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The concepts of weakly 2-absorbing ideal and weakly 1-absorbing prime ideal in an almost distributive lattice (ADL) are
introduced, and the necessary conditions for a weakly 1-absorbing prime ideal to become a weakly 2-absorbing ideal in
algebraic form are proved. Also, weakly 2-absorbing ideals are characterized in terms of weakly prime ideals and 2-absorbing
ideals. Finally, the lattice epimorphic images and inverse images of the weakly 2-absorbing ideal and weakly 1-absorbing prime
ideal are discussed.

1. Introduction

Badawi [1] was introduced the concept of 2-absorbing ideals
on a commutative ring and assume that all rings are com-
mutative with 1 ≠ 0, which is a generalization of prime ideals
and some properties of these were studied. Subsequently,
several researchers worked on 2-absorbing ideals in different
cases (refer to [2–5]). Later in the paper [6], Yassine et al.
obtained on 1-absorbing prime ideals of a commutative ring.
In the papers [7–10] (Figures 1and 2), the concept of weakly
prime ideals were introduced and some of its properties are
investigated. The concept of an almost distributive lattice
(ADL) was introduced by Swamy and Rao [11] (Figures 3
and 4) as a common abstraction to most of the existing ring
theoretic generalizations of a Boolean algebra and which is
an algebra ðA,∧,∨,0Þ of type ð2, 2, 0Þ satisfying all the axioms
of a distributive lattice with zero except ∧ commutative, ∨
commutative, and right distributivity of ∨ over ∧. The con-
cept of prime ideal is a vital role in the study of structure the-
ory of distributive lattices in general and of Boolean algebras
in particular, see [11].

In this paper, we introduce the concept of 2-absorbing
ideal in an almost distributive lattice which is a generaliza-
tion of prime ideals in an ADL. A proper ideal P of an
ADL A is called a 2-absorbing ideal (2-AI for short) of A if
whenever x, y, z ∈ A and x∧y∧z ∈ P, then x∧y ∈ P or y∧z ∈

P or x∧z ∈ P. It is shown that a proper ideal P of A is a 2-
AI of A if and only if whenever P1 ∩ P2 ∩ P3 ⊆ P for some
ideals Pi of A, for 1 ≤ i ≤ 3, then P1 ∩ P2 ⊆ P or P1 ∩ P3 ⊆ P
or P2 ∩ P3 ⊆ P. In addition to this, it is observed that the lat-
tice epimorphic image and inverse image of 2-AI and n-AI
are also 2-AI and n-AI, respectively. Next, we introduce
the concepts of weakly 2-AI of an ADL which is weaker than
that of weakly prime ideal and 2-AI of an ADL. The Carte-
sian product of weakly 2-AIs is also discussed here, and
some equivalent conditions for the set of all weakly 2-AIs
to become 2-AIs under the Cartesian product are derived.
Mainly, we have proved that all prime ideals are 2-AIs and
weakly prime ideals, that weakly prime ideals are weakly 2-
AIs, and also that all 2-AIs are weakly 2-AIs and vice versa
is not true; examples were given to shown these. It is further
demonstrated that all prime ideals are 1-absorbing prime
ideals, that 1-absorbing prime ideals are 2-AIs, and that all
weakly prime ideals and 1-absorbing prime ideals are weakly
1-absorbing prime ideals and that weakly 1-absorbing prime
ideals are weakly 2-AIs, and there are examples that show
that the converse of these is not true. Finally, it is also shown
that the image and inverse image of weakly 2-AI, 1-
absorbing prime ideal, and weakly 1-absorbing prime ideal
under lattice epimorphism are again weakly 2-AI, 1-
absorbing prime ideal, and weakly 1-absorbing prime ideal,
respectively.
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Throughout this paper, A stands for an ADL ðA,∧,∨,0Þ
with a maximal element and L stands for a complete lat-
tice ðL,∧,∨,0, 1Þ satisfying the infinite meet distributive
law, that is,

a∧ ∨
b∈S

b
� �

= ∨
b∈S

a∧bð Þ, ð1Þ

for any S ⊆ L and a ∈ L.

2. Preliminaries

In this section, we recall certain definitions, results, and
notations which will be needed later on are presented,
see [1, 11, 12].

Definition 1. An algebra A = ðA,∧,∨,0Þ of type ð2, 2, 0Þ is
called an ADL if it satisfies the following conditions for all
a, b and c ∈ A:

(1) 0∧a = 0
(2) a∨0 = a

(3) a∧ðb∨cÞ = ða∧bÞ∨ða∧cÞ
(4) a∨ðb∧cÞ = ða∨bÞ∧ða∨cÞ
(5) ða∨bÞ∧c = ða∧cÞ∨ðb∧cÞ
(6) ða∨bÞ∧b = b

Each of the axioms (1) through (6) above is independent
from the others. The element 0 is called the zero element.

Any bounded below distributive lattice is an ADL.

Example 1. Let X be a nonempty set. Fix an arbitrary ele-
ment x0 ∈ X. For any x, y ∈ X, define ∧ and ∨ on X by,

x∧y =
y, if x ≠ x0,

x0, if x = x0,

(

x∨y =
y, if x ≠ x0,

x0, if x = x0:

( ð2Þ

Then ðX,∧,∨,x0Þ is an ADL with x0 as its zero element.
This ADL is called the discrete ADL.

Several ring theoretic generalizations of Boolean algebras
(other than Boolean rings which are precisely Boolean
algebras) can be made as an ADL. The following example
is one such.

Example 2. Let R be a commutative regular ring with identity
(that is, R is a commutative ring with unity in which, for
each a ∈ R, there exists an (unique) idempotent a0 ∈ R such
that aR = a0R). For any a, b ∈ R, define

a∧b = a0b,

a∨b = a + b − a0b:
ð3Þ

Then, ðR,∧,∨,0Þ is an ADL with the additive identity 0 as
the zero element.

Theorem 2. Let ðA,∧,∨,0Þ be an ADL. For any a and b ∈ A,
we have

(1) a∧0 = 0 = 0∧a and a∨0 = a = 0∨a

(2) a∧a = a = a∨a

(3) ða∧bÞ∨b = b

(4) a∨ðb∧aÞ = a

(5) a∧ða∨bÞ = a

1

c

b

0

a

Figure 1: The complete lattice diagram.
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ba

c

0

Figure 2: The Complete Lattice diagram in Example 5.
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Figure 3: The Boolean lattice diagram.
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Figure 4: The chain 4 diagram.
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(6) a∧b = a⇔ a∨b = b

(7) a∧b = b⇔ a∨b = a

(8) a∨ðb∨aÞ = a∨b

Definition 3. Let ðA,∧,∨,0Þ be an ADL. For any a and b ∈ A,
define a ≤ b if a = a∧b (equivalently a∨b = b).

Then ≤ is a partial order on A.

Theorem 4. The following hold good for any elements a, b, c,
and d of an ADL ðA,∧,∨,0Þ.

(1) a∧b ≤ b ≤ b∨a

(2) a ≤ b⇒ a∧b = a = b∧a and a∨b = b = b∨a

(3) ða∨bÞ∧c = ðb∨aÞ∧c
(4) ða∧bÞ∧c = a∧ðb∧cÞ (i.e., ∧ is associative on A)

(5) a∧b∧c = b∧a∧c

(6) The set fx∧a : x ∈ Ag = fy ∈ A : y ≤ ag is a bounded
distributive lattice under the induced operations ∧
and ∨ with 0 as the smallest element and a as the
largest element

(7) a∨b = b∨a whenever a∧b = 0

(8) a∧b = 0⇔ b∧a = 0

(9) a ≤ b⇒ a∧c ≤ b∧c and c∧a ≤ c∧b

(10) a ≤ b⇒ c∨a ≤ c∨b

(11) ða∨ðb∨cÞÞ∧d = ðða∨bÞ∨cÞ∧d

Theorem 5. For any elements a and b of an ADL ðA,∧,∨,0Þ,
the following are equivalent to each other.

(1) ða∧bÞ∨a = a

(2) a∧ðb∨aÞ = a

(3) a∧b = b∧a

(4) a∨b = b∨a

(5) Supfa, bg exists in ðA, ≤Þ and is equal to a∨b

(6) There exists x ∈ A such that a ≤ x and b ≤ x

(7) inf fa, bg exists in ðA, ≤Þ is equal to a∧b

Theorem 6. The following statements are equivalent for any
ADL A.

(1) a∧b = b∧a for all a, b ∈ A
(2) a∨b = b∨a for all a, b ∈ A
(3) ðA, ∧, ∨Þ is a distributive lattice bounded below

(4) ða∧bÞ∨c = ða∨cÞ∧ðb∨cÞ for all a, b, c ∈ A

(5) b∧ða∨bÞ = b(i.e., b ≤ a∨b) for all a, b ∈ A
(6) ða∧bÞ∨a = a (i.e., a∧b ≤ a) for all a, b ∈ A
(7) For any a, b, c ∈ A, a ≤ b⇒ a∨c ≤ b∨c

As a consequence, for any ideal I of A, x∧a ∈ I for all
a ∈ I and x ∈ A: An element m ∈ A is said to be maximal
if, for any x ∈ A,m ≤ x implies m = x. It can be easily
observed that m is maximal if and only if m∧x = x for all
x ∈ A.

Definition 7. Let I be a nonempty subset of an ADL A: Then,
I is called an ideal of A if a, b ∈ I ⇒ a∨b ∈ I and a∧x ∈ I for
all x ∈ A.

Definition 8. Let A = ðA,∧,∨,0Þ be an ADL and for any subset
S of A, let

Sh � = ∩ I ∈I Að Þ: S ⊆ If g: ð4Þ

Then, hS� is the smallest ideal of A containing S and is
called the ideal generated by S in A. Also,

Sh � = ∨
i=1

n
si

� �
∧a : n ≥ 0, si ∈ S and a ∈ A

n o
: ð5Þ

When S = fxg, then we simply write hx� for hfxg� and
call this the principal ideal generated by x in A. The principal
ideal generated by x in A is given by

xh � = a ∈ A : x∧a = af g = x∧a : a ∈ Af g: ð6Þ

Theorem 9. Let A = ðA,∧,∨,0Þ be an ADL and a and b ∈ A.
Then, the following holds good.

(1) ha� ∩ hb� = ha∧b�
(2) ha�∨hb� = ha∨b�
(3) ha∧b� = hb∧a� and ha∨b� = hb∨a�

Theorem 10. Let A = ðA,∧,∨,0Þ be an ADL and I and J be
ideals of A. Then, in the lattice ðI ðAÞ, ⊆Þ, I∧J = I ∩ J , and
I∨J = fs∨t : s ∈ I and t ∈ Jg: Also, the lattice ðI ðAÞ, ⊆Þ is
distributive.

Definition 11. A nonzero proper ideal I of R is called a 2-
absorbing ideal of R if for any a, b, c ∈ R and abc ∈ I, then
ab ∈ I or ac ∈ I or bc ∈ I.

3. 2-Absorbing Ideal

In this section, we introduce the notion of 2-absorbing ideal
(2-AI) and n-absorbing (n-AI) of a given almost distributive
lattice (ADL) A = ðA,∧,∨,0Þ and prove several structural
properties of these.
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Definition 12. Let A = ðA,∧,∨,0Þ be an ADL. A proper ideal P
of A is said to be a 2 -absorbing ideal of A and denoted by 2-
AI if for any x, y, z ∈ A

x∧y∧z ∈ P⇒ x∧y ∈ P or y∧z ∈ P or x∧z ∈ P: ð7Þ

Theorem 13. Let P be a 2-AI of A. For x, y, z ∈ A such that
x∧y∧z ∈ P, we have

y∧x ∈ P or z∧y ∈ P or z∧x ∈ P: ð8Þ
Proof. For x, y, z ∈ A such that x∧y∧z ∈ P. Then y∧x =
y∧ðx∧x:Þ

= ðy∧xÞ∧x (by 2.7(4))
= ðx∧yÞ∧x. (again by 2.7(4))
Since P is a 2-AI of A and x∧y ∈ P, hence ðx∧yÞ∧x ∈ P.

Thus y∧x ∈ P: Similarly, z∧y ∈ P or z∧x ∈ P.

Lemma 14. Let P1 and P2 be ideals of A and P be a 2-AI of A.
The following assertions hold for any x, y ∈ A.

(1) hx∧y� ∩ P1 ⊆ P⇒ hx∧y� ⊆ P or hx� ∩ P1 ⊆ P or hy� ∩
P1 ⊆ P

(2) hx� ∩ ðP1 ∩ P2Þ ⊆ P⇒ hx� ∩ P1 ⊆ P or hx� ∩ P2 ⊆ P or
P1 ∩ P2 ⊆ P

Proof. Let P be a 2-AI of A and P1 and P2 ideals of A.

(1) Suppose hx∧y� ∩ P1 ⊆ P. Let t ∈ hx∧y�. Then, t = x∧y
∧t. Since P is a 2-AI of A, if whenever x, y, z ∈ A and
x∧y∧z ∈ P, then x∧y ∈ P or y∧z ∈ P or x∧z ∈ P. From
this, we have t = x∧y∧t ∈ P. Hence, hx∧y� ⊆ P. Sup-
pose hx� ∩ P1UP and hy� ∩ P1UP. Now, ðhx� ∩ P1Þ ∩
ðhy� ∩ P1Þ = ðhx� ∩ hy�Þ ∩ P1 = hx∧y� ∩ P1 ⊆ P (by
given); this a gives a contradiction. Thus, hx� ∩ P1 ⊆
P or hy� ∩ P1 ⊆ P

(2) Suppose hx� ∩ ðP1 ∩ P2Þ ⊆ P: Let x ∈ A such that hx�
∩ P1UP and hx� ∩ P2UP. It follows that ðhx� ∩ P1Þ ∩
ðhx� ∩ P2ÞUP; that is, hx� ∩ ðP1 ∩ P2ÞUP, a contradic-
tion. Therefore, hx� ∩ P1 ⊆ P or hx� ∩ P2 ⊆ P

Theorem 15. Let P be a proper ideal of A. The following
statements are equivalent:

(1) P is a 2-AI of A

(2) For ideals P1, P2, P3 of A, P1 ∩ P2 ∩ P3 ⊆ P⇒
P1 ∩ P2 ⊆ P or P1 ∩ P3 ⊆ P or P2 ∩ P3 ⊆ P

(3) For ideals P1, P2, P3 of A, P = P1 ∩ P2 ∩ P3 ⇒
P = P1 ∩ P2 or P = P1 ∩ P3 or P = P2 ∩ P3

Proof. ð1Þ⇔ ð2Þ: suppose P is a 2-absorbing ideal of A. Let
P1 ∩ P2 ∩ P3 ⊆ P, for some proper ideals P1, P2, and P3 of
A. Let x, y ∈ A such that hx� ∩ P2UP and hy� ∩ P3UP and
put P1 = hx�. It follows that, hx� ∩ P3 ⊆ P and hy� ∩ P2 ⊆ P.

By Lemma 14(2), hx∧y� ∩ ðP2 ∩ P3Þ ⊆ P, we get either hx∧y�
∩ P2 ⊆ P or hx∧y� ∩ P3 ⊆ P. If hx∧y� ∩ P2 ⊆ P, then ðx∧yÞ∧z
= y∧ðx∧zÞ (by Theorem 5(4)), for all z ∈ P2, which implies
that x∧z ∈ P, so hx� ∩ P2 ⊆ P, contradiction. Similarly, if
hx∧y� ∩ P3 ⊆ P, then ðx∧yÞ∧t = y∧ðx∧tÞ (by 2.7(4)), for
all t ∈ P3, implies that x∧t ∈ P, so hx� ∩ P3 ⊆ P, contradic-
tion. Thus, either P1 ∩ P2 ⊆ P or P1 ∩ P3 ⊆ P. Conversely
suppose P1 ∩ P2 ∩ P3 ⊆ P implies that either P1 ∩ P2 ⊆ P
or P1 ∩ P3 ⊆ P or P2 ∩ P3 ⊆ P, for any ideals P1, P2, P3
of A. Let x, y, z ∈ A, we have x∧y∧z ∈ P. Suppose also
that x∧y ∉ P and y∧z ∉ P. Let P1 = hx�, P2 = hy� and P3 =
hz�. Since P1 ∩ P2 ∩ P3 = hx� ∩ hy� ∩ hz� = hx∧y� ∩ hz� ⊆ P, it
follows that P1 ∩ P2UP and P2 ∩ P3UP. Then by the above
lemma, P1 ∩ P3 = hx� ∩ hz� = hx∧z� ⊆ P; that is, x∧z ∈ P. Thus,
P is a 2-absorbing ideal of A.

(2)⇔ð3Þ and ð1Þ⇔ ð3Þ are clear

Definition 16. Let ðA1,∧,∨,0Þ and ðA2,∧,∨,0Þ be ADLs and
form the set A1 × A2 by A1 × A2 = fða, bÞ: a ∈ A1 and b ∈
A2g. Define ∧ and ∨ in A1 × A2 by,

a, bð Þ∧ c, dð Þ = a∧c, b∧dð Þ, ð9Þ

and ða, bÞ∨ðc, dÞ = ða∨c, b∨dÞ, for any ða, bÞ, ðc, dÞ ∈ A1 ×
A2.

Then, ðA1 × A2,∧,∨,0Þ is an ADL under the pointwise
operations and 0 = ð0, 0Þ is the zero element in A1 × A2.

Let us recall from [11] that a proper ideal P of A is said to
be a prime ideal if, for any x and y ∈ A,x∧y ∈ P⇒ either
x ∈ P or y ∈ P. Now, we have the following.

Theorem 17. Every prime ideal of A is a 2-AI of A.

Proof. Assume that P is a prime ideal of A. Let x, y, z ∈ A,
x∧y∧z ∈ P. Then, either x∧y ∈ P or z ∈ P, or y∧z ∈ P or
x ∈ P, and hence x∧z ∈ P (since P is an ideal and by
2.10). If x∧y ∈ P, then it is obvious and if z ∈ P, x∧z ∈ P
and y∧z ∈ P. Thus, P is a 2-AI of A.

The following example show that the converse of
Theorem 44 is not true.

Example 3. Let D = f0, x, yg be a discrete ADL with 0 as its
zero element defined in Example1andL = f0, a, b, c, 1g be
the lattice represented by the Hasse diagram given below:

Consider D × L = fðt, sÞ: t ∈D and s ∈ Lg. Then, ðD × L,
∧,∨,0Þ is an ADL (note that D × L is not a lattice) under
the pointwise operations ∧ and ∨ on D × L and 0 = ð0, 0Þ,
the zero element in D × L. Then, P = fð0, 0Þg is a 2-AI of
D × L but P is an ideal which is not prime, since ð0, aÞ∧
ðx, bÞ = ð0, 0Þ, for all ð0, aÞ, ðx, bÞ ∈D × L.

Theorem 18. Let P and Q be prime ideals of A. Then, P ∩Q is
a 2-AI of A.
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Proof. Let a, b, c ∈ A and a∧b∧c ∈ P ∩Q. Then, a∧b∧c ∈ P
and a∧b∧c ∈Q. Since P and Q are prime ideals of A, we have
either a∧b ∈ P or c ∈ P, or b∧c ∈ P or a ∈ P, or a∧c ∈ P or
b ∈ P (and a∧b ∈Q or c ∈Q, or b∧c ∈Q or a ∈Q, or a∧c
∈Q or b ∈Q). Suppose that a∧b ∈ P or c ∈ P and a∧b ∈
Q or c ∈Q. If a∧b ∈ P and a∧b ∈Q, then a∧b ∈ P ∩Q. If
c ∈ P and c ∈Q, then either a∧c ∈ P and a∧c ∈Q or b∧c ∈
P and b∧c ∈Q. Hence the theorem.

Definition 19. Let A1 and A2 be ADLs. A mapping f : A1
⟶ A2 is called a lattice homomorphism if the following
are satisfied, for any x, y, z ∈ A1.

(1) f ðx∧y∧zÞ = f ðxÞ∧f ðyÞ∧f ðzÞ
(2) f ðx∨y∨zÞ = f ðxÞ∨f ðyÞ∨f ðzÞ
(3) f ð0Þ = 0

Theorem 20. Let A1 and A2 be ADLs and f : A1 ⟶ A2 be a
lattice homomorphism. Then, the following holds.

(1) If f is an epimorphism and Q is a 2-AI of A2, then
f −1ðQÞ is a 2 − AI of A1

(2) If f is an isomorphism and P is a 2-AI of A1, then
f ðPÞ is a 2 − AI of A2

Proof. Let A1 and A2 be ADLs and f : A1 ⟶ A2 be a lattice
homomorphism.

(1) Let Q be a 2-AI of A2 and f −1ðQÞ = fa ∈ A1 : f ðaÞ
∈Q ⊆ A2g. Let a, b, c ∈ f −1ðQÞ. Then, f ðaÞ, f ðbÞ,
f ðcÞ ∈Q. Since Q is a 2-AI of A2, f ðaÞ∧f ðbÞ∧f ðcÞ =
f ða∧b∧cÞ ∈Q. Thus, a∧b∧c ∈ f −1ðQÞ. Now if a ∈
f −1ðQÞ and x ∈ A1, then f ðaÞ ∈Q and f ðxÞ ∈ A2
and hence f ðaÞ∧f ðxÞ = f ða∧xÞ ∈Q. Thus, a∧x ∈
f −1ðQÞ. Therefore, f −1ðQÞ is a 2-AI of A1

(2) Let a, b, c ∈ A1 such that f ðaÞ = x,f ðbÞ = y and f ðcÞ
= z, for some x, y, z ∈ A2. As x∧y∧z ∈ f ðPÞ, we have
f ða∧b∧cÞ ∈ f ðPÞ. Since P is a 2-AI of A1, a∧b∧c ∈ P
implies that either a∧b ∈ P or b∧c ∈ P or a∧c ∈ P.
That is either f ða∧bÞ = f ðaÞ∧f ðbÞ = x∧y ∈ f ðPÞ or
y∧z ∈ f ðPÞ or x∧z ∈ f ðPÞ. Thus, f ðPÞ is a 2-AI of A2

Theorem 21. Let A1 and A2 be ADLs. If P is a 2-AI of A1,
then P × A2 is a 2-AI of A1 × A2. Also, if Q is a 2-AI of A2,
then A1 ×Q is a 2-AI of A1 × A2.

Proof. Let P be a 2-AI of A1 and a, b, c ∈ A1 such that ða, tÞ
∧ðb, tÞ∧ðc, tÞ ∈ P × A2, for every t ∈ A2. Then, ða, tÞ∧ðb, tÞ∧
ðc, tÞ = ða∧b∧c, tÞ ∈ P × A2. Since P is a 2-AI of A1, we have
either a∧b ∈ P or a∧c ∈ P or b∧c ∈ P. So that, either ða∧b, tÞ
∈ P × A2 or ða∧c, tÞ ∈ P × A2 or ðb∧c, tÞ ∈ P × A2, for every

t ∈ A2. Thus, P × A2 is a 2-AI of A1 × A2. Similarly, A1 ×Q
is a 2-AI of A1 × A2.

Definition 22. A proper ideal P of A is a weakly prime ideal
of A if for any x, y ∈ A,

0 ≠ x∧y ∈ P⇒ either x ∈ P or y ∈ P: ð10Þ

Lemma 23. Every prime ideal of A is a weakly prime ideal
of A.

Proof. It is clear.

The converse of the above lemma is not true; consider
the following example.

Example 4. Let D × L = fðt, sÞ: t ∈D and s ∈ Lg be an ADL
discussed in Example 3. Let R = fð0, 0Þg. Clearly, R is a
weakly prime ideal of A, while R is not a prime ideal
of D × L, since ð0, aÞ∧ðx, bÞ ∈ R implies that ð0, aÞ ∉ R and
ðx, bÞ ∉ R, for all ð0, aÞ, ðx, bÞ ∈D × L. Thus, every weakly
prime ideal of D × L is not a prime ideal of D × L.

Definition 24. A proper ideal P of A is a weakly 2-AI of A if
for any x, y, z ∈ A,

0 ≠ x∧y∧z ∈ P⇒ either x∧y ∈ P or y∧z ∈ P or x∧z ∈ P: ð11Þ

Lemma 25. Every weakly prime ideal of A is a weakly 2-AI
of A.

Proof. It is clear.

The following example show that the converse of Lemma
25 is not true.

Example 5. Let D = f0, x, yg be a discrete ADL with 0 as its
zero element defined in Example1andL = f0, a, b, c, 1g be
the lattice represented by the Hasse diagram given below.

Consider D × L = fðt, sÞjt ∈D and s ∈ Lg. Then, ðD × L,∧,
∨,0Þ is an ADL (which is not a lattice) under the pointwise
operations ∧ and ∨ on D × L and 0 = ð0, 0Þ, the zero element
in D × L. Let P = fðx, 0Þ, ðy, cÞg. Then, ð0, 0Þ ≠ ðx, aÞ∧ðy, bÞ
∧ðy, cÞ ∈ P implies ðx, aÞ∧ðy, bÞ ∈ P, ðy, bÞ∧ðy, cÞ ∈ P and
ðx, aÞ∧ðy, cÞ ∈ P, for all ðx, aÞ, ðy, bÞ, ðy, cÞ ∈D × L. Thus, P
is a weakly 2-AI of D × L. But P is neither prime ideal nor
weakly prime ideal of D × L, since ðx, aÞ∧ðy, bÞ ∈ Pðð0, 0Þ ≠
ðx, aÞ∧ðy, bÞ ∈ PÞ⇒ ðx, aÞ ∉ P and ðy, bÞ ∉ P.

Theorem 26. Every 2-AI of A is a weakly 2-AI of A.

Proof. It is clear.

The following example show that the converse of
Theorem 26 is not true.
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Example 6. Let D = f0, x, yg be a discrete ADL with 0 as its
zero element defined in Example1 and L = f0, a, b, c, d, e, f ,
1g be a lattice whose Hasse diagram is given below.

Consider D × L = fðt, sÞjt ∈D and s ∈ Lg. Then, ðD × L,
∧,∨,0Þ is an ADL (which is not a lattice) under the pointwise
operations ∧ and ∨ on D × L and 0 = ð0, 0Þ, the zero element
in D × L. Let P = fð0, 0Þg. Clearly P is a weakly 2-AI of D × L.
On the other hand, consider ð0, dÞ∧ðx, eÞ∧ðy, f Þ = ð0, 0Þ ∈ P
which implies that ð0, dÞ∧ðx, eÞ = ð0, aÞ ∉ P, ðx, eÞ∧ðy, f Þ =
ðy, cÞ ∉ P and ð0, dÞ∧ðy, f Þ = ð0, bÞ ∉ P, for all ð0, dÞ, ðx, eÞ,
ðy, f Þ ∈D × L. Thus P is not a 2-AI of D × L. Therefore,
every weakly 2-AI of D × L is not a 2-AI of D × L.

As a consequence of Theorem 18 and Lemmas 23 and
25, we have the following.

Theorem 27. Let P and Q be weakly prime ideals of A. Then,
the intersection of P and Q is also a weakly 2-AI of A.

Theorem 28. Let P be a proper ideal of A and P ≠ f0g in A.
Then, P is a 2-AI of A if and only if P is a weakly 2-AI of A.

Proof. It is clear.

As a consequence of Theorems 20 and 26, we have the
following.

Theorem 29. Let f : A1 ⟶ A2 be a lattice homomorphism.
Then, the following holds.

(1) If f is an epimorphism and Q is a weakly 2 − AI of A2,
then f −1ðQÞ is a weakly 2-AI of A1

(2) If f is an isomorphism and P is a weakly 2 − AI of A1,
then f ðPÞ is a weakly 2-AI of A2

Theorem 30. Let A = A1 × A2 be an ADL, where A1 and A2
are ADLs. Let P and Q be proper ideal of A1 and A2, respec-
tively. If P ×Q is a weakly 2-AI of A, then P and Q are weakly
2-AI of A1 and A2, respectively.

Proof. Suppose that P ×Q is a weakly 2-AI of A. Let a, b,
c ∈ A1 and x, y, z ∈ A2 such that 0 ≠ x∧y∧z ∈Q. Then, 0 ≠
ða, x∧y∧zÞ ∈ P ×Q implies that either ða, x∧yÞ ∈ P ×Q or
ða, x∧zÞ ∈ P ×Q or ða, y∧zÞ ∈ P ×Q. From this, either x∧y
∈Q or x∧z ∈Q or y∧z ∈Q. Thus, Q is a weakly 2-AI of
A2. Similarly, P is a weakly 2-AI of A1.

The converse of the above theorem is not true, consider
the following example.

Example 7. Let A1 = f0, a, b, c, 1g be the lattice discussed in
Example 5 and A2 = f0, x, y, 1g be a chain represented by
the diagram given below.

Consider A1 × A2 = fðu, vÞju ∈ A1 and v ∈ A2g. Let P = ðc�
and Q = ð0� be ideals of A1 and A2, respectively. Then,
P ×Q = ððc, 0Þ�. We note that, for all ð1, 0Þ, ða, xÞ, ðb, xÞ ∈

A1 × A2, ð1, 0Þ∧ða, xÞ∧ðb, xÞ = ð1∧a∧b, 0∧xÞ = ðc, 0Þ ∈ P ×Q.
Now, ð1, 0Þ∧ða, xÞ = ða, 0Þ ∉ P ×Q, ða, xÞ∧ðb, xÞ = ða∧b, xÞ
= ðc, xÞ ∉ P ×Q and ð1, 0Þ∧ðb, xÞ = ðb, 0Þ ∉ P ×Q. It follows
that P ×Q is not a weakly 2-AI of A1 × A2.

Theorem 31. Let A = A1 × A2 be ADL, where A1 and A2 be
ADLs and Pð≠ f0gÞ be a proper ideal of A1. Then, the follow-
ing are equivalent.

(1) P × A2 is a weakly 2-AI of A

(2) P × A2 is a 2-AI of A

(3) P is a 2-AI of A1

Proof. ð1Þ⇒ ð2Þ: assume (1). Let a, b, c ∈ A1 such that ða, xÞ
∧ðb, xÞ∧ðc, xÞ ∈ P × A2, for every x ∈ A2. Then, ða, xÞ∧ðb, xÞ
∧ðc, xÞ = ða∧b∧c, xÞ ∈ P × A2, implies either ða∧b, xÞ ∈ P ×
A2 or ða∧c, xÞ ∈ P × A2 or ðb∧c, xÞ ∈ P × A2, for every x ∈
A2 (since P × A2 is a weakly 2-AI of A). Thus, P × A2 is
a 2-AI of A.

ð2Þ⇒ ð3Þ: assume (2). Let a, b, c ∈ A1 such that a∧b∧c
∈ P. Since P × A2 is a 2-AI of A, ða∧b∧c, xÞ ∈ P × A2, for
every x ∈ A2, which implies that either ða∧b, xÞ ∈ P × A2 or
ða∧c, xÞ ∈ P × A2 or ðb∧c, xÞ ∈ P × A2. From this, we have
that either a∧b ∈ P or a∧c ∈ P or b∧c ∈ P. Therefore, P is a
2-AI of A1.

ð3Þ⇒ ð1Þ: Suppose P is a 2-AI of A1 and 0 ≠ ða, xÞ∧ðb,
xÞ∧ðc, xÞ ∈ P × A2, for every x ∈ A2 and a, b, c ∈ A1. Then,
ða, xÞ∧ðb, xÞ∧ðc, xÞ = ða∧b∧c, xÞ ∈ P × A2, implies either ða∧
b, xÞ ∈ P × A2 or ða∧c, xÞ ∈ P × A2 or ðb∧c, xÞ ∈ P × A2, for
every x ∈ A2 (since either a∧b ∈ P or a∧c ∈ P or b∧c ∈ P).
Thus, P × A2 is a weakly 2-AI of A.

Theorem 32. Let A = A1 × A2 be ADL, where A1 and A2 be
ADLs. Let Pð≠ f0gÞ and Qð≠ f0gÞ be proper ideal of A1
and A2, respectively. Then, the following are equivalent.

(1) P ×Q is a weakly 2-AI of A

(2) Q = A2 and P is a 2-AI of A1 or Q is a prime ideal of
A2 and P is a prime ideal of A1

(3) P ×Q is a 2-AI of A

Proof. ð1Þ⇒ ð2Þ: assume (1). If Q = A2, then P is a 2-AI of
A1 (by the above theorem). Suppose that Q ≠ A2. Let x, y ∈
A2 such that x∧y ∈Q and let 1 ≠ t ∈ P. Then, ðt, 1Þ∧ð1, xÞ∧
ð1, yÞ = ðt, x∧yÞ ∈ P ×Q − fð0, 0Þg. Since ð1, xÞ∧ð1, yÞ = ð1,
x∧yÞ ∉ P ×Q, we conclude that either ðt, 1Þ∧ð1, xÞ = ðt, xÞ ∈
P ×Q or ðt, 1Þ∧ð1, yÞ = ðt, yÞ ∈ P ×Q and hence either x ∈Q
or y ∈Q. Thus, Q is a prime ideal of A2. Similarly, P is a
prime ideal of A1.

ð2Þ⇒ ð3Þ: assume (2). Then, by the above theorem,
P × A2 is a 2-AI of A. Suppose that P is a prime ideal
of A1 and Q is a prime ideal of A2. Then, clearly P ×Q
is a prime ideal of A. Let ðx, yÞ, ðz, tÞ, ða, bÞ ∈ A such that
ðx, yÞ∧ðz, tÞ∧ða, bÞ ∈ P ×Q. Then, either ðx, yÞ∧ðz, tÞ ∈ P ×
Q or ða, bÞ ∈ P ×Q, or ðx, yÞ∧ða, bÞ ∈ P ×Q or ðz, tÞ ∈ P ×
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Q, or ðx, yÞ ∈ P ×Q or ðz, tÞ∧ða, bÞ ∈ P ×Q. Thus, P ×Q is
a 2-AI of A.

(3)⇒ð1Þ is clear by Theorem 26

In the following, we introduce the concept of n-AI of an
ADL A.

Definition 33. Let P be a proper ideal of A and n ∈ Z+. Then,
P is an n -AI of A if whenever x1∧x2∧⋯∧xn+1 ∈ P, for xi ∈ A,
1 ≤ i ≤ n + 1, then there are n of the xi′s whose meet is in P.

Corollary 34. Let P be a proper ideal of A and n,m ∈ Z+.
Then,

(1) P is n-AI if and only if whenever x1∧x2∧⋯∧xm ∈ P,
for x1,⋯, xm ∈ A with m > n, then there are n of the
xi′s whose meet is in P

(2) If P is n-AI, then P is an m-AI, for all m ≥ n

Corollary 35. Let g : A⟶ B be a lattice homomorphism.
Then, the following holds.

(1) If g is an epimorphism and Q is an n-AI of B, then
g−1ðQÞ is an n-AI of A

(2) If g is an isomorphism and P is an n-AI of A, then
gðPÞ is an n-AI of B

Theorem 36. If fPαgα∈Δ is a nonempty chain of n-AI of A,
then ∧

α∈Δ
Pα is an n-AI of A.

Proof. Let P = ∧
α∈Δ

Pα and x1, x2,⋯, xn+1 ∈ A such that ∧
i=1

n+1

xi ∈ P. Let xi = ∧
j≠i
xj and xi ∉ P, for all 1 ≤ i ≤ n. Then, for each

1 ≤ i ≤ n, there exist an n-AI Pαi
such that xi ∉ Pαi

. Assume
that Pα1

⊆ Pα2
⊆⋯⊆ Pαn

. Let β ∈ Δ. If Pβ ⊆ Pα1
⊆⋯⊆ Pαn

,
then xi ∉ Pβ, for each 1 ≤ i ≤ n. Since x1∧x2∧⋯∧xn+1 ∈ P
and Pβ is n-AI of A, we have xn+1 ∈ Pβ. Again, x1∧x2∧⋯∧
xn+1 ∈ Pα1

and Pα1
is n-AI of A, then xn+1 ∈ Pα1

. So, xn+1 ∈
Pβ, for every β ∈ Δ. Thus, xn+1 ∈ P. Hence the theorem.

4. 1-Absorbing Prime Ideals

In this section, we introduce the 1-absorbing prime ideals of
ADLs.

Definition 37. Let A be an ADL. A proper ideal P of A is a 1-
absorbing prime ideal if for x, y, z ∈ A such that x∧y∧z ∈ P,
then either x∧y ∈ P or z ∈ P.

Theorem 38. Let P be a proper ideal of A. Then, every prime
ideal of A is a 1-absorbing prime ideal and every 1-absorbing
prime ideal of A is a 2-absorbing ideal of A.

The following example show that every 2-AI of A is not
1-absorbing prime ideal of A.

Example 8. Let D × L = fðt, sÞjt ∈D and s ∈ Lg be an ADL
discussed in Example 6. Let Q = fð0, 0Þ, ðx, bÞ, ðy, cÞg. Then,
for all ð0, dÞ, ðx, eÞ, ðy, f Þ ∈D × L,

0, dð Þ∧ x, eð Þ∧ y, fð Þ ∈Q⇒ x, eð Þ∧ y, fð Þ = y, cð Þ ∈Q: ð12Þ

Thus, Q is a 2-AI of D × L. On the other hand, ð0, dÞ∧
ðx, eÞ∧ðy, f Þ = ð0, 0Þ ∈Q implies ð0, dÞ∧ðx, eÞ = ð0, aÞ ∉Q
and ðy, f Þ ∉Q. From this, Q is not a 1-absorbing prime ideal
of D × L. Therefore, every 2-AI of D × L is not 1-absorbing
prime ideal of D × L.

Next, we have the following result.

Theorem 39. Let A = A1 × A2 be an ADL where A1 and A2 be
ADLs with 0, proper ideal P of A and Q a proper ideal of A2.
Then, P is a 1-absorbing prime ideal of A if and only if P =
R × A2 or P = A1 ×Q, where R and Q are prime ideals of A1
and A2, respectively.

Lemma 40. Let P be a 1-absorbing prime ideal of A. If hx∧y�
∩Q ⊆ P, for all proper ideal Q of A and for x, y ∈ A, then
hx∧y� ⊆ P or Q ⊆ P.

Theorem 41. Let P be a proper ideal of A. Then, the following
are equivalent.

(1) P is a 1-absorbing prime ideal of A

(2) If P1 ∩ P2 ∩ P3 ⊆ P for some proper ideals P1, P2, and
P3 of A, then either P1 ∩ P2 ⊆ P or P3 ⊆ P

Proof. ð1Þ⇒ ð2Þ: suppose P is a 1-absorbing prime ideal of
A. Let P1 ∩ P2 ∩ P3 ⊆ P for some proper ideals P1, P2, and
P3 of A. Let P1 ∩ P2UP. Then, there exists x ∈ P1 and y ∈
P2 such that x∧y ∉ P and hence hx∧y�UP. Since hx� ∩ hy�
∩ P3 = hx∧y� ∩ P3 ⊆ P, it follows that P3 ⊆ P (by the above
lemma).

ð2Þ⇒ ð1Þ: assume (2) hold. Suppose that x∧y∧z ∈ P, for
x, y, z ∈ A and let x∧y ∉ P. Suppose also that P1 = hx�, P2 = hy�
and P3 = hz�. Then P1 ∩ P2 ∩ P3 = hx� ∩ hy� ∩ hz� = hx∧y� ∩ hz�
⊆ P and P1 ∩ P2UP (by assumption, x∧y ∉ P). Thus by the
above lemma, hz� ⊆ P, that is, P3 ⊆ P and thus z ∈ P. There-
fore, P is a 1-absorbing prime ideal of A.

Theorem 42. Let A1 and A2 be ADLs and f : A1 ⟶ A2 be a
lattice homomorphism. Then, the following hold.

(1) If P is a 1-absorbing prime ideal of A2, then f −1ðPÞ is
a 1-absorbing prime ideal of A1

(2) If f is onto and P is a 1-absorbing prime ideal of A1
with kerð f Þ ⊆ P, then f ðPÞ is a 1-absorbing prime
ideal of A2
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Proof.

(1) Let P be a 1-absorbing prime ideal of A2 and x∧y∧
z ∈ f −1ðPÞ for some x, y, z ∈ A1. Then f ðx∧y∧zÞ =
f ðxÞ∧f ðyÞ∧f ðzÞ ∈ P which implies that f ðxÞ∧f ðyÞ ∈
P or f ðzÞ ∈ P. It follows that x∧y ∈ f −1ðPÞ or z ∈
f −1ðPÞ. Hence f −1ðPÞ is a 1-absorbing prime ideal
of A1

(2) Let P be a 1-absorbing prime ideal of A1 with kerð f Þ
⊆ P, f be onto and x∧y∧z ∈ f ðPÞ for some x, y, z ∈
A2. Since f is onto, then there exists a, b, c ∈ A2 such
that a = f ðxÞ, b = f ðyÞ and c = f ðzÞ. Therefore, f ðx∧
y∧zÞ = f ðxÞ∧f ðyÞ∧f ðzÞ = a∧b∧c ∈ f ðPÞ. Since kerð f Þ
⊆ P, we conclude that x∧y∧z ∈ P. Thus, x∧y ∈ P
or z ∈ P and so, a∧b ∈ f ðPÞ or c ∈ f ðPÞ. Therefore,
f ðPÞ is a 1-absorbing prime ideal of A2

Definition 43. Let P be a proper ideal of A. Then, P is said to
be a weakly 1-absorbing prime ideal of A if 0 ≠ x∧y∧z ∈ P for
some x, y, z ∈ A, then either x∧y ∈ P or z ∈ P.

Theorem 44. Every weakly prime ideal of A is a weakly 1-
absorbing prime ideal of A.

Proof. It is clear.

The following example show that the converse of Theo-
rem 44 is not true.

Example 9. Let D × L = fðt, sÞjt ∈D and s ∈ Lg be an ADL
discussed in Example 5. Let P = fð0, cÞ, ðx, 0Þ, ðy, cÞg. Let
ð0, aÞ, ðx, bÞ, ðy, cÞ ∈D × L. Then,

0, 0ð Þ ≠ 0, að Þ∧ x, bð Þ∧ y, cð Þ ∈ P⇒ 0, að Þ∧ x, bð Þ ∈ P and y, cð Þ ∈ P:
ð13Þ

Thus, P is a weakly 1-absorbing prime ideal of D × L,
but P is not weakly prime ideal of D × L, since ð0, 0Þ ≠
ð0, aÞ∧ðx, bÞ ∈ P implies that ð0, aÞ ∉ P and ðx, bÞ ∉ P. From
this, we conclude that, every weakly 1-absorbing prime ideal
of D × L is not weakly prime ideal of D × L.

Theorem 45. Every weakly 1-absorbing prime ideal of A is a
weakly 2-absorbing ideal of A.

Proof. It is clear.

The following example show that every weakly 1-
absorbing prime ideal of A is not 1-absorbing prime ideal
of A.

Example 10. Let D × L = fðt, sÞjt ∈D and s ∈ Lg be an ADL
discussed in Example 6. Let Q = fð0, 0Þg. Clearly Q is a
weakly 1-absorbing prime ideal of D × L. But Q is not 1-
absorbing prime ideal of D × L, since ð0, dÞ∧ðx, eÞ∧ðy, f Þ ∈

P implies ð0, dÞ∧ðx, eÞ = ð0, aÞ ∉ P and ðy, f Þ ∉ P, for all
ð0, dÞ, ðx, eÞ, ðy, f Þ ∈D × L. Thus, every weakly 1-absorbing
prime ideal of D × L is not 1-absorbing prime ideal of D × L.

Theorem 46. Let A and B be ADLs and f : A⟶ B be a
lattice homomorphism. Then, the following holds.

(1) If f is a monomorphism and P is a weakly 1-
absorbing prime ideal of B, then f −1ðPÞ is a weakly
1-absorbing prime ideal of A

(2) If f is an epimorphism and Q is a weakly 1-absorbing
prime ideal of A such that kerð f Þ ⊆Q, then f ðQÞ is a
weakly 1-absorbing prime ideal of B

Proof.

(1) Let 0 ≠ x∧y∧z ∈ f −1ðPÞ for some x, y, z ∈ A: Then by
assumption, f ðx∧y∧zÞ = f ðxÞ∧f ðyÞ∧f ðzÞ ∈ P, for
some f ðxÞ, f ðyÞ, f ðzÞ ∈ B. Since f is monomorphism,
we have f ðx∧y∧zÞ ≠ 0. Also, since P is a weakly 1-
absorbing prime ideal of B, we conclude either f ðxÞ
∧f ðyÞ = f ðx∧yÞ ∈ P or f ðzÞ ∈ P which implies that
x∧y ∈ f −1ðPÞ or z ∈ f −1ðPÞ. Thus, f −1ðPÞ is a
weakly 1-absorbing prime ideal of A.

(2) Assume that 0 ≠ a∧b∧c ∈ f ðQÞ for some a, b, c ∈ B.
Since f is an epimorphism, then there exists x, y, z
∈ A such that a = f ðxÞ, b = f ðyÞ and c = f ðzÞ. Then,
0 ≠ f ðxÞ∧f ðyÞ∧f ðzÞ = f ðx∧y∧zÞ ∈ f ðQÞ. Since kerð f Þ
⊆Q, then we get that 0 ≠ x∧y∧z ∈Q. As Q is a
weakly 1-absorbing prime ideal of A, we have either
x∧y ∈Q or z ∈Q and which implies that f ðx∧yÞ =
a∧b ∈ f ðQÞ or f ðzÞ = c ∈ f ðQÞ. Therefore, f ðQÞ is
a weakly 1-absorbing prime ideal of B

5. Conclusion

In this paper, the concepts of 2-absorbing ideal, 1-absorbing
prime ideal, weakly 1-absorbing prime ideal, and weakly 2-
absorbing ideal of an almost distributive lattice are intro-
duced and obtain certain results of these.
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