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*e graphical representation of finite groups is studied in this paper. For each finite group, a simple graph is associated for which
the vertex set contains elements of group such that two distinct vertices x and y are adjacent iff x2 � y2. We call this graph an
equal-square graph of the finite group G, symbolized by ES(G). Some interesting properties of ES(G) are studied. Moreover,
examples of equal-square graphs of finite cyclic groups, groups of plane symmetries of regular polygons, group of units U(n), and
the finite abelian groups are constructed.

1. Introduction

Graphs are studied very extensively by taking into account
some characteristics and properties, which are used to
prepare set of vertices and constructing edges. Almost all
fields of sciences and social sciences are studied in the
prospect of theory of graphs. Even the abstract areas of
mathematics are linked with graphs. Discrete mathematics,
combinatorics, and number theory play a very significant
role in this study; also, concepts of abstract algebraic
structures are studied with the help of graphs.

Visualizing groups using graphs is a rapidly growing
trend in algebraic graph theory [1–3]. *e automorphism
group of a graph and the Cayley graph of a group motivates
to study the interplay between graphs and groups, see [4–8].
*ere exists numerous ways to associate a graph with certain
groups by taking subgroups or elements as vertices, and two
vertices are adjacent iff they satisfy a certain relation. Such
graphs are characterized through the set of vertices and the
adjacency relation between the vertices. In recent years,
graph theory and its applications associated to algebraic
structures are studied extensively. To contribute in such
a commendable area, we introduce here a new type of
combination. We construct a graph whose vertex set is

a finite groupG and has two distinct vertices a and b adjacent
iff a2 � b2.We call this graph an equal-square graph of G and
will be represented by ES(G).

A large amount of literature is devoted to study the
graphs associated to finite groups, for instance, commuting
graphs [9–15], noncommuting graphs [16, 17], intersection
graphs [18], prime graphs [19–21], conjugacy class graphs
[22], power graphs [23–25], inverse graphs [26], quadratic
residues graphs [27], order divisor graphs [28], and square
graphs [29].

For reader’s facilitation, some basic terminologies are
recalled here from [30–32]. *e dihedral group, symbolized
by Dn, is the group of plane symmetries of an n-sided regular
polygon (n≥ 3). *is group has order 2n and is denoted by
Dn � 〈u, v|un � v2 � (uv)2 � e〉. *e group of units of the
ring Zn is symbolized by U(n), i.e., U(n) � y ∈

Zn|(y, n) � 1}. For some fixed prime p, a group G is called
a p-group if, for each x ∈ G, we have |x| � pk for some
k ∈ Z+. For some fixed prime p, an abelian p-group of
exponent p is called elementary abelian p-group. A finite
elementary abelian p-group is isomorphic to Zk

p � Zp⊕
Zp⊕ · · ·⊕Zp (direct sum of k-copies), for some k ∈ Z+.
Elementary abelian 2-groups are sometimes called Boolean
groups, cf. [33].
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A graph G that contains only vertices without any edge is
known as an empty graph. Two vertices having an edge or
edges between them are termed as adjacent vertices. An
undirected graph G that does not contain parallel edges,
loops, or multiple edges is called a simple graph. A simple
graph of order n in which every two vertices are adjacent to
each other is called the complete graph, symbolized by Kn. A
graph in which no edges cross each other is called a planar
graph. If we can partition the vertex set of a graph G into two
nonempty disjoint subsets such that each edge has one vertex
in each partition, then the graph G is called a bipartite graph.
*e disjoint union of graphs G1 and G2 is the graph G1 + G2
such that V(G1 + G2) � V(G1)∪V(G2) and E(G1 + G2) �

E(G1)∪E(G2). *e graph kG � G + G + · · · + G denotes the
disjoint union of k copies of graph G.

Our goal in this work is to associate a finite group with
new graph representation. Corresponding to each finite
group G, we will denote by ES(G), the equal-square graph
of G, whose vertex set consists of all the elements of G such
that two distinct vertices a and b are adjacent iff a2 � b2

(Definition 1). Some examples in this regard are
ES(Z2⊕Z2) � K4 (Example 1) and ES(D6) � K8 + 2K2
(Example 3). In Section 2, we describe some basic prop-
erties of ES(G) and investigate that when ES(G) is con-
nected or complete. We obtain the following results in this
section: |G| is odd iff ES(G) is empty (*eorem 1). ES(G) is
connected iff ES(G) is complete iff G is elementary abelian
2-group (*eorem 2). We conclude that, for every finite
group G, ES(G) is either a complete graph or it is a disjoint
union of complete graphs (Remark 2). In Section 3, we
completely describe the equal-square graph of cyclic
groups. We obtain the following results in this section:
ES(G) � nK2, for every cyclic group G of order 2n (*e-
orem 3). However, in general, the converse is not true
(Remark 3). For every prime p≠ 2, ES(F∗pn ) � (pn − 1)/2K2
(Corollary 1). In Section 4 we describe the equal-square
graph of the dihedral group. We prove that
ES(Dn) � Kn+1 + (n − 1)K1 if n is odd and ES(Dn) � Kn+2 +

((n − 2)/2)K2 if n is even (*eorem 4). In Section 5, we
characterize the equal-square graph of the group of units
U(n) (*eorems 5–7).

In Section 6, we completely describe the equal-square
graph of the finite abelian groups. Mainly, we obtain the
following results in this section. If Gi � 〈ai〉 are cyclic
groups of order ni, for each 1≤ i≤ k, then ES(⊕ki�1Gi) �

(n1n2 · · · nk/2r)K2r , where r denotes the number of even
integers in the set n1, n2, . . . , nk  (*eorem 9). If G �

Z2β1⊕ · · ·⊕Z2βt⊕Zp1
β11⊕ · · ·⊕Zp1

β1t1
⊕ · · ·⊕Zpk

βk1⊕ · · ·

⊕Zpk
βktk

, where β1 ≥ β2 ≥ · · · ≥ βt ≥ 1 with β1 + β2
+ · · · + βt � α and βi1 ≥ βi2 ≥ · · · ≥ βiti

≥ 1 with
βi1 + βi2 + · · · + βiti

� αi, for each i; 1≤ i≤ k, then ES(G) �

(|G|/2t)K2t (*eorem 10). If G is an abelian group of finite
order |G| � 2αλ, provided λ is odd and α≥ 1, then we will
have ES(G) � (|G|/2t)K2t for each partition α � d1 + d2 +

· · · + dt of the integer α of length t (Corollary 2). If G is an
abelian group of finite order |G| � 2αλ, provided λ is odd and
α≥ 1, then G can have α distinct (nonisomorphic) equal-
square graphs (Corollary 3). All possible equal-square
graphs of an abelian group of order 36000 are described

(Example 6 and Table 1). *e equal-square graphs of small
order groups are described at the end (Example 7 and
Table 2).

*roughout this paper, all the groups will be finite.
Moreover, all the graphs will be finite and simple. Any
unexplained material will be standard as in [30–32].

2. Properties of ES(G)

*is section presents some basic properties of ES(G). We
determine that the groups with odd order have empty equal-
square graphs. Furthermore, we investigate that when ES(G)

is connected or complete. We start by introducing the equal-
square graph ES(G) and some of its examples.

Definition 1. Let G be a finite group with group operation
written multiplicatively. A graph will be called an equal-
square graph if its vertex set consists of entire elements of G

and has two distinct *e equal-square graph ES(Z2⊕Z2) of
the Klein group Z2⊕Z2-square graph of the group G.

Example 1. *e equal-square graph ES(Z2⊕Z2) of the
Klein − 4 group Z2⊕Z2 is presented in Figure 1.

Example 2. *e dihedral group D6 � 〈a,b|a6 � b2 � (ab)2 �

e〉 of order 12 is obtained by the symmetries of a regular
hexagon in the plane. *e equal-square graph ES(D6) of D6
is as in Figure 2.

Example 3. *e dihedral group D4 � 〈a,b|a4 � b2 � (ab)2 �

e〉 (group of symmetries of a square in plane) and the group
of quaternions Q8 have the same equal-square graph, as
shown in Figure 3.

Theorem 1. A group G has odd order iff ES(G) is empty.

Proof. Suppose G has odd order, and let x2 � y2, for some
x, y ∈ G. *en, |x| � m1 and |y| � m2, for some odd positive
integers m1 and m2. We can assume that 2≤m1 ≤m2. Now,
x2 � y2 implies that x2m2 � y2m2 � e, and hence, m1|2m2.
Since m2 is odd, so m1|m2. Similarly, m2|m1, and hence,
m1 � m2. We can write m1 � m2 � 2k + 1 for some positive
integer k. However, then, x � xe � xx2k+1 � (x2)k+1 �

(y2)k+1 � y2k+1y � ey � y. Hence, ES(G) is empty.
Conversely, suppose ES(G) is empty. If |G| is even,

Cauchy’s theorem ensures that G has an element of order 2
which is adjacent to e, a contradiction. □

Remark 1. We have seen in the above result that the groups
having odd order have an empty equal-square graph.
*erefore, we are mostly interested in the equal-square
graph of the groups having even order.

Theorem 2. 0e following assertions are equivalent for
a group G with |G|≥ 2.

(a) ES(G) is connected
(b) ES(G) is complete
(c) G is elementary abelian 2-group
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Proof
(a)⇒ (b): suppose ES(G) is connected. *en, for each

a ∈ G, there exist a1, a2, , , , an ∈ G such that
a − a1 − a2 − · · · − an − e. *is implies that
a2 � a2

1 � a2
2 � · · · � e2 � e. We conclude that a2 � e, for

each a ∈ G, and hence, x2 � y2, for all x, y ∈ G. It follows
completeness of ES(G).

(b)⇒ (c): if ES(G) is complete, then x2 � y2, for all
x, y ∈ G. In particular, x2 � e, for all x ∈ G. *is implies that
each nonidentity element in G has order 2. *is implies that
G is abelian and hence an elementary abelian 2-group.

(c)⇒ (a): G is elementary abelian 2-group. *en, each
nonidentity element in G has order 2. *is implies that
x2 � e, for all x ∈ G. Hence, each vertex in G is adjacent to e

and so ES(G) is connected. □

Example 4. *e equal-square graph of an elementary abelian
2-group is given by

ES Z2⊕Z2⊕ · · ·⊕Z2√√√√√√√√√√√√√√
m− times

⎛⎝ ⎞⎠ � K2m . (1)

Remark 2. Let G be a finite group. If we define
G2 � x2|x ∈ G , then clearly 1≤ |G2|≤ |G|. Moreover, if
|G2| � 1, i.e., G2 � e{ }, then ES(G) is a complete graph. If
|G2| � 2, then ES(G) is a disjoint union of two complete
graphs. If |G2| � 3, then ES(G) is a disjoint union of three
complete graphs and so on. If |G2| � |G|, then ES(G) is
empty, i.e., ES(G) � |G|K1. We conclude that, for a finite
group G, ES(G) is either a complete graph or it is a disjoint
union of complete graphs.

3. Equal-Square Graph of Cyclic Groups

In this section, we completely describe the equal-square
graph of cyclic groups. Recall that G1 + G2 denotes the
disjoint union of graphs G1 and G2. Moreover, kG � G +

G + · · · + G denotes the disjoint union of k copies of graph G.

Theorem 3. For a cyclic group G of order 2n, ES(G) � nK2.

Proof. Let G � 〈a〉 � e, a, a2, a3, . . . , an, . . . , a2n− 1 . *en,
(ai)2 � (an+i)2, where 0≤ i≤ n − 1. Now, let ai be adjacent to
aj such that 0≤ i≤ j≤ 2n − 1, then (ai)2 � (aj)2⇒a2i �

a2j⇒a2(j− i) � e⇒|a| divides 2(j − i)⇒2n|2(j − i)⇒ n|(j −

i), 0≤ j − i≤ 2n − 1⇒j − i � n or 0, then j � i + n or j � i.
*erefore, each ai is adjacent to only one vertex, i.e., an+i,
where 0≤ i≤ n − 1. Hence, ES(G) � nK2. □

Table 2: Equal-square graphs of small-order groups.

Order Groups Equal-square graphs
1 e{ } K1
2 Z2 K2
3 Z3 3K1
4 Z4,Z2⊕Z2 2K2, K4
5 Z5 5K1
6 Z6, S3 3K2, K4 + 2K1
7 Z7 7K1
8 Z2⊕Z2⊕Z2,Z2⊕Z4,Z8, D4,Q8 K8, 2K4, 4K2, K6 + K2
9 Z9,Z3⊕Z3 9K1
10 Z10, D5 5K2, K6 + 4K1

Table 1: Equal-square graph of abelian group of order 36000.

Partitions of α � 5 Length of
partitions Equal-square graph

1 + 1 + 1 + 1 + 1 5 (36000/25)K25 � 1125K32
1 + 1 + 1 + 2 4 (36000/24)K24 � 2250K16
1 + 1 + 3, 2 + 2 + 1 3 (36000/23)K23 � 4500K8
1 + 4, 2 + 3 2 (36000/22)K22 � 9000K4
5 1 (36000/2)K2 � 18000K2

b

a3

e

ab a2b

a5b

a3b

a4b

a

a4 a5

a2

Figure 2: ES(D6).

(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 1: ES(Z2⊕Z2).

Figure 3: ES(D4) � ES(Q8).
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Remark 3. *e group Z3⊕Z6 is not cyclic, but
ES(Z3⊕Z6) � 9K2. *is implies that the converse of the
above statement in general does not hold.

Corollary 1. If p≠ 2 is prime and Fpn denotes the finite field
of order pn, then

ES F
∗
pn  �

p
n

− 1
2

K2. (2)

Proof. Apply*eorem 3 and the fact that the multiplicative
group F∗pn of every finite field Fpn is a cyclic group, cf.
*eorem 22.2 of [31]. □

4. Equal-Square Graph of Dihedral Groups

In this section, we completely describe the equal-square
graph of the group of plane symmetries of n-gon (n≥ 3).

Theorem 4. 0e equal-square graph of the dihedral group
Dn � 〈α, β|αn � β2 � (αβ)2 � e〉 is given by

ES Dn(  �

Kn+2 +
n − 2
2

 K2, if n is even,

Kn+1 +(n − 1)K1, if n is odd.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

Proof. Suppose n is even. Let |ak| � 2, for some k, where
1≤ k≤ n − 1. *en, n/(n, k) � 2 implies that k � n/2. Also,
|aib| � 2, for all i, 0≤ i≤ n − 1. *us, we have total n + 1
elements of order 2, namely, an/2, b, ab, a2b, , a3b, . . . , an− 1b.
Hence, by joining all these to identity, we get a complete
subgraph Kn+2 in ES(Dn). Now, we are left with n − 2 el-
ements, namely, a1, a2, . . . , a(n/2)− 1, a(n/2)+1, . . . , an− 1 in Dn.
Now, by taking squares of all these remaining elements, we
see that a is adjacent to a(n/2)− 1, a2 is adjacent to a(n/2)+1, a3 is
adjacent to a(n/2)+3, and so on. In this way, we get disjoint
union of (n − 2)/2 copies of K2 in ES(Dn). Hence,
ES(Dn) � Kn+2 + ((n − 2)/2)K2.

Now, suppose that n is odd. *en, no power of a has
order two. *us, the only elements of order two will be
b, ab, a2b, , a3b, . . . , an− 1b, which by joining to identity, form
a complete subgraph Kn+1 in ES(Dn). *en, we are left with
n − 1 elements, namely, a1, a2, . . . , an− 1 in Dn. Suppose
(ai)2 � (aj)2, for some i≠ j, with 1≤ i, j≤ n − 1. *en,
n|2(i − j). Since n is odd, so n|i − j. *is implies that
ai− j � e, and thus, ai � aj. Hence, ES(Dn) �

Kn+1 + (n − 1)K1. □

5. Equal-Square Graph of the Group of
Units U(n)

*is section completely describes the equal-square graph of
the group of unit elements of the ringZn. By using the results
proved in [27], we can completely describe the equal-square
graph of the group of unit elements of the ringZn as follows.

Theorem 5. Let U(n) be the group of units of the ring Zn.

(a) ES(U(2)) is the empty graph
(b) ES(U(22)) � K2

(c) ES(U(2s)) � 2s− 3K4, for each integer s≥ 3
(d) ES(U(p)) � ((p − 1)/2)K2, for each prime p≠ 2
(e) ES(U(ps)) � ((ps− 1(p − 1))/2)K2, for each prime

p≠ 2 and for each positive integer s

Proof. Apply *eorem 2.1 of [27]. □

Theorem 6. Let n � p
α1
1 · p

α2
2 · · · p

αm
m ; pis are distinct odd

primes and αis ∈ Z+. 0en,

ES(U(n)) �
ϕ(n)

2m K2m . (4)

Proof. Apply *eorem 2.2 of [27]. □

Theorem 7. Let n � 2s · p
α1
1 · p

α2
2 · · · p

αm
m ; pis≠ 2 are distinct

primes and αis≥ 1, s≥ 0 are integers. 0en,

ES(U(n)) �

ϕ(n)

2m K2m , if s � 0 or 1,

ϕ(n)

2m+1K2m+1 , if s � 2,

ϕ(n)

2m+2K2m+2 , if s≥ 3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Proof. Apply *eorem 2.3 of [27]. □

6. Equal-SquareGraphof FiniteAbelianGroups

In this section, we completely describe the equal-square
graph of the finite abelian groups. Let Γ be the collection of
all finite simple graphs (including the empty graph). First, we
recall some definitions and results from [34].

Some basic properties of the strong product are recalled
below.

Proposition 1 (see Sections 4.1, 4.2, and 5.2 of [34]). Let “+”
and “⊠” be the operations of disjoint union and strong product
defined on Γ, respectively. 0e following assertions hold.

(a) G1 ⊠G2 � G2 ⊠G1, for all G1, G2 ∈ Γ, i.e., ⊠ is
commutative

(b) G1⊠(G2 ⊠G3) � (G1 ⊠G2)⊠G3, for all
G1, G2, G3 ∈ Γ, i.e., ⊠ is associative

(c) G1⊠(G2 + G3) � (G1 ⊠G2) + (G1 ⊠G3), for all
G1, G2, G3 ∈ Γ, i.e., ⊠ is distributive over +

(d) K1 ⊠G � G, for all G ∈ Γ, i.e., the trivial graph K1 is
a unity in Γ

Definition 2 (see Sections 4.2 and 5.2 of [34]). For graphs
G1, G2, G3, . . . , Gk in Γ, the strong product
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⊠ki�1Gi � G1⊠G2⊠ · · ·⊠Gk ∈ Γ is the graph whose vertex set is
the Cartesian product V(G1) × V(G2) × · · · × V(Gk) such
that two distinct vertices (a1, a2, . . . , ak) and (b1, b2, . . . , bk)

are adjacent iff aibi ∈ E(Gi) or ai � bi, for each i; 1≤ i≤ k.
*e kth power of a graph G ∈ Γ with respect to ⊠ is sym-
bolized by G⊠,k and is defined as G⊠,k � G⊠G⊠ · · ·⊠G√√√√√√√√√√

k− times
.

Lemma 1. rKm⊠sKn � rsKmn, for all m, n, r, s ∈ Z+.

Proof. We have Km⊠Kn � Kmn, see Exercise 4.7 of [34].
*erefore,

rKm⊠sKn � Km + Km + · · · + Km( 
√√√√√√√√√√√√√√√√√√

r− times

⊠ Kn + Kn + · · · + Kn( 
√√√√√√√√√√√√√√√√

s− times

� Km⊠Kn(  + Km⊠Kn(  + · · · + Km⊠Kn( 
√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

rs− times

� Kmn + Kmn + · · · + Kmn√√√√√√√√√√√√√√√√√√
rs− times

� rsKmn.

(6)
□

Theorem 8. For any two groups G and H in Γ,
ES(G⊕H) � ES(G)⊠ES(H).

Proof. Clearly, we have that V(ES(G⊕H)) � V(ES(G)⊠
ES(H)) � G⊕H. Let (a, b), (a′, b′) ∈ G⊕H such that
(a, b), (a′, b′) ∈ E(ES(G⊕H)). *en, (a, b)2 � (a′, b′)2, and
hence, a2 � a′

2 and b2 � b′
2. From a2 � a′

2, we get that
either a � a′ or aa′ ∈ E(G). Also, from b2 � b′

2, we get
that either b � b′ or bb′ ∈ E(H). Combining, we obtain
that a � a′ and bb′ ∈ E(H), or aa′ ∈ E(G) and b � b′, or
aa′ ∈ E(G) and bb′ ∈ E(H). Hence, (a, b)(a′, b′) ∈
E(ES(G)⊠ES(H)).

Conversely, we suppose that (a, b), (a′, b′) ∈ G⊕H such
that (a, b)(a′, b′) ∈ E(ES(G)⊠ES(H)). *is implies that a �

a′ and bb′ ∈ E(H), or aa′ ∈ E(G) and b � b′, or aa′ ∈ E(G)

and bb′ ∈ E(H). From this, we conclude that either a � a′ or
a2 � a′

2 and also either b � b′ or b2 � b′
2.*erefore, a2 � a′

2

and b2 � b′
2, and hence, (a, b)(a′, b′) ∈ E(ES(G⊕H)). □

Theorem 9. Let Gi � 〈ai〉 be cyclic groups of order ni for each
1≤ i≤ k. 0en,

ES ⊕
k

i�1
Gi  �

n1n2 · · · nk

2r K2r , (7)

where r denotes the number of even integers in the set
n1, n2, . . . , nk .

Proof. Applying *eorem 8, we obtain

ES ⊕
k

i�1
Gi  � ⊠

i�1

k
ES Gi( . (8)

Also, by *eorems 1 and 3, we have, for each 1≤ i≤ n,

ES Gi(  �

niK1, if ni is odd,

ni

2
K2, if ni is even.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

Combining the above two equations and then by using
Lemma 1, we obtain

ES ⊕
k

i�1
Gi  �

n1n2 · · · nk

2r K2r . (10)
□

Examples 5. We can immediately determine the equal-
square graph of the direct product of cyclic groups as
follows:

ES Z3⊕Z4⊕Z5⊕Z6(  �
3 · 4 · 5 · 6

22
K22 � 90K4,

ES Z2⊕Z6⊕Z8⊕Z9⊕Z12(  �
2 · 6 · 8 · 9 · 12

24
K24 � 648K16,

(11)

Let G be a finite abelian group with
|G| � 2αp

α1
1 p

α2
2 · · · p

αk

k , where p1, p2, . . . , pk are distinct odd
primes and α, αis are positive integers. *en, G can be
uniquely expressed as G � Z2β1⊕ · · ·⊕Z2βt⊕Zp1

β11⊕ · · ·⊕
Zp1

β1t1
⊕ · · ·⊕Zpk

βk1⊕ · · ·⊕Zpk
βktk

, where β1 ≥ β2 ≥ · · · ≥
βt ≥ 1 with β1 + β2 + · · · + βt � α and βi1 ≥ βi2 ≥ · · · ≥ βiti

≥ 1
with βi1 + βi2 + · · · + βiti

� αi, for each i; 1≤ i≤ k, cf. Section
5.2, *eorem 5 [30].

Theorem 10. With notations above, ES(G) � (|G|/2t)K2t.

Proof. Applying*eorem8, we obtain thatES(G) � ES(Z2β1)

⊠ · · ·⊠ES(Z2βt )⊠ES(Zp1
β11) ⊠ · · ·⊠ ES (Zp1

β1t1
)⊠ · · ·⊠ES(Zpk

βk1)⊠ · · ·⊠ES(Zpk
βktk

). *en, by using *eorems 1 and 3, we
get that ES(G) � 2β1− 1K2⊠ · · ·⊠ 2βt− 1K2⊠p1β11K1⊠ · · · ⊠p1
β1t1

K1⊠ · · ·⊠pkβk1 K1⊠ · · ·⊠ pkβktk
K1. Furthermore, by using

Lemma 1, we get that ES(G) � (2β1+···+βt− tp
α1
1 · · ·p

αk

k ) K2t �

(|G|/2t)K2t. □

Corollary 2. Let G be an abelian group with order |G| � 2αλ,
where λ is odd and α≥ 1. 0en, we have the equation ES(G) �

(|G|/2t)K2t for each partition α � d1 + d2 + · · · + dt of the
integer α of length t.

Proof. We can write λ � p
α1
1 p

α2
2 · · · p

αk

k , where p1, p2, . . . , pk

are distinct odd primes and αis are nonnegative integers. In
light of *eorem 10, for each partition α � d1 + d2 + · · · + dt

of length t, we get that ES(G) � (|G|/2t)K2t. □

Corollary 3. Let G be an abelian group with order |G| � 2αλ,
where λ is odd and α≥ 1. 0en, it can have exactly α distinct
(nonisomorphic) equal-square graphs.

Example 6. All possible equal-square graphs of an abelian
group of order 36000 � 253253 are described in Table 1.
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Example 7. *e equal-square graphs of small order groups
are described in Table 2.

7. Concluding Remarks

Graph theory is an interesting area of research. A lot of
topics in different areas of research are beautifully presented
in the form of graphs. *is work relates the finite group
structures with simple graphs in the form of equal-square
graphs which is defined by a particular adjacency relation on
vertices. We have presented several examples in the support
of results proved in this paper. Also, we have constructed
tables for different well-known groups of finite order which
provide corresponding equal-square graphs.
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