , j � k + 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(30)

'us, D↭1,k � [c1′, c2′, . . . , ck− 1′, ck
″, ck+1″], where ck

″ �

[ 0, . . . , 0√√√√√√
(k− 2)− times

, − x, − x, 0]t � (− x)[ 0, . . . , 0√√√√√√
(k− 2)− times

, 1, 1, 0]t and ck+1″ �

[ 0, . . . , 0√√√√√√
(k− 2)− times

, x, 0, − x]t � (− x)[ 0, . . . , 0√√√√√√
(k− 2)− times

, − 1, 0, 1]t. Based on

induction assumption and computations of determinant
based on column c′

′
k+1 in matrix D↭1,k , have

P
↭
1,k(x) � det D

↭
1,k − I(k+1)×(k+1)X  � x

2
  P

↭
1,k− 2(x)  � x

2k
(x − 1)

2
.

(31)

In a similar way, if n is an even, we get that
P↭1,n(x) � − (xn)(x − 1).

(ii) and (iii) 'ey are clear by item (i) and (ii). □

Theorem 13. Let |S1| � n, |S2| � 1, n≥ 3 and S1↭ S2 of type
[+, − , +, − , . . .]. 8en,

P
↭
n,1(x) �

(− x)
2k− 1

x
2

− 2 , n � 2k,

(x)
2k

x
2

− 3x + 2 , n � 2k + 1.

⎧⎪⎨

⎪⎩
(32)

Proof. Let n � 3. It is easy to see that P↭3,1(x) �

x2(x2 − 3x + 2). Suppose that k≥ 3 is an odd and
P↭k− 1,1(x) � x2k− 2(x2 − 3x + 2). 'en, A↭k,1 � [c1, c2, . . . ,

ck, ck+1], where for all i ∈ 3, 5, . . . , k{ }, ci � [1, . . . , 1√√√√√√
k− times

, − 1]t

and where for all i ∈ 4, 6, . . . , k + 1{ }, ci � [− 1, . . . , − 1√√√√√√√√
k− times

, 1]t. It

follows that

P
↭
k,1(x) � det A

↭
k,1 − I(k+1)×(k+1)X  � det B

↭
k,1 , (33)

such that B↭k,1 � [bij](k+1)×(k+1), where B↭k,1 � [c1′, c2′, . . . ,

ck
′, ck+1′], where for all i ∈ 3, 5, . . . , k{ }, ci

′ � [1, . . . , 1√√√√√√
(i− 1)− times

,

1 − x√√√√
(i)th

, 1, . . . , 1√√√√√√
(k− i)− times

, − 1]t and for all i ∈ 4, 8, . . . , k − 1{ },

ci
′ � [− 1, . . . , − 1√√√√√√√√

(i− 1)− times

, − 1 − x√√√√
(i)th

, − 1, . . . , − 1√√√√√√√√
(k− i)− times

, 1]t and for i � k + 1,

ci
′ � [− 1, . . . , − 1√√√√√√√√

k− times

, 1 − x]t. Now, consider D↭k,1 �

(dij)(k+1)×(k+1), where

dij �

bij, j � 1, . . . , k − 2, k + 1,

ck
′ + ck− 1′ , j � k − 1,

ck
′ + ck+1′ , j � k.

⎧⎪⎨

⎪⎩
(34)

'us, D↭k,1 � [c1′, c2′, . . . , ck− 2′ , ck− 1″, ck
″, ck+1′], where ck− 1″ �

[ 0, . . . , 0√√√√√√
(k− 2)− times

, − x, − x, 0]t � (− x)[ 0, . . . , 0√√√√√√
(k− 2)− times

, 1, 1, 0]t and ck
″ �

[ 0, . . . , 0√√√√√√
(k− 1)− times

, − x, − x]t � (− x)[ 0, . . . , 0√√√√√√
(k− 1)− times

, 1, 1]t. Based on in-

duction assumption and computations of determinant based
on column c′

′
k in matrix D↭k,1 , we have

P
↭
k,1(x) � det D

↭
k,1 − I(k+1)×(k+1)X  � x

2
  P

↭
k− 2,1(x) 

� x
2k

x
2

− 3x + 2 .
(35)

In a similar way, if k is an even, we get that
P↭k,1(x) � (− x)2k− 1(x2 − 2).

(ii) and (iii) 'ey are clear by item (i) and (ii). □

Theorem 14. Let |S1| � n, |S2| � 2, n≥ 3 and S1↭ S2 of type
[+, − , +, − , . . .]. 8en,

P
↭
n,2(x) �

x
2k+1

(x − 1), n � 2k,

− x
2k+2

(x − 2), n � 2k + 1.

⎧⎨

⎩ (36)

Proof. Let n � 3. It is easy to see that
P↭3,1(x) � (− x)4(x − 2). Suppose that k≥ 3 is an odd and
P↭k− 1,2(x) � (− x)2k(x − 2). 'en, A↭k,2 � [c1, c2, . . . , ck + 1,

ck+2], where for all i ∈ 3, 5, . . . , k + 2{ }, ci �

[1, . . . , 1√√√√√√
k− times

, − 1, − 1]t and where for all i ∈ 4, 6, . . . , k + 1{ },

ci � [− 1, . . . , − 1√√√√√√√√
k− times

, 1, 1]t. It follows that

(1)

(2)

(3)

x1
x2

Si Sj

y1
y2

ymxn

(m+n–2)φj,i

φj,i

φ j,i

φi,j

Figure 7: H � (X, Si, Sj , φ(1)
i,j ,φ(2)

j,i , . . . ,φ(m+n− 2)
j,i ).
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P
↭
k,2(x) � det A

↭
k,2 − I(k+2)×(k+2)X  � det B

↭
k,2 , (37)

such that B↭k,2 � [bij](k+2)×(k+2), where B↭k,2 � [c1′, c2′, . . . ,

ck+1′ , ck+2′ ], where for all i ∈ 3, 5, . . . , k{ }, ci
′ �

[1, . . . , 1√√√√√√
(i− 1)− times

, 1 − x√√√√
(i)th

, 1, . . . , 1√√√√√√
(k− i)− times

, − 1, − 1]t and for i � k + 2, ci
′ �

[ 1, . . . , 1√√√√√√
(k− 2)− times

, − 1, − 1 − x]t and for all i ∈ 4, 8, . . . , k + 1{ }, ci
′

� [− 1, . . . , − 1√√√√√√√√
(i− 1)− times

, − 1 − x√√√√
(i)th

, − 1, . . . , − 1√√√√√√√√
(k− i)− times

, 1, 1]t. Now, consider

D↭k,2 � (dij)(k+2)×(k+2), where

dij �

bij, j � 1, . . . , k − 2, k + 1, k + 2,

ck
′ + ck− 1′ , j � k − 1,

ck
′ + ck+1′ , j � k.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(38)

'us, D↭k,2 � [c1′, c2′, . . . , ck− 2′ , ck− 1″, ck
″, ck+1′ , ck+2′ ], where

ck− 1″ � [ 0, . . . , 0√√√√√√
(k− 2)− times

, − x, − x, 0, 0]t � (− x)[ 0, . . . , 0√√√√√√
(k− 2)− times

, 1, 1, 0, 0]t

and ck
″ � [ 0, . . . , 0√√√√√√

(k− 1)− times

, − x, − x, 0]t � (− x)[ 0, . . . , 0√√√√√√
(k− 1)− times

, 1, 1, 0]t.

Based on induction assumption and computations of de-
terminant based on column c′

′
k in matrix D↭k,2 , we have

P
↭
k,2(x) � det D

↭
k,2 − I(k+2)×(k+2)X  � x

2
  P

↭
k− 2,2(x) 

� (− x)
2k+2

(x − 2).
(39)

In a similar way, if k is an even, we get that
P↭k,2(x) � x2k+1(x − 1).

(ii) and (iii) 'ey are clear by item (i) and (ii). □

Theorem 15. Let |S1| � n, |S2| � 3, n≥ 2 and S1↭ S2 of type
[+, − , +, − , . . .]. 8en,

P
↭
n,3(x) �

(− x)
2k+1

x
2

− 2 , n � 2k(k≥ 1),

(− x)
2k+2

x
2

− 3x + 2 , n � 2k + 1(k≥ 1).

⎧⎪⎨

⎪⎩

(40)

Proof. It is similar to 'eorem 14. □

Corollary 3. Let |S1| � n, |S2| � m, n≥ 2, m≥ 1 and S1↭ S2
of type [+, − , +, − , . . .]. If m is an odd, then,

(i) P↭n,m(x) �
(− x)

2k+m− 2
(x

2
− 2) n � 2k(k≥1)

x
2k+m− 1

(x
2

− 3x +2) n � 2k +1(k≥1)
 ,

(ii) If n is an odd, then, Spec (A↭n,m) �

0 1 2
n + m − 2 1 1 ,

(iii) If n is an even, then Spec (A↭n,m) �

0 −
�
2

√ �
2

√

n + m − 2 1 1 ,

(iv) x∈E(An,m)x≠ 0.

Corollary 4. Let |S1| � n, |S2| � m, n≥ 2, m≥ 1 and S1↭ S2
of type [+, − , +, − , . . .]. If m is an even, then,

(i) if n is an even, then, P↭n,m(x) �

(− x)
2k+m− 1

(x − 1) n � 2k(k≥ 1)

− (x
2k+m

)(x − 2) n � 2k + 1(k≥ 1)
 ,

(ii) If n is an odd, then, Spec (A↭n,m) �
0 2

n + m − 1 1 ,

(iii) If n is an even, then, Spec (A↭n,m) �
0 1

n + m − 1 1 ,
(iv) x∈E(An,m)x≠ 0.

When we will show that Si↭ Sj of type [− , +, − , +, . . .], it
means that the first map flows from Sj to Si, the second map
flows from Si to Sj, the third map flows from Sj to Si, etc.,
respectively. We will show it in Figure 7, where, n is an odd.

Theorem 16. Let |S1| � 1, |S2| � n, n≥ 3 and S1↭ S2 of type
[− , +, − , +, . . .]. 8en,

(i) P↭1,n(x) �
− (x

2k− 1
)(x

2
− 3x + 2) n � 2k

x
2k

(x − 1)
2

n � 2k + 1
 ,

(ii) if n is an even, then, Spec (A↭1,n ) �
0 1 2

n − 1 1 1 ,

(iii) if n is an odd, then, Spec (A↭1,n ) �
0 1

n − 1 2 .

Proof

(i) Let n � 3 and n � 4. It is easy to see that P↭1,3(x) �

x2(x − 1)2 and P↭1,4(x) � − x3(x2 − 3x + 2). Suppose that
k≥ 3 is an even and P↭1,k− 1(x) � − x2k− 3(x2 − 3x + 2). 'en,
A↭1,k � [c1, c2, . . . , ck, ck+1], where for all i ∈ 3, 5, 7, . . . , k{ },

ci � [− 1, 1, . . . , 1√√√√√√
k− times

]t and where for all i ∈ 4, 6, 8, . . . , k{ },

ci � [1, − 1, . . . , − 1√√√√√√√√
k− times

]t. It follows that

P
↭
1,k(x) � det A

↭
1,k − I(k+1)×(k+1)X  � det B

↭
1,k , (41)

such that B↭1,k � [bij](k+1)×(k+1), where B↭1,k � [c1′, c2′, . . . ,

ck
′, ck+1′ ], where for all i ∈ 4, 6, 8, . . . , k{ }, ci

′ �
[1, − 1, . . . , − 1√√√√√√√√

(i− 2)− times

, − 1 − x√√√√
(i)th

, − 1, . . . , − 1√√√√√√√√
(k+1− i)− times

]t and for all i ∈ 3,{

5, 7, . . . , k}, ci
′ � [− 1, 1, . . . , 1√√√√√√

(i− 2)− times

, 1 − x√√√√
(i)th

, 1, . . . , 1√√√√√√
(k+1− i)− times

]t. Now,

consider D↭1,k � (dij)(k+1)×(k+1), where

dij �

bij, 1≤ j≤ k − 1,

ck
′ + ck− 1′ , j � k,

ck+1′ − ck− 1′ , j � k + 1.

⎧⎪⎪⎨

⎪⎪⎩
(42)

'us, D↭1,k � [c1′, c2′, . . . , ck− 1′ , ck
″, ck+1″], where ck

″ �

[ 0, . . . , 0√√√√√√
(k− 2)− times

, − x, − x, 0]t � (− x)[ 0, . . . , 0√√√√√√
(k− 2)− times

, 1, 1, 0]t and ck+1″ �

[ 0, . . . , 0√√√√√√
(k− 2)− times

, x, 0, − x]t � (− x)[ 0, . . . , 0√√√√√√
(k− 2)− times

, − 1, 0, 1]t. Based on

induction assumption and computations of determinant
based on column c′

′
k+1 in matrix D↭1,k , we have

P
↭
1,k(x) � det D

↭
1,k − I(k+1)×(k+1)X  � x

2
  P

↭
1,k− 2(x) 

� − x
2k− 1

  x
2

− 3x + 2 .
(43)
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In a similar way, if n is an odd, we get that
P↭1,n(x) � xn− 1(x − 1)2.

(ii) and (iii) 'ey are clear by item (i). □

Theorem 17. Let |S1| � n, |S2| � 1, n≥ 3 and S1↭ S2 of type
[− , +, − , +, . . .]. 8en,

P
↭
n,1(x) �

(− x)
2k− 1

x
2

− 2x + 2 , n � 2k,

(− x)
2k

x
2

+ x − 2 , n � 2k + 1.

⎧⎪⎨

⎪⎩
(44)

Proof. Let n � 3, n � 4. It is easy to see that
P↭3,1(x) � x2(x2 + x − 2) and P↭4,1(x) � (− x)3(x2 − 2x + 2)

Suppose that k≥ 3 is an even and P↭k− 1,1(x) �

(− x)2k− 3(x2 − 2x + 2). 'en, A↭k,1 � [c1, c2, . . . , ck, ck+1],
where for all i ∈ 3, 5, . . . , k + 1{ }, ci � [− 1, . . . , − 1√√√√√√√√

k− times

, 1]t and

where for all i ∈ 4, 6, . . . , k{ }, ci � [1, . . . , 1√√√√√√
k− times

, − 1]t. It follows

that

P
↭
k,1(x) � det A

↭
k,1 − I(k+1)×(k+1)X  � det B

↭
k,1 , (45)

such that B↭k,1 � [bij](k+1)×(k+1), where B↭k,1 � [c1′, c2′, . . . ,

ck
′, ck+1′], where for all i ∈ 4, 6, . . . , k{ }, ci

′ � [1, . . . , 1√√√√√√
(i− 1)− times

,

1 − x√√√√
(i)th

, 1, . . . , 1√√√√√√
(k− i)− times

, − 1]t and for all i ∈ 3, 5, . . . , k − 1{ }, ci
′ �

[− 1, . . . , − 1√√√√√√√√
(i− 1)− times

, − 1 − x, − 1, . . . , − 1√√√√√√√√
(k− i)− times

, 1] and for i � k + 1, ci
′ �

[− 1, . . . , − 1√√√√√√√√
k− times

, 1 − x]t. Now, consider D↭k,1 � (dij)(k+1)×(k+1),

where

dij �

bij, j � 1, . . . , k − 2, k + 1,

ck
′ + ck− 1′ , j � k − 1,

ck
′ + ck+1′ , j � k.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(46)

'us, D↭k,1 � [c1′, c2′, . . . , ck− 2′, ck− 1″, ck
″, ck+1′], where ck− 1″ �

[ 0, . . . , 0√√√√√√
(k− 2)− times

, − x, − x, 0]t � (− x)[ 0, . . . , 0√√√√√√
(k− 2)− times

, 1, 1, 0]t and ck
″ �

[ 0, . . . , 0√√√√√√
(k− 1)− times

, − x, − x]t � (− x)[ 0, . . . , 0√√√√√√
(k− 1)− times

, 1, 1]t. Based on in-

duction assumption and computations of determinant based
on column c′

′
k in matrix D↭k,1 , we have

P
↭
k,1(x) � det D

↭
k,1 − I(k+1)×(k+1)X  � x

2
  P

↭
k− 2,1(x) 

� (− x)
2k− 1

x
2

− 2x + 2 .
(47)

In a similar way, if k is an odd, we get that
P↭k,1(x) � (− x)2k(x2 + x − 2).

(ii) and (iii) 'ey are clear by item (i) and (ii). □

Theorem 18. Let |S1| � n, |S2| � 2, n≥ 3 and S1↭ S2 of type
[− , +, − , +, . . .]. 8en,

P
↭
n,2(x) �

x
2k+1

(x − 1), n � 2k,

(− x)
2k+3

, n � 2k + 1.

⎧⎨

⎩ (48)

Proof. Let n � 3. It is easy to see thatP↭3,2(x) � (− x)5 and for
n � 4, P↭4,2(x) � x5(x − 1). Suppose that k≥ 3 is an odd and
P↭k− 1,2(x) � (− x)2k+1. 'en, A↭k,2 � [c1, c2, . . . , ck+1, ck+2],
where for all i ∈ 3, 5, . . . , k + 2{ }, ci � [− 1, . . . , − 1√√√√√√√√

k− times

, 1, 1]t and

where for all i ∈ 4, 6, . . . , k + 1{ }, ci � [1, . . . , 1√√√√√√
k− times

, − 1, − 1]t. It

follows that

P
↭
k,2(x) � det A

↭
k,2 − I(k+2)×(k+2)X  � det B

↭
k,2 , (49)

such that B↭k,2 � [bij](k+2)×(k+2), where B↭k,2 � [c1′, c2′, . . . ,

ck+1′ , ck+2′ ], where for all i ∈ 3, 5, . . . , k{ },

ci
′ � [− 1, . . . , − 1√√√√√√√√

(i− 1)− times

, − 1 − x√√√√
(i)th

, − 1, . . . , − 1√√√√√√√√
(k− i)− times

, 1, 1]t and for i � k + 2,

ci
′ � [− 1, . . . , − 1√√√√√√√√

k− times

, 1, 1 − x]t and for all i ∈ 4, 8, . . . , k − 1{ },

ci
′ � [ 1, . . . , 1√√√√√√

(k− 2)− times

, 1 − x√√√√
(i)th

, 1, . . . , 1√√√√√√
(k− i)− times

, − 1, − 1]t and for i � k + 1,

ci
′ � [1, . . . , 1√√√√√√

k− times

, − 1 − x, − 1]t. Now, consider

D↭k,2 � (dij)(k+2)×(k+2), where

dij �

bij, j � 1, . . . , k − 2, k + 1, k + 2,

ck
′ + ck− 1′ , j � k − 1,

ck
′ + ck+1′ , j � k.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(50)

'us, D↭k,2 � [c1′, c2′, . . . , ck− 2′ , ck− 1″, ck
″, ck+1′ , ck+2′ ], where

ck− 1″ � [ 0, . . . , 0√√√√√√
(k− 2)− times

, − x, − x, 0, 0]t � (− x)[ 0, . . . , 0√√√√√√
(k− 2)− times

, 1, 1, 0, 0]t

and ck
″ � [ 0, . . . , 0√√√√√√

(k− 1)− times

, − x, − x, 0]t � (− x)[ 0, . . . , 0√√√√√√
(k− 1)− times

, 1, 1, 0]t.

Based on induction assumption and computations of de-
terminant based on column c′

′
k in matrix D↭k,2 , we have

P
↭
k,2(x) � det D

↭
k,2 − I(k+2)×(k+2)X  � x

2
  P

↭
k− 2,2(x)  � (− x)

2k+3
.

(51)

In a similar way, if k is an even, we get that
P↭k,2(x) � x2k+1(x − 1).

(ii) and (iii) 'ey are clear by item (i) and (ii). □

Theorem 19. Let |S1| � n, |S2| � 3, n≥ 2 and S1↭ S2 of type
[− , +, − , +, . . .]. 8en,

P
↭
n,3(x) �

− x
2k+1

x
2

− 2x + 2 , n � 2k,

x
2k+2

x
2

+ x − 2 , n � 2k + 1.

⎧⎪⎨

⎪⎩
(52)

Proof. It is similar to 'eorem 18. □

Corollary 5. Let |S1| � n, |S2| � m, n≥ 2, m≥ 1 and S1↭ S2
of type [− , +, − , +, . . .]. If m is an odd, then,
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(i) P↭n,m(x)�
− x

2k+m− 2
(x

2
− 2x+2) n�2k(k≥1)

x
2k+m− 1

(x
2
+x − 2) n�2k+1(k≥1)

 ,

(ii) If n is an odd, then, Spec (A↭n,m) �

0 − 2 1
n + m − 2 1 1 ,

(iii) If n is an even, then, Spec (A↭n,m) �

0 1 + i 1 − i

n + m − 2 1 1 ,

(iv) x∈E(An,m)x≠ 0.

Corollary 6. Let |S1| � n, |S2| � m, n≥ 2, m≥ 1 and S1↭ S2
of type [− , +, − , +, . . .]. If m is an even, then,

(i) P↭n,m(x) �
x
2k+m− 1

(x − 1) n � 2k(k≥ 1)

− (x
2k+m+1

) n � 2k + 1(k≥ 1)
 ,

(ii) If n is an odd, then, Spec (A↭n,m) �
0

n + m
 ,

(iii) If n is an even, then, Spec (A↭n,m) �
0 1

n + m − 1 1 ,
(iv) x∈E(An,m)x≠ 0.

4. Conclusions and Future Works

'e current paper has introduced a novel concept of
superhypergraphs as a generalization of graphs. 'e ad-
vantage of the notation of superhypergraphs is that it
considers the relationship between a set of elements sepa-
rately and as a whole, and this helps to eliminate the defects
of graphs and superhypergraphs. 'e notation of super-
hypergraphs can be useful tools inmodeling the real issues in
engineering sciences and other sciences, especially network-
related issues. For any given superhypergraph, the lower and
upper bound of the number of the set of their superedges is
computed and so it is computed and proved the number of
all superhypergraphs constructed on any given nonempty
set. Polynomial characteristics and eigenvalues of a matrix
that represents a superhypergraph can provide useful in-
formation about the superhypergraph. 'e concept of the
incidence matrix of superhypergraphs is presented and the
characteristic polynomial of the incidence matrix of
superhypergraphs and spectrum of superhypergraphs is
analyzed and computed. It is shown that the spectrum of
superhypergraphs depended on to flows of their maps be-
tween supervertices and the spectrum of superhypergraphs
varies with the change of direction of flows. We presented
and computed the spectrum of superhypergraphs with some
types of flows such as one-sided flows, left to the right flows,
right to left flows, and two-sided reverse flows. We hope that
these results are helpful for further studies in the theory of
graphs, hypergraphs, and superhypergraphs. In our future
studies, we hope to obtain more results regarding domi-
nation sets and domination numbers of superhypergraphs,
fuzzy superhypergraphs, and obtain some results in this
regard and their applications in the real-world.

Data Availability

'e data used to support the findings of this study are in-
cluded within this article and can be obtained from the
corresponding author upon request for more details on the
data.

Conflicts of Interest

'e authors declare that they have no conflicts of interest.

References

[1] C. Berge, Graphs and Hypergraphs, Springer, North Holland,
Netherlands, 1979.

[2] J. Hou, M. Pelillo, and H. Yuan, “Hypergraph matching via
game-theoretic hypergraph clustering,” Pattern Recognition,
vol. 125, Article ID 108526, 2022.

[3] Y. Qian, H. Meng, W. Lu, Z. Liao, Y. Ding, and H. Wu,
“Identification of DNA-binding proteins via hypergraph
based laplacian support vector machine,” Current Bio-
informatics, vol. 17, no. 1, pp. 108–117, 2022.

[4] D. Tocchi, C. Sys, A. Papola, F. Tinessa, F. Simonelli, and
V. Marzano, “Hypergraph-based centrality metrics for mar-
itime container service networks: a worldwide application,”
Journal of Transport Geography, vol. 98, Article ID 103225,
2022.

[5] P. Zhou, X. Wang, L. Du, and X. Li, “Clustering ensemble via
structured hypergraph learning,” Information Fusion, vol. 78,
pp. 171–179, 2022.

[6] X. Hao, Ji. Li, Y. Guo, Ta. Jiang, and M. Yu, “Hypergraph
neural network for skeleton-based action recognition,” IEEE
Transactions on Image Processing, vol. 30, pp. 2263–2275,
2021.

[7] M. Amin Bahmanian and M. Newman, “Extending factor-
izations of complete uniform hypergraphs,” Combinatorica,
vol. 38, no. 6, pp. 1309–1335, 2018.

[8] C. Annamalai, “Finding perfect matchings in bipartite
hypergraphs,” Combinatorica, vol. 38, no. 6, pp. 1285–1307,
2018.

[9] P. Frankl, “Resilient hypergraphs with fixed matching
number,” Combinatorica, vol. 38, no. 5, pp. 1079–1094, 2018.

[10] A. Banerjee, “On the spectrum of hypergraphs,” Linear Al-
gebra and Its Applications, vol. 614, no. 1, pp. 82–110, 2021.

[11] A. Howlader and P. Panigrahi, “On the distance spectrum of
minimal cages and associated distance biregular graphs,”
Linear Algebra and Its Applications, vol. 636, no. 1, pp. 115–
133, 2022.

[12] P. Renteln, “On the spectrum of the perfect matching de-
rangement graph,” Journal of Algebraic Combinatorics, 2022.

[13] P. Vrana, “Probabilistic refinement of the asymptotic spec-
trum of graphs,” Combinatorica, vol. 41, no. 6, pp. 873–904,
2021.

[14] M. Hamidi and A. Saeid, “Accessible spectrum of graphs,”
Applicable Analysis and Discrete Mathematics, vol. 15, no. 1,
pp. 001–026, 2021.

[15] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8,
no. 3, pp. 338–353, 1965.

[16] A. Kaufmann, Introduction Ci la 8iorie des Sous-Ensemble
Flous, Masson, Paris, France, 1977.

[17] M. Akram and A. Luqman, “Fuzzy hypergraphs and related
extensions,” Studies in Fuzziness and Soft Computing, vol. 390,
2020.

Journal of Mathematics 11



[18] H. S. Nawaz, M. Akram, and J. C. R. Alcantud, “An algorithm
to compute the strength of competing interactions in the
Bering Sea based on Pythagorean fuzzy hypergraphs,” Neural
Computing & Applications, vol. 34, no. 2, pp. 1099–1121, 2022.

[19] M. Sarwar, M. Akram, and S. Shahzadi, “Bipolar fuzzy soft
information applied to hypergraphs,” Soft Computing, vol. 25,
no. 5, pp. 3417–3439, 2021.

[20] F. Smarandache, “Extension of HyperGraph to n-Super-
HyperGraph and to plithogenic n-SuperHyperGraph, and
extension of HyperAlgebra to n-ary (Classical-/Neutro-/Anti-)
HyperAlgebra,” Neutrosophic Sets and Systems, vol. 33,
pp. 290–296, 2020.

12 Journal of Mathematics


