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The concepts of weakly 2-absorbing ideal and weakly 1-absorbing prime ideal in an almost distributive lattice (ADL) are
introduced, and the necessary conditions for a weakly 1-absorbing prime ideal to become a weakly 2-absorbing ideal in
algebraic form are proved. Also, weakly 2-absorbing ideals are characterized in terms of weakly prime ideals and 2-absorbing
ideals. Finally, the lattice epimorphic images and inverse images of the weakly 2-absorbing ideal and weakly 1-absorbing prime

ideal are discussed.

1. Introduction

Badawi [1] was introduced the concept of 2-absorbing ideals
on a commutative ring and assume that all rings are com-
mutative with 1 # 0, which is a generalization of prime ideals
and some properties of these were studied. Subsequently,
several researchers worked on 2-absorbing ideals in different
cases (refer to [2-5]). Later in the paper [6], Yassine et al.
obtained on 1-absorbing prime ideals of a commutative ring.
In the papers [7-10] (Figures land 2), the concept of weakly
prime ideals were introduced and some of its properties are
investigated. The concept of an almost distributive lattice
(ADL) was introduced by Swamy and Rao [11] (Figures 3
and 4) as a common abstraction to most of the existing ring
theoretic generalizations of a Boolean algebra and which is
an algebra (A,A,V,0) of type (2,2, 0) satisfying all the axioms
of a distributive lattice with zero except A commutative, V
commutative, and right distributivity of v over A. The con-
cept of prime ideal is a vital role in the study of structure the-
ory of distributive lattices in general and of Boolean algebras
in particular, see [11].

In this paper, we introduce the concept of 2-absorbing
ideal in an almost distributive lattice which is a generaliza-
tion of prime ideals in an ADL. A proper ideal P of an
ADL A is called a 2-absorbing ideal (2-AI for short) of A if
whenever x, y,z € A and xAyAz € P, then xAy € P or yAz €

P or xAz € P. It is shown that a proper ideal P of A is a 2-
Al of A if and only if whenever P, NP, N P; C P for some
ideals P; of A, for 1<i<3, then P, NP, <P or P,NP,;CP
or P, N P; C P. In addition to this, it is observed that the lat-
tice epimorphic image and inverse image of 2-Al and n-Al
are also 2-Al and n-Al, respectively. Next, we introduce
the concepts of weakly 2-AI of an ADL which is weaker than
that of weakly prime ideal and 2-AI of an ADL. The Carte-
sian product of weakly 2-Als is also discussed here, and
some equivalent conditions for the set of all weakly 2-Als
to become 2-Als under the Cartesian product are derived.
Mainly, we have proved that all prime ideals are 2-Als and
weakly prime ideals, that weakly prime ideals are weakly 2-
Als, and also that all 2-Als are weakly 2-Als and vice versa
is not true; examples were given to shown these. It is further
demonstrated that all prime ideals are 1-absorbing prime
ideals, that 1-absorbing prime ideals are 2-Als, and that all
weakly prime ideals and 1-absorbing prime ideals are weakly
1-absorbing prime ideals and that weakly 1-absorbing prime
ideals are weakly 2-Als, and there are examples that show
that the converse of these is not true. Finally, it is also shown
that the image and inverse image of weakly 2-Al, 1-
absorbing prime ideal, and weakly 1-absorbing prime ideal
under lattice epimorphism are again weakly 2-Al, 1-
absorbing prime ideal, and weakly 1-absorbing prime ideal,
respectively.
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FIGURE 4: The chain 4 diagram.

Throughout this paper, A stands for an ADL (A,A,V,0)
with a maximal element and L stands for a complete lat-
tice (L,AV,0,1) satisfying the infinite meet distributive
law, that is,

beS beS

a/\<Vb> = V (anb), (1)

for any SCL and a€L.

2. Preliminaries

In this section, we recall certain definitions, results, and
notations which will be needed later on are presented,
see [1, 11, 12].
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Definition 1. An algebra A= (AAV,0) of type (2,2,0) is
called an ADL if it satisfies the following conditions for all
a,band ce A.

(1) 0Aa=0
(2) av0=a
(3) an(bvc) = (anb)v(anc)
(4) av(bAc) = (avb)A(ave)
(5) (avb)Ac= (anc)Vv(bAac)

(6) (avb)Ab=1D

Each of the axioms (1) through (6) above is independent
from the others. The element 0 is called the zero element.
Any bounded below distributive lattice is an ADL.

Example 1. Let X be a nonempty set. Fix an arbitrary ele-
ment x, € X. For any x, y € X, define A and Vv on X by,

vy, ifx#x,,
PINE {
Xp if x =xy,
(2)
vy, if x#x,
xVy =
{ Xp, if x =x,.

Then (X,A,V,x,) is an ADL with x, as its zero element.
This ADL is called the discrete ADL.

Several ring theoretic generalizations of Boolean algebras
(other than Boolean rings which are precisely Boolean
algebras) can be made as an ADL. The following example
is one such.

Example 2. Let R be a commutative regular ring with identity
(that is, R is a commutative ring with unity in which, for
each a € R, there exists an (unique) idempotent g, € R such
that aR = ayR). For any a, b € R, define

anb = ab,

(3)

avb=a+b-ayb.

Then, (R,A,V,0) is an ADL with the additive identity 0 as
the zero element.

Theorem 2. Let (A,A,V,0) be an ADL. For any a and b € A,
we have

(1) an0=0=0Aa and av0=a= 0Va
(2) ana=a=ava

(3) (anb)vb=b

(4) av(bna)=a

(5) an(avb) =a
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(6) anb=a < avb=">b
(7) anb=b&s avb=a
(8) av(bva) =avb

Definition 3. Let (A,A,V,0) be an ADL. For any a and b € A,
define a < b if a = anb (equivalently avb =b).
Then < is a partial order on A.

Theorem 4. The following hold good for any elements a, b, ,
and d of an ADL (A,AV,0).

(1) anb<b<bva

(2) asb=anb=a=0bAa and avb=b=bva

(3) (avb)Ac= (bva)Ac

(4) (anb)Ac=an(bAc) (i.e., A is associative on A)
(5) anbAc = bAanc

(6) Theset {xna:xecA}={yeA:y<a}isa bounded
distributive lattice under the induced operations A
and V with 0 as the smallest element and a as the
largest element

(7) avb = bva whenever aAb =0

(8) anb=0 brha=0

(9) a< b= anc<bic and cha < cAb
(10) a<b=cva<cvb
(11) (av(bvc))nd = ((avb)ve)nd

Theorem 5. For any elements a and b of an ADL (A,AV,0),
the following are equivalent to each other.

(1) (anb)va=a

(2) an(bva)=a

(3) anb=bna

(4) avb="bva

(5) Sup{a, b} exists in (A, <) and is equal to avb
(6) There exists x € A such that a<x and b<x

(7) inf {a, b} exists in (A, <) is equal to anb

Theorem 6. The following statements are equivalent for any
ADL A.

(1) anb=bAa for all a,be A

(2) avb="bva foralla,be A

(3) (A, A, V) is a distributive lattice bounded below
(4) (anb)ve= (avec)A(bve) for all a,b,ce A

(5) bA(avb) = b(i.e, b<avb) foralla,be A
(6) (anb)va=a (i.e, anb<a) for all a,be A

(7) For any a,b,ce A,a<b=avc<bvc

As a consequence, for any ideal I of A,xAa €I for all
ael and x€ A. An element m € A is said to be maximal
if, for any xe€ A,m<x implies m=x. It can be easily
observed that m is maximal if and only if mAx =x for all
x€A.

Definition 7. Let I be a nonempty subset of an ADL A. Then,
I is called an ideal of A if a,bel=avbel and anx € for
all x € A.

Definition 8. Let A = (A,A,V,0) be an ADL and for any subset
Sof A, let

(S]= n{Ies(A): ST}, (4)

Then, (S] is the smallest ideal of A containing S and is
called the ideal generated by S in A. Also,

(S]={(i\:r}lsi)/\a:nzO,SiGSandaEA}. (5)

When S ={x}, then we simply write (x] for ({x}] and
call this the principal ideal generated by x in A. The principal
ideal generated by x in A is given by

(x]={acA:xna=a}={xNa:acA}. (6)

Theorem 9. Let A =(A,AV,0) be an ADL and a and b € A.
Then, the following holds good.

(1) {a] 0 (8] = (and]
(2) (a]v(b] = (avb]
(3) (anb] = (bAa] and (avb] = (bva]

Theorem 10. Let A = (A,AV,0) be an ADL and I and ] be
ideals of A. Then, in the lattice (¥ (A), <), INJ=IN], and
Ivj={svt:selandte]}. Also, the lattice (F(A),C) is
distributive.

Definition 11. A nonzero proper ideal I of R is called a 2-
absorbing ideal of R if for any a,b,c€ R and abc € I, then
abel or acel or becel

3. 2-Absorbing Ideal

In this section, we introduce the notion of 2-absorbing ideal
(2-AI) and n-absorbing (n-Al) of a given almost distributive
lattice (ADL) A =(A,AV,0) and prove several structural
properties of these.



Definition 12. Let A = (A,A,V,0) be an ADL. A proper ideal P
of A is said to be a 2 -absorbing ideal of A and denoted by 2-
Al if for any x,y,z€ A

XAYNz € P= xA\y € PoryAz € PorxAz € P. (7)

Theorem 13. Let P be a 2-Al of A. For x,y,z € A such that
XAyNz € P, we have

yNx € PorzAy € PorzAx € P. (8)

Proof. For x,y,z€ A such that xAyAzeP. Then yAx=
YA(xAx.)

= (yAx)Ax (by 2.7(4))

= (xAy)Ax. (again by 2.7(4))

Since P is a 2-Al of A and xAy € P, hence (xAy)Ax € P.
Thus yAx € P. Similarly, zAy € P or zAx € P. O

Lemma 14. Let P, and P, be ideals of A and P be a 2-AI of A.
The following assertions hold for any x, y € A.

(1) (xAy] NP, CP= (xA\y|CP or (x]nP,CP or (y]N
-

(x

P,CP
(2) (x]n(P,NnP,)cP=(x]NnP,CP or (x]NP,CP or

P,nP,CP
Proof. Let P be a 2-Al of A and P, and P, ideals of A.

(1) Suppose (xAy] NP, CP. Let t € (xAy]. Then, t =xAy
At. Since P is a 2-Al of A, if whenever x, y,z € A and
XAyNz € P, then xA\y € P or yAz € P or xAz € P. From
this, we have t = xAyAt € P. Hence, (xAy] € P. Sup-
pose (x] N P,UP and (y] N P,UP. Now, ({(x]NP;)N
(OInP) = NG NP =(xnylnP cP  (by
given); this a gives a contradiction. Thus, (x| NP, C
Por(yJjnP,cP

(2) Suppose (x] N (P, NP,)CP. Let x € A such that (x]
N P,UP and (x] N P,UP. It follows that ((x] N P;) N
({x] N P,)UP; that is, (x] N (P, N P,)UP, a contradic-
tion. Therefore, (x| NP, CPor (x] NP, <P

O

Theorem 15. Let P be a proper ideal of A. The following
statements are equivalent:

(1) Pisa 2-Al of A

(2) For ideals P, P,,P; of A, P,NP,NP;CP=
P,nP,cPorP,NP;CPorP,NP;CP

(3) For ideals P, P,,P; of A, P=P,NP,NP;=
P=P,NP,orP=P,NP;or P=P,NP;

Proof. (1) & (2): suppose P is a 2-absorbing ideal of A. Let
P,NnP,NP;CP, for some proper ideals P;,P,, and P; of
A. Let x,y € A such that (x] N P,UP and (y] n P;UP and
put P, =(x]. It follows that, (x] NP; <P and (y|NP,<P.
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By Lemma 14(2), (xAy] N (P, N P;) € P, we get either (xAy]
NP, <P or (xAy]NP; CP. If (xAy] NP, C P, then (xAy)Az
= yA(xAz) (by Theorem 5(4)), for all z € P,, which implies
that xAz€ P, so (x]NP,CP, contradiction. Similarly, if
(xAy] NP, C P, then (xAy)At=yA(xnt) (by 2.7(4)), for
all t € P,, implies that xAt € P, so (x] N Py C P, contradic-
tion. Thus, either P, NP, <P or P,NP;<P. Conversely
suppose P, NP,NP;CP implies that either P, NP, <P
or PPNP;CP or P,NnP;CP, for any ideals P,,P,,P;
of A. Let x,y,z€A, we have xAyAz e P. Suppose also
that xAy ¢ P and yAz ¢ P. Let P, =(x],P,=(y|] and P;=
(z]. Since P, NP,NP;=(x]n(y|Nn{z]=(xAny] N (2] CP, it
follows that P, N P,UP and P, N P;UP. Then by the above
lemma, P, N P; = (x| N (2] = (xAz] € P; that is, xAz € P. Thus,
P is a 2-absorbing ideal of A.

(2)©(3) and (1) & (3) are clear O

Definition 16. Let (A;,AV,0) and (A,,A,V,0) be ADLs and
form the set A, xA, by A, xA,={(a,b):acA andbe
A,}. Define A and V in A, X A, by,

(a, b)\(c, d) = (anc, bAd), 9)

and (a,b)V(c,d) = (ave, bvd), for any (a,b), (c,d) € A; x
A,

Then, (A; X A,,AV,0) is an ADL under the pointwise
operations and 0 = (0, 0) is the zero element in A; X A,.

Let us recall from [11] that a proper ideal P of A is said to
be a prime ideal if, for any x and y € A,xAy € P= either
x € P or yeP. Now, we have the following.

Theorem 17. Every prime ideal of A is a 2-AI of A.

Proof. Assume that P is a prime ideal of A. Let x,y,z €A,
xAyAz € P. Then, either xAy€P or z€P, or yAzeP or
x€P, and hence xAzeP (since P is an ideal and by
2.10). If xAy € P, then it is obvious and if ze P, xAz€P
and yAz € P. Thus, P is a 2-Al of A. O

The following example show that the converse of
Theorem 44 is not true.

Example 3. Let D={0,x, y} be a discrete ADL with 0 as its
zero element defined in ExamplelandL ={0,4a,b,c, 1} be
the lattice represented by the Hasse diagram given below:

Consider Dx L={(t,s): t e DandseL}. Then, (DXL,
AV,0) is an ADL (note that Dx L is not a lattice) under
the pointwise operations A and vV on Dx L and 0= (0,0),
the zero element in D x L. Then, P={(0,0)} is a 2-AI of
Dx L but P is an ideal which is not prime, since (0, a)A
(x,b) =(0,0), for all (0,a),(x,b) e DxL.

Theorem 18. Let P and Q be prime ideals of A. Then, PN Q is
a 2-Al of A.
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Proof. Let a,b,ce A and anbAce PN Q. Then, anbAce P
and anbAc € Q. Since P and Q are prime ideals of A, we have
either aAb€ P or c€ P, or bAce P or a€P, or aAceP or
beP (and anbeQ or ceQ, or bAceQ or a€Q, or aic
€Q or beQ). Suppose that aAbeP or ce€ P and anbe
Qor ceQ. If anbeP and anbe Q, then anbe PN Q. If
c€P and c € Q, then either aAce€ P and aAce Q or bAce
P and bAc € Q. Hence the theorem. O

Definition 19. Let A, and A, be ADLs. A mapping f : A,
— A, is called a lattice homomorphism if the following
are satisfied, for any x, y,z € A,.

(1) f(xnynz) = f(x)Af ()N (2)
(2) f(xvyvz) = f(x)Vf(y)Vf(2)
(3) f(0)=0

Theorem 20. Let A; and A, be ADLs and f : A, — A, be a
lattice homomorphism. Then, the following holds.

(1) If f is an epimorphism and Q is a 2-Al of A,, then
f(Q)isa2-Alof A,

(2) If f is an isomorphism and P is a 2-Al of A,, then
f(P)isa 2-AI of A,

Proof. Let A; and A, be ADLs and f : A; — A, be a lattice
homomorphism.

(1) Let Q be a 2-Al of A, and f'(Q)={a€A, : f(a)
€QCA,}. Let a,b,cef'(Q). Then, f(a),f(b),
f(c) € Q. Since Q is a 2-Al of A,, f(a)Af(D)ASf(c) =
f(anbAc) € Q. Thus, anbAce f(Q). Now if ae
Q) and x€A,, then f(a)eQ and f(x)€A,
and hence f(a)Af(x)=f(anx)€ Q. Thus, arxe
£71(Q). Therefore, f'(Q) is a 2-Al of A,

(2) Let a,b,c€ A, such that f(a)=x,f(b) =y and f(c)
=z, for some x, y,z € A,. As xAyAz € f(P), we have
f(anbAc) € f(P). Since P is a 2-Al of A, aAbAc € P
implies that either anbe P or bAce P or anceP.
That is either f(anb) =f(a)Af(b)=xAy € f(P) or
yAz € f(P) or xAz € f(P). Thus, f(P) isa 2-Al of A,

O

Theorem 21. Let A; and A, be ADLs. If P is a 2-Al of A,,
then Px A, is a 2-Al of A; x A,. Also, if Q is a 2-Al of A,,
then A, x Qis a 2-Al of A; X A,.

Proof. Let P be a 2-Al of A, and a,b, c € A; such that (a, t)
A(b, t)A(c, t) € Px A,, for every t € A,. Then, (a,t)A(b, t)A
(c,t) = (anbAc, t) € Px A,. Since P is a 2-Al of A;, we have
either aAb € P or aAc € P or bAc € P. So that, either (anb, t)
€PxA, or (anc,t) e Px A, or (bAc,t) € Px A,, for every

teA,. Thus, Px A, is a 2-Al of A, x A,. Similarly, A; x Q
isa2-Alof A, x A,. O

Definition 22. A proper ideal P of A is a weakly prime ideal
of A if for any x, y € A,

0# x/\y € P= eitherx e Pory € P. (10)

Lemma 23. Every prime ideal of A is a weakly prime ideal
of A.

Proof. 1t is clear. U

The converse of the above lemma is not true; consider
the following example.

Example 4. Let Dx L={(t,s): t€e Dandse€ L} be an ADL
discussed in Example 3. Let R={(0,0)}. Clearly, R is a
weakly prime ideal of A, while R is not a prime ideal
of Dx L, since (0, a)A(x, b) € R implies that (0,a) ¢ R and
(x,b) ¢ R, for all (0,a),(x,b) e Dx L. Thus, every weakly
prime ideal of D x L is not a prime ideal of D x L.

Definition 24. A proper ideal P of A is a weakly 2-AI of A if
for any x, y,z € A,

0 # xAyAz € P = eitherxAy € PoryAz € PorxAz € P. (11)

Lemma 25. Every weakly prime ideal of A is a weakly 2-AIl
of A.

Proof. It is clear. O

The following example show that the converse of Lemma
25 is not true.

Example 5. Let D={0,x, y} be a discrete ADL with 0 as its
zero element defined in ExamplelandL ={0,4a,b,c, 1} be
the lattice represented by the Hasse diagram given below.

Consider Dx L={(t,s)|t € Dands € L}. Then, (D X L,A,
V,0) is an ADL (which is not a lattice) under the pointwise
operations A and V on D x L and 0 = (0, 0), the zero element
in Dx L. Let P={(x,0), (y,¢)}. Then, (0,0) # (x, a)A(y, b)
A(y,c) € P implies (x,a)A(y,b) € P, (y,b)A(y,c) €P and
(x,a)A(y,c) €P, for all (x,a),(y,b),(y,c) e Dx L. Thus, P
is a weakly 2-AI of D x L. But P is neither prime ideal nor
weakly prime ideal of D x L, since (x, a)A(y, b) € P((0,0)
(x,a)A(y,b) € P) = (x,a) ¢ Pand (y,b) ¢ P.

Theorem 26. Every 2-Al of A is a weakly 2-AI of A.
Proof. 1t is clear. U

The following example show that the converse of
Theorem 26 is not true.



Example 6. Let D={0,x, y} be a discrete ADL with 0 as its
zero element defined in Examplel and L={0,a,b,¢,d, ¢, f,
1} be a lattice whose Hasse diagram is given below.

Consider DxL={(t,s)|t € Dandse L}. Then, (DXL,
AV,0) is an ADL (which is not a lattice) under the pointwise
operations A and V on D x L and 0 = (0, 0), the zero element
inDxL.Let P={(0,0)}. Clearly P is a weakly 2-Al of D x L.
On the other hand, consider (0, d)A(x, e)A(y, f) =(0,0) € P
which implies that (0, d)A(x,e)=(0,a) ¢ P, (x,e)A(y, f) =
(y,c) ¢ P and (0,d)A(y, f) =(0,b) ¢ P, for all (0,d), (x,e),
(y,f) e DxL. Thus P is not a 2-Al of Dx L. Therefore,
every weakly 2-Al of Dx L is not a 2-Al of D x L.

As a consequence of Theorem 18 and Lemmas 23 and
25, we have the following.

Theorem 27. Let P and Q be weakly prime ideals of A. Then,
the intersection of P and Q is also a weakly 2-Al of A.

Theorem 28. Let P be a proper ideal of A and P+ {0} in A.
Then, P is a 2-Al of A if and only if P is a weakly 2-AI of A.

Proof. Tt is clear. O

As a consequence of Theorems 20 and 26, we have the
following.

Theorem 29. Let f : A, — A, be a lattice homomorphism.
Then, the following holds.

(1) If f is an epimorphism and Q is a weakly 2 — Al of A,,
then f~1(Q) is a weakly 2-Al of A,

(2) If f is an isomorphism and P is a weakly 2 — AI of A,
then f(P) is a weakly 2-Al of A,

Theorem 30. Let A=A, X A, be an ADL, where A; and A,
are ADLs. Let P and Q be proper ideal of A, and A,, respec-
tively. If P x Q is a weakly 2-Al of A, then P and Q are weakly
2-Al of A, and A,, respectively.

Proof. Suppose that P x Q is a weakly 2-AI of A. Let a, b,
ceA, and x,y,z€A, such that 0# xAyAz € Q. Then, 0+
(a, xAyAz) € Px Q implies that either (a,xAy) € PxQ or
(a,xAz) € PXx Q or (a,yAz) € Px Q. From this, either xAy
€Q or xAz€Q or yAz€ Q. Thus, Q is a weakly 2-Al of
A,. Similarly, P is a weakly 2-AI of A;. O

The converse of the above theorem is not true, consider
the following example.

Example 7. Let A; ={0,a,b,c, 1} be the lattice discussed in
Example 5 and A, ={0,x,y,1} be a chain represented by
the diagram given below.

Consider A; x A, = {(u,v)|[u€ A;andv e A,}. Let P = ((]
and Q= (0] be ideals of A, and A,, respectively. Then,
PxQ=((c,0)]. We note that, for all (1,0), (a,x), (b,x) €

Journal of Mathematics

A, x Ay, (1,0)A(a, x)A(b, x) = (1Aanb, 0Ax) = (¢,0) e Px Q.
Now, (1,0)A(a,x)=(a,0)¢PxQ, (a,x)A(b,x)=(anb,x)
=(c,x) ¢ Px Q and (1,0)A(b,x) = (b,0) ¢ P x Q. It follows
that P x Q is not a weakly 2-Al of A; X A,.

Theorem 31. Let A=A, x A, be ADL, where A, and A, be
ADLs and P(# {0}) be a proper ideal of A,. Then, the follow-
ing are equivalent.

(1) Px A, is a weakly 2-AI of A
(2) PxA,isa2-Al of A
(3) Pisa2-Al of A,

Proof. (1) = (2): assume (1). Let a, b, c € A, such that (a, x)
A(b, x)A(c, x) € Px A,, for every x € A,. Then, (a,x)A(b, x)
A(c, x) = (anbAc, x) € Px A,, implies either (anb,x) € P x
A, or (anc,x) € Px A, or (bAc,x) € PxA,, for every x €
A, (since Px A, is a weakly 2-AI of A). Thus, Px A, is
a 2-Al of A.

(2) = (3): assume (2). Let a, b, c € A; such that aAnbAc
€P. Since Px A, is a 2-Al of A, (aAbAc,x) € PX A,, for
every x € A,, which implies that either (anb,x) € Px A, or
(anc,x) e Px A, or (bAc,x) € Px A,. From this, we have
that either anb € P or anc € P or bAc € P. Therefore, P is a
2-Al of A,.

(3) = (1). Suppose P is a 2-Al of A; and 0 # (a, x)A(b,
X)A(c,x) € Px A,, for every x€ A, and a,b,c€ A;. Then,
(a, x)A(b, x)A(c, x) = (aAbAc, x) € P x A,, implies either (aA
b,x)ePxA, or (aAc,x) e Px A, or (bAc,x) € PxA,, for
every x € A, (since either aAbeP or aAceP or bAceP).
Thus, P x A, is a weakly 2-Al of A. O

Theorem 32. Let A=A; x A, be ADL, where A, and A, be
ADLs. Let P(#{0}) and Q(+{0}) be proper ideal of A,
and A,, respectively. Then, the following are equivalent.

(1) PxQ is a weakly 2-AI of A

(2) Q=A, and P is a 2-Al of A, or Q is a prime ideal of
A, and P is a prime ideal of A,

(3) PxQisa2-Al of A

Proof. (1) = (2): assume (1). If Q= A,, then P is a 2-Al of
A, (by the above theorem). Suppose that Q# A,. Let x, y €

A, such that xAy € Q and let 1+ ¢ € P. Then, (¢, 1)A(1, x)A
(Ly)=(t,xAny) e Px Q-{(0,0)}. Since (1,x)A(L,y)=(1,

xAy) ¢ P x Q, we conclude that either (t, 1)A(1,x) = (t,x) €

PxQor (t,1)A(1,y) = (t,¥) € Px Q and hence either x € Q
or y€ Q. Thus, Q is a prime ideal of A,. Similarly, P is a
prime ideal of A;.

(2) = (3): assume (2). Then, by the above theorem,
PxA, is a 2-Al of A. Suppose that P is a prime ideal
of A; and Q is a prime ideal of A,. Then, clearly Px Q
is a prime ideal of A. Let (x,¥),(z,t),(a,b) € A such that
(x, ¥)A(z, t)A(a, b) € P x Q. Then, either (x,y)A(z,t) € Px
Q or (a,b) ePxQ, or (x,y)A(a,b) ePxQ or (z,t) e Px
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Q, or (x,y)ePxQ or (z,t)A(a,b) € Px Q. Thus, PxQ is
a 2-Al of A.
(3)=(1) is clear by Theorem 26 O

In the following, we introduce the concept of n-Al of an
ADL A.

Definition 33. Let P be a proper ideal of A and n € Z*. Then,
Pis an n -Al of A if whenever x;Ax,A---Ax,,,, € P, for x; € A,
1 <i<n+1, then there are n of the x£5 whose meet is in P.

Corollary 34. Let P be a proper ideal of A and n,meZ".
Then,

(1) P is n-Al if and only if whenever x,A\x,A\-+-Ax,, € P,
for x;, -+, x,,, € A with m > n, then there are n of the
x;s whose meet is in P

(2) If P is n-AlL then P is an m-AL for all m>n

Corollary 35. Let g : A— B be a lattice homomorphism.
Then, the following holds.

(1) If g is an epimorphism and Q is an n-Al of B, then
g 1(Q) is an n-Al of A

(2) If g is an isomorphism and P is an n-Al of A, then
g(P) is an n-Al of B

Theorem 36. If {P,} ., is a nonempty chain of n-Al of A,
then AAP"‘ is an n-Al of A.
e

Proof. Let P = /\AP"‘ and x;, x,, -+, x,,; € A such that ‘/\1”+1
ac 1=

x; €P. Letx; = ij and x; ¢ P, for all 1 <i < n. Then, for each
JF

1<i<n, there exist an n-AlI P, such that x; ¢ P,. Assume
that P, <P, C---CP,. Let feA If PgcP, ---CP,,
then x; ¢ Pg, for each 1<i<n. Since x;AxyA\+*AX,,; €P
and Pg is n-Al of A, we have x,,, € Pg. Again, x;Ax,A-+A
Xp1 €P, and P, is n-Al of A, then x,,,, € P, . So, x,,, €
Py, for every B € A. Thus, x,,,, € P. Hence the theorem. ]

4. 1-Absorbing Prime Ideals

In this section, we introduce the 1-absorbing prime ideals of
ADLs.

Definition 37. Let A be an ADL. A proper ideal P of A is a 1-
absorbing prime ideal if for x, y, z € A such that xAyAz € P,
then either xAy € P or z € P.

Theorem 38. Let P be a proper ideal of A. Then, every prime
ideal of A is a 1-absorbing prime ideal and every 1-absorbing
prime ideal of A is a 2-absorbing ideal of A.

The following example show that every 2-Al of A is not
1-absorbing prime ideal of A.

Example 8. Let DxL={(t,s)[t€ DandseL} be an ADL
discussed in Example 6. Let Q = {(0,0), (x, b), (y,¢)}. Then,
for all (0,d), (x,e), (y,f) e DXL,

(0. d)A(x, A f) € Q= ()N f) = (1 0) €Q. (12)

Thus, Q is a 2-Al of Dx L. On the other hand, (0, d)A
(x,e)A(y,f)=(0,0) €Q implies (0,d)A(x,e)=(0,a)¢Q
and (y,f) ¢ Q. From this, Q is not a 1-absorbing prime ideal
of D x L. Therefore, every 2-Al of D x L is not 1-absorbing
prime ideal of D x L.

Next, we have the following result.

Theorem 39. Let A=A, x A, be an ADL where A, and A, be
ADLs with 0, proper ideal P of A and Q a proper ideal of A,.
Then, P is a I-absorbing prime ideal of A if and only if P =
Rx A, or P=A, x Q, where R and Q are prime ideals of A,
and A,, respectively.

Lemma 40. Let P be a 1-absorbing prime ideal of A. If (x/\y]
NQCP, for all proper ideal Q of A and for x,y € A, then
(xA\y] <P or QCP.

Theorem 41. Let P be a proper ideal of A. Then, the following
are equivalent.

(1) P is a I-absorbing prime ideal of A

(2) If P, NP, N P; C P for some proper ideals P, P,, and
P, of A, then either P,NP,C P or P;CP

Proof. (1) = (2): suppose P is a 1-absorbing prime ideal of
A. Let P,NP,NP; <P for some proper ideals P;, P,, and
P, of A. Let P, N P,UP. Then, there exists x€ P, and y €
P, such that xAy ¢ P and hence (xAy]UP. Since (x] N (y]
NPy =(xAy] NPy CP, it follows that P, < P (by the above
lemma).

(2) = (1): assume (2) hold. Suppose that xAyAz € P, for
X, 9,z € A and let x/\y ¢ P. Suppose also that P, = (x], P, = (y/]
and P, = (z]. Then P, N P, N P, = (x] N (y] N (z] = (xAy] N (2]
C P and P, N P,UP (by assumption, xAy ¢ P). Thus by the
above lemma, (z] € P, that is, P; € P and thus z € P. There-
fore, P is a 1-absorbing prime ideal of A. O

Theorem 42. Let A, and A, be ADLsand f : A, — A, be a
lattice homomorphism. Then, the following hold.

(1) If P is a 1-absorbing prime ideal of A,, then ™' (P) is
a I-absorbing prime ideal of A,

(2) If f is onto and P is a 1-absorbing prime ideal of A,
with ker(f) € P, then f(P) is a 1-absorbing prime
ideal of A,



Proof.

(1) Let P be a 1-absorbing prime ideal of A, and xAyA
ze f'(P) for some x,y,z€A,. Then f(xAyAz) =
f(x)Af(y)Af(z) € P which implies that f(x)Af(y) €
P or f(z) € P. Tt follows that xAy e f'(P) or z €
f7'(P). Hence f'(P) is a 1-absorbing prime ideal
of A,

(2) Let P be a 1-absorbing prime ideal of A; with ker(f)
CP, f be onto and xAyAz € f(P) for some x,y,z €
A,. Since f is onto, then there exists a, b, c € A, such
that a=f(x),b=f(y) and c= f(z). Therefore, f(xA
yAzZ) = f(x)Af (¥)Af () = anbAc € f(P). Since ker(f)
CP, we conclude that xAyAzeP. Thus, xAy€P
or z€P and so, anb e f(P) or c € f(P). Therefore,
f(P) is a 1-absorbing prime ideal of A,

O

Definition 43. Let P be a proper ideal of A. Then, P is said to
be a weakly 1-absorbing prime ideal of A if 0 # xAyAz € P for
some x, ¥, z € A, then either xA\y € P or z € P.

Theorem 44. Every weakly prime ideal of A is a weakly 1-
absorbing prime ideal of A.

Proof. Tt is clear. O

The following example show that the converse of Theo-
rem 44 is not true.

Example 9. Let DxL={(t,s)|t € DandseL} be an ADL
discussed in Example 5. Let P={(0,¢), (x,0), (y,¢)}. Let
(0,a), (x,b), (y,c) e Dx L. Then,

(0,0) # (0, a)A(x, b)A(y, c) € P= (0,a)A(x, b) € Pand (y,c) € P.

(13)

Thus, P is a weakly 1-absorbing prime ideal of Dx L,
but P is not weakly prime ideal of Dx L, since (0,0) #
(0, a)A(x, b) € P implies that (0,a) ¢ P and (x, b) ¢ P. From
this, we conclude that, every weakly 1-absorbing prime ideal
of D x L is not weakly prime ideal of D x L.

Theorem 45. Every weakly 1-absorbing prime ideal of A is a
weakly 2-absorbing ideal of A.

Proof. 1t is clear. O

The following example show that every weakly 1-
absorbing prime ideal of A is not 1-absorbing prime ideal
of A.

Example 10. Let Dx L={(t,s)|t e Dands€ L} be an ADL
discussed in Example 6. Let Q={(0,0)}. Clearly Q is a
weakly 1-absorbing prime ideal of D x L. But Q is not 1-
absorbing prime ideal of D x L, since (0, d)A(x, e)A(y, f) €
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P implies (0,d)A(x,e)=(0,a)¢P and (y,f) ¢P, for all
(0,d), (x,e), (y,f) € Dx L. Thus, every weakly 1-absorbing
prime ideal of D x L is not 1-absorbing prime ideal of D x L.

Theorem 46. Let A and B be ADLs and f : A— B be a
lattice homomorphism. Then, the following holds.

(1) If f is a monomorphism and P is a weakly I-
absorbing prime ideal of B, then f~'(P) is a weakly
I-absorbing prime ideal of A

(2) If f is an epimorphism and Q is a weakly 1-absorbing
prime ideal of A such that ker(f) € Q, then f(Q) is a
weakly 1-absorbing prime ideal of B

Proof.

Let 0# xAyAz € f ! (P) for some x, y, z € A. Then by
assumption, f(xAyAz) = f(x)Af (y)Af(z) € P, for
some f(x), f(y), f(z) € B. Since f is monomorphism,
we have f(xAyAz) +0. Also, since P is a weakly 1-
absorbing prime ideal of B, we conclude either f(x)
Af(y) =f(xAy) € P or f(z) € P which implies that
xAyef(P) or zef'(P). Thus, f'(P) is a
weakly 1-absorbing prime ideal of A.

(1

~

(2) Assume that 0# anbAce f(Q) for some a, b, c€B.
Since f is an epimorphism, then there exists x, y, z
€ A such that a=f(x),b=f(y) and c=f(z). Then,

0% f(x)Af()Af(z) =f(xnyAz) € f(Q). Since ker(f)
€ Q, then we get that 0 #xAyAz€ Q. As Q is a
weakly 1-absorbing prime ideal of A, we have either
xAy € Q or z € Q and which implies that f(xAy) =

anbe f(Q) or f(z)=cef(Q). Therefore, f(Q) is
a weakly 1-absorbing prime ideal of B

O

5. Conclusion

In this paper, the concepts of 2-absorbing ideal, 1-absorbing
prime ideal, weakly 1-absorbing prime ideal, and weakly 2-
absorbing ideal of an almost distributive lattice are intro-
duced and obtain certain results of these.
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