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�e goal of detecting change points is to recognize abrupt changes in time series data. �is is suitable, for instance, to �nd events
that characterize the �nancial market or to inspect data streams of stock returns. Regression models categorized as supervised
methods have played a signi�cant role in change-point detection. However, since change points might not be available beforehand
to train the model, and because the series data might be statistically atypical, the applicability of regression models is limited. To
avoid statistical assumptions, this study uses the grey theory, a kind of arti�cial intelligence tools, to measure the relationships
between sequences by grey relational analysis (GRA).�is paper contributes to propose an unsupervisedmethod to detect possible
change points in time series by GRA. Change-point analysis of the proposed method was performed on S&P100 stock returns.
Experimental results from evaluating the recognition accuracy rate show that the proposed method performs well compared to
other methods considered for change-point detection.

1. Introduction

A change point represents a transition between di�erent
sequences or states of a time series [1]. From the perspective
of statistics, the probability density functions of two con-
secutive sequences resulting from a change point are dif-
ferent [2, 3]. Detecting transitions in time series data has
become increasingly important. Many change-point detec-
tion (CPD) methods have been proposed for a range of real-
world problems to detect and react to interesting events,
such as climate change detection [4, 5], image analysis [6],
hydrology[2, 7, 8], medical issues [9, 10], and tourism
forecasting [11, 12]. Also, statistical methods, such as the
likelihood ratio test, the standard normal homogeneity
procedure [13], and the regression, have taken a signi�cant
role in CPD.

Learning methods applied to CPD problems can be
either supervised or unsupervised. Regression models such
as the logistic regression [14] and support vector machines
[15, 16] can be treated as a supervised approach, with which
su�cient training data with labels need to be provided for

reasonable performance [1, 17, 18]. However, it is possible
that change points are totally unknown or that there are only
few available prior to training. Furthermore, the collected
time series data might well not conform to statistical
properties such as homogeneity and a normality of errors.
As such, regression is restricted when applied to CPD. In
contrast to supervised methods, unsupervised learning uses
unlabeled data to �nd desired patterns [19]. �us, to expand
the applicability of regression, we try to use a regression-like
method to measure the relationship between response and
explanatory variables in order to develop an unsupervised
method for CPD.

Given a time series, each variable in the series can be
extended as a sliding window with a sequence of time series
variables [14, 20, 21]. It is found that the grey theory, cat-
egorized into arti�cial intelligence tools [22], can e�ectively
measure the degrees of relationships among sequences by
grey relational analysis (GRA) [23–27]. To estimate the
relationship between a reference sequence and a set of
comparative sequences, GRA treats the reference sequence
as the desired goal or the response variable [28]. Indeed,
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GRA has been widely applied to diverse real-world problems
(e.g., [29–40]). In practice, GRA assigns a so-called grey re-
lational grade (GRG) to each comparative sequence, such that
the greater the GRG, the closer the relationship to the reference
sequence. For CPD, given a reference sequence, when the
respective GRGs of time series variables are obtained from a set
of comparative sequences, we can investigate how these ratings
can be used to determine all possible change points. Insofar as it
does not require prior training, this paper contributes to
propose an unsupervised CPD method for detecting multiple
change points in time series with GRA.

Despite the usefulness of GRA, few studies have
addressed its adoption for CPD. For instance,Wong et al. [2]
used GRA to analyze change points in hydrological time
series. )e main difference between the proposed grey CPD
method and Wong et al.’s GRA-based method (WGM) is
that the proposed method can detect multiple change points
from the collected data, but only one change point could be
detected by WGM. Since multiple change points often exist
in time series data, this makes WGM restricted. To evaluate
the performance of the proposed grey CPDmethod in terms
of whether change points can be detected, several metrics
can be adopted, including the sensitivity, specificity, and G-
mean [1].

)e rest of the paper is organized as follows. Section 2
introduces regression-like GRA. Section 3 presents the
proposed grey CPD method. In Section 4, we examine the
detection performance of the proposed method using real
data from daily log returns of stocks listed on the Standard
and Poor’s 100 (S&P100) index. Section 5 presents a dis-
cussion and the conclusions of this study.

2. Regression-Like GRA

Let (x1, x2, . . ., xn) denote a time series sequence of length n,
where xi (1≤ i≤ n) represents a variable at time stamp i. In a
time series, sliding window Xi � (xi, xi+ 1, . . ., xi+ s− 1) with
length s (1≤ s≤ n) can be used instead of xi. Furthermore,
i+ s− 1 cannot be greater than n. )e reference sequence
Xi � (xi(1), xi(2), . . ., xi(s))� (xi, xi+ 1, . . ., xi+ s− 1) and m+ 1
comparative sequences, Xi, Xi+1 � (xi+ 1(1), xi+ 1(2), . . .,
xi+ 1(s))� (xi+ 1, xi+ 2, . . ., xi+ s), Xi+ 2 � (xi+ 2(1), xi+ 2(2), . . .,
xi+ 2(s))� (xi+ 2, xi+ 3,. . ., xi+ s+ 1),. . ., Xi+m � (xi+m(1),
xi+m(2), . . ., xi+m(s))� (xi+m, xi+m+ 1, . . ., xn), are prepared
for CPD, where m� n− s− i+ 1. For instance, given n� 6,
i� 3, and s� 3, it follows that m� 1 and i+ s− 1≤ n hold.
)us, X3 � {x3, x4, x5} is the reference sequence, and both X3
and X4 � {x4, x5, x6} become the comparative sequences.

From the perspective of multiple attribute decision
making, GRA can be used to evaluate a decision problem
with m+ 1 alternative and s attributes. )erefore, s should
not be smaller than two.)e relationship betweenXi on xi(k)
and Xj (i≤ j≤ i+m+ 1) on xj(k) (1≤ k≤ s) can be derived by
the grey relational coefficient (GRC), denoted by ξk(Xj, Xi),
as follows [24]:

ξk Xi, Xj  �
Δmin + ρΔmax

Δijk + ρΔmax
, (1)

where ρ (0≤ ρ≤1) is the discriminative coefficient and

Δmin � min
j

min
l

xi(l) − xj(l)


, i≤ j≤ i + m + 1, i≤ l≤ s,

Δmax � max
j

max
l

xi(l) − xj(l)


, i≤ j≤ i + m + 1, i≤ l≤ s,

Δijk � xi(k) − xj(k)


.

(2)

It is noted that ρ is often specified as 0.5 [23–25], but this
is apparently not an optimal setting.

)e overall relationship, r(Xi, Xj), between Xi and Xj can
be obtained by aggregating ξk(Xi, Xj) as follows:

r Xi, Xj  �
1
s



s

k�1
ξk XiXj . (3)

)is means that each variable in a sequence is of equal
weight. Xi and Xj are similar to dependent and independent
variables in traditional regression, and r(Xi, Xj) is analogous
to the regression coefficient of Xj to Xi.

3. The Proposed Grey CPD Method

r(Xi,Xj) is the foundation of the proposed grey CPDmethod.
Among the set of variables {xi, xi+ 1, . . ., xi+m}, CPD can be
conducted by inspecting the absolute ratio of variety with
respect to xj, δ(Xj), formulated as.

δ Xj  �
r Xi, Xj  − r Xi, Xj+1 

r Xi, Xj 




, (4)

δ(Xj) also measures the degree of variety of r(Xi, Xj). If xq is a
candidate change point, then δ(Xq) has the maximum value
among δ(Xk) such that

Xq � argmax δ Xk( , (5)

and vice versa. xj can be judged as a change point when
δ(Xq)≥ θ, where θ denotes a nonnegative cut value. )e
greater the value of θ, the fewer possible change points that
can be discovered.

)enext possible change point can be detected among {xq+1,
xq+2, . . ., xq+m}, where m� n− s− q, since the previous can-
didate changes point (xq). In practice, Xq+1� (xq+1(1), xq+1(2),
. . ., xq+1(s))� (xq+1, xq+2, . . ., xq+ s) can serve as the reference
sequence, and Xq+1i, Xq+2� (xq+2(1), xq+2(2), . . .,
xq+2(s))� (xq+2, xq+3, . . ., xq+ s+1),Xq+3� (xq+3(1), xq+3(2), . . .,
xq+3(s))� (xq+3, xq+4, . . ., xq+ s+2), . . .,
Xq+m+1� (xq+m+1(1),xq+m+ 1(2), . . ., xq+m+ 1(s))� (xq+m+ 1,
xq+m+ 2, . . ., xn) serve as comparative sequences. )en, i is
set to q+ 1. Given the sequence length s between s1 and s2
(1< s1< s2), this CPD process is iteratively performed until
i+ s− 1> n for each possible value of ρ ranging from 0 to 1.
Figure 1 demonstrates the flowchart of the proposed grey
CPD method.

4. Empirical Results

4.1. CPD Methods Considered. Since the main applications
for GRA are alternative evaluation and clustering, two
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unsupervised clustering methods were considered in the
empirical analysis with distinct features for CPD methods,
namely, Wong et al.’s GRA-based method (WGM) [2], the
clustering-based change detector (CBCD) [41], and the
piecewise linear function. )ese methods are briefly de-
scribed as follows.

4.1.1.WGM. WGMwas originally designed to detect change
points in hydrological time series. )e method considers the
reference sequence X1 � (x1, x2, . . ., xs), and n− 2s+ 1
comparative sequences, Xs+ 1 � (xs+ 1, xs+ 2, . . ., x2s),
Xs+ 2 � (xs+ 2, xs+ 3, . . ., x2s+ 1), . . ., and Xn− s+ 1 � (xn− s+ 1,

xn− s+ 2, . . ., xn). After computing r(X1, Xs+ 1), r(X1, Xs+ 2),
. . ., and r(X1, Xn− s+ 1), the relational degree of X1 to all
comparative sequences is defined as

r(s) �
1

n − 2s + 1


n−2s+1

k�1
r X1, Xk( . (6)

Subsequently, X1 is replaced with (x1, x2, . . ., xs+1),
whereas Xs+ 2 � (xs+ 2, xs+ 3, . . ., x2s+ 2), Xs+ 3 � (xs+ 3, xs+ 4,
. . ., x2s+ 3), . . ., and Xn− s � (xn− s, xn− s+ 2, . . ., xn) become
comparative sequences, and r(s+ 1) can be thus obtained
from n− 2s− 1 comparative sequences on average. )is
process is performed until r(n/2) is obtained. CPD can then

False

True

False

False

True

Generate Xi and m + 1 comparative sequences

Compute the GRG for each comparative sequence

δ (Xq) ≥ θ?

Data collection and preparation

Start

Compute the absolute ratio of variety

Identify the candidate change point xq

Set ρ = 0 

i + s – 1 > n?

Set i = q+1

Detect xq as a
change point

ρ > 1?

Increase ρ by 0.01

Set i = 1

Set s = s1–1

Increase s by 1

s > s2? True End

True

Figure 1: Flowchart of the proposed grey CPD method.
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be conducted by inspecting the relative variety ratio of the
relational degree

η(k) �
r(k) − r(k + 1)

r(k)




× 100, (7)

where k� s, s+ 1, . . ., n/2−1. WGM detects xj as a change
point when η(j) satisfies

j � arg
k

max η(k). (8)

It is obvious that only a single change point can be
detected in a time series sequence with WGM, regardless of
the length of the sequence. Moreover, generating compar-
ative sequences for a time series variable with the proposed
method differ from WGM. However, since multiple change
points often exist in time series data, WGM was not con-
sidered in the empirical study.

4.1.2. CBCD. )e CBCD performs CPD by K-means clus-
tering. Initially, a reference window (x1, x2, . . ., xs) is given
for which the K clusters are created. )e centroid cp and the
radius rp of the cluster p (1≤ p≤K) can be computed as
follows:

cp �
1
np



np

k�1
xp,k,

rp �

���������������

1
np



np

k�1
xp,k − cp 

2




,

(9)

where np denotes the size of the cluster p, and xp,k represents
the sample k in the cluster p. )en, a current window (x2, x3,
. . ., xs+ 1) is generated that replaces x1 with a new incoming
xs+ 1, and the distance between xs+ 1 and cp is computed as

d xs+1, cp  � xs+1 − cp 
2
. (10)

If d(xs+ 1, cp)> rp, then xs+ 1 is not a member of the
cluster p.

As a result, xs+ 1 can be considered a change point when
it cannot be categorized into any cluster. At this time, (x2, x3,
. . ., xs+ 1) becomes the reference window, and K new clusters
can be created from the new reference window. Subse-
quently, a current window catches xs+ 2 to generate (x3, x4,
. . ., xs+ 2), and xs+ 2 is inspected with regard to whether it is a
change point. )is process terminates after checking xn.

4.1.3. Piecewise Linear Function. )e piecewise linear
function has been used for CPD by finding the joints of the
pieces by making the approximation function continuous
[42]. Li and Yu [43] proposed piecewise regression analysis
that requires users to prespecify the number of change
points although this might well be unknown beforehand.
Keogh et al. [44] presented several useful CPD methods
that do not entail prespecifying the number of change
points, among which the bottom-up method seems to
perform best. Since the bottom-up method determines a

piece to approximate each state, the property of continuity
in the approximation function does not exist. We slightly
revise the bottom-up method to conform to the perspective
of continuity.

At first, a piece denoted seg(xi− 1, xi) is generated for
(xi− 1, xi) by connecting xi− 1 and xi (2≤ i≤ n), and the cost of
merging each pair of adjacent pieces is then calculated. For
instance, if the cost of merging seg(xa, xa+ 1) and seg(xa+ 2,
xa+ 3) is the lowest, and if it is less than a prespecified
merging threshold, then a new piece seg(xa, xa+ 3) can be
generated by deleting seg(xa, xa+ 1) and seg(xa+ 2, xa+ 3). )e
cost of generating seg(xa, xa+ 3) is computed by summing all
the r between seg(xa, xa+ 3) and xa, xa+ 1, xa+ 2, xa+ 3.)e cost
of merging seg(xa− 2, xa− 1) and seg(xa, xa+ 3) and that of
merging seg(xa, xa+ 3) and seg(xa+ 4, xa+ 5) can be computed.
)en, the method iteratively merges the pair with the lowest
cost until the cost of merging any pair of adjacent pieces is
greater than the threshold.

A newmethod, called the sliding window and bottom-up
(SWAB) method, was developed for online detection [44].
SWAB efficiently produces results that are identical to those
of the bottom-up method. We used the SWAB to implement
the piecewise linear function, but we omit an introduction to
this method for simplicity.

4.2. CPD Performance Evaluation. In order to compare al-
ternative CPD methods, appropriate measures of perfor-
mance are needed. Since the ratio of change points to total
data is small, CPD is typically involved in a learning problem
with an unbalanced class distribution. When treating CPD
as one kind of pattern classification problem, the G-mean
ends with a commonly used indicator of CPD performance
[16].

A confusion matrix used to evaluate the performance
Table 1 of a CPD method is represented as follows.

G-mean then utilizes both sensitivity and specificity
measures to assess the performance, where the sensitivity
refers to the ratio of correctly recognized change points, and
the specificity refers to the ratio of correctly recognized
nonchange points.

G − mean �

�������������������

Sensitivity × Specificity


, (11)

where sensitivity and specificity are formulated as

Sensitivity �
TP

TP + FN
,

Specificity �
TN

FP + TN
.

(12)

4.3. Application to S&P100 Stock Returns

4.3.1. Data Collection and Preparation. Empirical studies
were conducted using a real dataset to compare the CPD
ability of the proposed method to CBCD and SWAB. )e
task of CPD was performed on log-returns of the daily
closing values of stocks consisting of the S&P100 index.
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Change points found in stock returns can better indicate events
that characterize the financial market. In terms of 88 series
obtained from different institutions, Barigozzi et al. [45] uti-
lized time series factor models to derive multiple primary
change points in daily log returns between 4 January 2000 and
10 August 2016. )e change points they discovered can be
taken as true change points. Furthermore, among these 88
series, two representative series mentioned in [45]–namely,
Goldman Sachs (GS) and Bank of America (BAC)–were taken
into account. All data are available from Yahoo Finance.

)e aim of the empirical study was to examine theG-mean
of the CBCD, SWAB, and the proposed grey CPD method by
carefully tuning parameter specifications. Because time periods
that include too few or no change points are unhelpful for
finding parameter specifications, data from 2004–2006 and
2011–2016 were excluded from the GS and BAC series.
)erefore, 8 yearly time series remained for GS and BAC with
31 change points (indicated by dates for each series).

Besides, since change points are correlated with events, it is
reasonable to analyze the change points and their corre-
sponding events by month, rather than the specific days re-
ported in [45]. For instance, the burst of the dot-com bubble
occurred between March 2000 and October 2002. )us, 31
change points originally indicated by a specific date were re-
duced to 21 change points indicated by month. For instance,
both 4 May 2000 and 10 May 2000 were detected as change
points, but we replaced these two days with a single change
point: May 2000.

4.3.2. CPD Results. )e programs for implementing the
proposed grey CPD method were coded in Delphi 7.0 on a
personal computer with an Intel Core i3-8100 CPU,
Microsoft Windows 10, 8GB RAM, and a clock rate of
3.60GHz. Two parameters significantly influenced the
performance of the proposed grey CPD method with the
eight time segments: the sequence length s and the cut value
θ. For the segment k (1≤ k≤ 8), given s between s1 and s2, θ
ranging from zero to 6 was carefully tuned so as to maximize
the G-meank, as follows:

G − meank �

���������������������

Sensitivityk × Specificityk



, (13)

where Sensitivityk and Specificityk denote the sensitivity and
specificity for the segment k, respectively. For instance, G-
mean2, Sensitivity2, and Specificity2 are associated with the
time segment between January 2001 and December 2001.
)e maximum G-mean2 value can be found by tuning θ.
Finally, the optimal results from all eight segments were used
to summarize the overall CPD results. )e results of the
proposed method on the GS series are summarized in Ta-
ble 2. G-mean = 0.713 was the best performance obtained by
the proposed method.

Table 2 shows that the performance of the proposed
method can be improved by choosing appropriate s1 and s2.
)erefore, the proposed method was further applied to the
BAC series by finding appropriate parameter specifications
within the range of s (3≤ s≤ 12). As a result, when s1 � 5 and
s2 �12, the sensitivity and specificity were 0.714 and 0.72,
respectively, obtaining the best G-mean (0.717) of the
proposed method on the BAC series.

(1) Comparison with the CBCD. To improve CPD results, the
rule of determining if xs+ 1 is not a member of the cluster p
should be revised. In our design, if d(xs+ 1, cp) is greater than
a user-specified radius threshold rather than rp, then xs+ 1 is
not a member of the cluster p, and vice versa. By contrast, the
CBCD is sensitive to the number of clusters K, the sequence
length s, and the radius threshold. With radius thresholds of
0.005 and 0.01, the performance values of the CBCD on the
GS series are depicted in Figures 2–7, in which the dashed
lines denote the performance values of the proposed
method. )e performance values on the BAC series are
depicted in Figures 8–13. Because the bestG-mean on the GS
series was 0.598 with K� 4, s� 15, and a radius threshold of
0.01, and 0.556 on the BAC series with K� 3, s� 5, and a
radius threshold of 0.01, the proposed method outperformed
the CBCD in terms of the G-mean.

Moreover, a greater radius threshold (0.01) can lead to
the discovery of fewer change points with higher specificity.
By contrast, a lower radius threshold (0.005) leads to better
sensitivity at the expense of specificity.)is is the reason why
the sensitivity and specificity of the proposed method were
considerably superior to those of the CBCD in the cases of
higher or lower radius thresholds, respectively.

(2) Comparison with the SWAB. )e merging threshold
significantly influenced the performance of SWAB. )e
performance of SWAB at different merging thresholds on
the GS and the BAC series is depicted in Figures 14 and 15,
respectively. )e greater the merging threshold, the fewer
the number of change points that can be discovered, along
with lower sensitivity and higher specificity. )e best G-
mean on the GS series was 0.690 with a merging threshold of
1.8 and 0.661 on the BAC series with a merging threshold of
1.9. )erefore, in terms of the best G-mean, the proposed
method outperformed the SWAB with both series.

Table 1

True change points True non-change points
Classified as change points True positive (TP) False positive (FP)
Classified as nonchange points False negative (FN) True negative (TN)

Table 2: Performance evaluation of the proposed method for the
GS series.

(s1, s2) Sensitivity Specificity G-mean
(3, 5) 0.762 0.667 0.713
(3, 8) 0.810 0.573 0.681
(3, 12) 0.810 0.547 0.665
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5. Discussion and Conclusion

In the financial market, CPD can be applied to discover
abnormal volatility in a stock returns series. Using the de-
tected change points, we can find and account for events that
characterize this volatility. )is can help relevant authorities
examine or set upmanagerial mechanisms to cope with these
extraordinary situations. To correctly identify change points,
it is crucial to develop an accurate and high-performance
CPD method. )is paper addresses the case where variables
in the collected series cannot be labeled because the change
points are unknown. In such a case, traditional regression
methods cannot perform CPD. )us, we proposed an un-
supervised regression-like method using GRA. GRA is a
kind of multiple attribute decision-making methods, which
are capable of effectively evaluating the overall performance
of alternatives [46].

)ere are several advantages to using the proposed grey
CPD method. First, there are no constraints on the time
series data, such as the stationarity, and the data do not need
to be independent and identically distributed. Second, it is
not necessary to prespecify the number of change points.
Finally, the proposed method is sufficiently simple to im-
plement as a program without any statistical assumptions.
Empirical results on two representative series of stock
returns were encouraging in terms of the performance
obtained using the proposed grey CPD method. )is
demonstrates that using GRA to measure the relationship
between response and explanatory time series variables can
boost the performance of the proposed method. It should be
noted that both the CBCD and SWAB could obtain better
sensitivity than the proposed method, but only at the ex-
pense of specificity for instance.

(1) For the GS series, the best sensitivity of the CBCD
was 0.905 with K� 3, s� 5, and a radius threshold of
0.005. )at of the SWAB was 1 with a merging
threshold of 0.5. )e specificity of the former and the
latter was 0.36 and 0.053, respectively.

(2) For the BAC series, the best sensitivity of the CBCD
was 0.762 with K� 4, s� 20, and a radius threshold of
0.005. )at of the SWAB was 0.857 with a merging
threshold of 0.5. )e specificity of the former and the
latter was 0.347 and 0.147, respectively.

)is is the reason why the G-mean, which combines
sensitivity and specificity, is commonly used to measure the
performance of CPD methods from the perspective of
classification. As such, it is not possible to conclude whether
any classification method was “best” insofar as there is no
such thing as a best classifier [47].

)is study motivated us to explore further studies. First,
the proposed grey CPD method can be further applied to
other real-world problems. For instance, it can be used to
discover abnormal trades in the stock market. Detecting
anomalies in the volatility of stock prices can provide reg-
ulators with useful information about investments and
prevent crime. We will explore this application in future
research. Furthermore, the GRG was implemented using a
weighted-average method, where noninteraction was as-
sumed among the attributes involved. Nevertheless, the
assumption of additivity may not be realistic with many
applications [48]. )us, our future work will explore the
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Figure 11: Sensitivity of CBCD on BAC with a threshold 0.005.
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development of a nonadditive grey CPD method using
nonadditive GRG with fuzzy integral [39, 49] and check the
resultant impact on performance. It should be noted that the
fuzzy integral has proven to be effective in dealing with
performance evaluation and preferential dependence among
attributes [50–52].
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