Research Article

A New Notion of Classical Mean Graphs Based on Duplicating Operations

A. Rajesh Kannan, 1 P. Manivannan, 1 K. Loganathan, 2, 3 and Sonam Gyeltshen 4

1Department of Mathematics, Mepco Schlenk Engineering College, Sivakasi 626005, Tamil Nadu, India
2Department of Mathematics and Statistics, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
3Research and Development Wing, Live4Research, Tiruppur, 638106, Tamilnadu, India
4Department of Humanities and Management, Jigme Namgyel Engineering College, Royal University of Bhutan, Dewathang, Bhutan

Correspondence should be addressed to K. Loganathan; loganathankaruppusamy304@gmail.com and Sonam Gyeltshen; sonamgyeltshen@jnec.edu.bt

Received 27 January 2022; Accepted 14 March 2022; Published 11 May 2022

Academic Editor: Gohar Ali

Copyright © 2022 A. Rajesh Kannan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Classical mean labeling of a graph \(G \) with \(p \) vertices and \(q \) edges is an injective function from the vertex set of \(G \) to the set \(\{1, 2, 3, \ldots, q+1\} \) such that the edge labels obtained from the flooring function of the average of mean of arithmetic, geometric, harmonic, and root square of the vertex labels of each edge’s end vertices is distinct, and the set of edge labels is \(\{1, 2, 3, \ldots, q\} \). One of the graph operations is to duplicate the graph. The classical meanness of graphs formed by duplicating an edge and a vertex of numerous standard graphs is discussed in this study.

1. Introduction and Preliminaries

The term “graph” refers to a finite, undirected, and basic graph used throughout this paper. Let us consider a graph with \(p \) vertices and \(q \) edges, such as \(G(V, E) \). [1–6] are the notations and terms we utilize. For a comprehensive look into graph labeling, we recommend [7]. The corona \(G_1 \ast G_2 \) is a graph created by linking the \(i^{\text{th}} \) vertex of \(G_1 \) to every vertex in the \(i^{\text{th}} \) copy of \(G_2 \) using one \(G_1 \) copy of order \(p_1 \) and \(p_1 \) copies of \(G_2 \). A pair of nearby vertices on a graph is referred to as neighbors. The neighborhood set is defined as the set of all neighbors of a vertex \(v \) and is denoted by \(N(v) \) [8].

2. Literature Survey

Somosundaram and Ponraj [9] proposed the idea of mean labeling. The \(F \)-harmonic mean graph was defined by Durai Baskar and Arockiaraj [10]. Arockiaraj et al. introduced the concept of \(F \)-root square mean graphs [11] and evaluated the meanness of some graphs by duplicating graph components [12]. Vaidya and Barasara thoroughly examined the harmonic mean [8] and geometric mean [13] labeling for a variety of graphs emerging from graph element duplication. In [14], Maya and Nicholas researched the duplication of divisor cordial graphs. Durai Baskar et al. researched the geometric meanness of graphs [15] and Durai Baskar and Arockiaraj talked about the \(F \)-geometric mean graphs [16]. Prajapati and Gajjar developed the cordiality in the context of duplication in web and armed helm [17]. Exponential mean labeling of graphs of some standard graphs by duplication of graph elements is developed by Rajesh Kannan et al. [18]. Muhiuddin et al. defined classical mean labeling of graphs [19] and Alanazi et al. extended its meanness for specific ladder graphs [20]. We explore a conventional mean labeling of graphs based on some duplicating techniques [21–25], which has been produced by a significant number of creators in the domain of graph labeling.

3. Methodology

A labeling \(\Phi \) on a graph \(G \) with \(\Delta = q + 1 \) is called classical mean labeling if the injective function
Φ: V → N - {Δ + 1, Δ + 2, ..., ∞} and an induced bijective function Φ*: V → N - {Δ, Δ + 1, ..., ∞} is defined by

\[
\Phi^*(uv) = \left\lfloor \frac{1}{4} \left(\frac{\Phi(u) + \Phi(v)}{2} + \sqrt{\Phi(u)\Phi(v)} \right) + 2 \frac{\Phi(u)\Phi(v)}{\Phi(u) + \Phi(v)} + \frac{\Phi(u)^2 + \Phi(v)^2}{2} \right\rfloor,
\]

for all uv ∈ E(G). A classical mean graph is one that facilitates classical mean labeling. In this article, we essentially address our topic’s flooring function and try to rationalize the classical meanness of some of these graphs created by duplicating procedures. Figure 1 depicts classical mean labeling of 2ST₄ [20].

4. Main Results

4.1. Classical Meanness of Graphs Obtained from Edge Duplicating Operation

Theorem 1. If a graph G is formed by duplicating one edge of another graph G’, then G is a classical mean graph, where G’ represents the path Pₙ for n ≥ 3.

Proof. Let e’ = vᵢᵥᵢ₊₁ be the duplicating edge of e = vᵢᵥᵢ₊₁, 1 ≤ i ≤ n - 1.

Case 1. i = 1 or i = n.

Let us construct Φ: V → N - [Δ, Δ + 1, ..., ∞] (see Table 1).

Hence,

\[
\Phi^*(v₁v₂) = 2δ - 1, \quad \text{for } δ = 1, 3.
\]

and (see Table 2).

Case 2. n ≥ 4, i = 2, and Δ = n + 4.

Let us construct Φ: V → N - [Δ + 1, Δ + 2, ..., ∞] (see Table 3).

Hence,

\[
\Phi^*(v₂v₃) = 2δ - 2, \quad \text{for } δ = 1 \text{ and } 3,
\]

\[
\Phi^*(v₃v₄) = 6.
\]

and (see Table 4).

Case 3. n ≥ 4, 3 ≤ i ≤ n - 2, and Δ = n + 4.

Let us construct Φ: V → N - [Δ + 1, Δ + 2, ..., ∞] (see Table 5).

Hence,

\[
\Phi^*(vᵢvᵢ₊₁) = γ - 1,
\]

\[
\Phi^*(vᵢ₊₁vᵢ) = 1 + γ,
\]

\[
\Phi^*(vᵢ₊₁vᵢ₊₂) = 3 + γ,
\]

and (see Table 6).

Figure 2 depicts classical mean labeling of G in the preceding circumstances.

![Figure 1: A classical mean labeling of 2ST₄.](image)

Table 1: Vertex labeling of Φ(v).

<table>
<thead>
<tr>
<th>δ</th>
<th>Φ(v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ≤ δ ≤ 3</td>
<td>4 ≤ δ ≤ n</td>
</tr>
<tr>
<td>2δ - 1</td>
<td>δ + 2</td>
</tr>
</tbody>
</table>

Table 2: Edge labeling of Φ*(e).

<table>
<thead>
<tr>
<th>δ</th>
<th>Φ*(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ≤ δ ≤ 3</td>
<td>4 ≤ δ ≤ n - 1</td>
</tr>
<tr>
<td>2δ - 1</td>
<td>δ + 2</td>
</tr>
</tbody>
</table>

Table 3: Vertex labeling of Φ(v).

<table>
<thead>
<tr>
<th>δ</th>
<th>Φ(v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ = 1</td>
<td>2 ≤ δ ≤ 3</td>
</tr>
<tr>
<td>2δ</td>
<td>δ + 3</td>
</tr>
</tbody>
</table>

Table 4: Edge labeling of Φ*(e).

<table>
<thead>
<tr>
<th>δ</th>
<th>Φ*(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ≤ δ ≤ 4</td>
<td>5 ≤ δ ≤ n - 1</td>
</tr>
<tr>
<td>2δ - 1</td>
<td>δ + 3</td>
</tr>
</tbody>
</table>

Table 5: Vertex labeling of Φ(v).

<table>
<thead>
<tr>
<th>δ</th>
<th>Φ(v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ≤ δ ≤ γ - 1</td>
<td>γ = δ + 1</td>
</tr>
<tr>
<td>γ + 2 ≤ δ ≤ n</td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Edge labeling of Φ*(e).

<table>
<thead>
<tr>
<th>δ</th>
<th>Φ*(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ≤ δ ≤ γ - 2</td>
<td>γ = δ + 1</td>
</tr>
<tr>
<td>γ + 1 ≤ δ ≤ n - 1</td>
<td></td>
</tr>
</tbody>
</table>

Theorem 2. If a graph G is formed by duplicating one edge of another graph G’, then G is a classical mean graph, where G’ represents the path Pₙ+K₁.

Proof. Suppose n ≥ 3.

Case 1. 1 ≤ γ ≤ n, e = uᵢᵥᵢ, and n ≥ 3.

Subcase (1). γ = n or γ = 1, and Δ = 2n + 3.

□
Let us construct $\Phi : V \rightarrow N - [\Delta + 1, \Delta + 2, \ldots, \infty]$.
\begin{align*}
\Phi (u'_1) &= 3, \\
\Phi (v'_1) &= 1.
\end{align*}
(5)

and (see Table 7).
Hence,
\begin{align*}
\Phi^* (u'_1v'_1) &= 1, \\
\Phi^* (u'_1u'_1) &= 3.
\end{align*}
(6)

and (see Table 8).

Subcase (2). $y = 2$ and $\Delta = 2n + 4$.
Let us construct $\Phi : V \rightarrow N - [\Delta + 1, \Delta + 2, \ldots, \infty]$.
\begin{align*}
\Phi (u'_2) &= 7, \\
\Phi (v'_2) &= 6.
\end{align*}
(7)

and (see Table 9).
Hence,
\begin{align*}
\Phi^* (u_1u'_2) &= 4, \\
\Phi^* (u'_2u'_2) &= 7, \\
\Phi^* (u'_2v'_2) &= 6.
\end{align*}
(8)

and (see Table 10).

Subcase (3). $n \geq 4$, $3 \leq y \leq n - 1$, and $\Delta = 2n + 4$.
Let us construct $\Phi : V \rightarrow N - [\Delta + 1, \Delta + 2, \ldots, \infty]$.
\begin{align*}
\Phi (u'_i) &= 2y + 3, \\
\Phi (v'_i) &= 2y + 2.
\end{align*}
(9)

and (see Table 11).
Hence,
\[
\Phi^* \left(u_{i,j} u_{j,i} \right) = 2y,
\]
\[
\Phi^* \left(u_i u_{i+1} \right) = 2y + 3,
\]
\[
\Phi^* \left(u_{i,j} u'_{j,i} \right) = 2y + 2, \tag{10}
\]
and (see Table 12).

Hence, \(\Phi \) is a classical meanness of \(G \).

Case 2. \(1 \leq y \leq n - 1 \), \(e = u_i u_{i+1} \), and \(n \geq 3 \).

Subcase (1). \(y = n - 1 \) or \(y = 1 \), and \(\Delta = 2n + 5 \).

Let us construct \(\Phi: V \rightarrow N - \{ \Delta + 1, \Delta + 2, \ldots, \infty \} \).

\[
\Phi (u_i) = 4, \tag{11}
\]
\[
\Phi (u_2) = 5.
\]
and (see Table 13).

Hence,
\[
\Phi^* (u_i u_j) = 4,
\]
\[
\Phi^* (u_i v_j) = 5,
\]
\[
\Phi^* (u_i v_i) = 2,
\]
\[
\Phi^* (u_i u_j) = 7. \tag{12}
\]
and (see Table 14).

Subcase (2). \(n \geq 3 \), \(y = 2 \), and \(\Delta = 2n + 6 \).

Let us construct \(\Phi: V \rightarrow N - \{ \Delta + 1, \Delta + 2, \ldots, \infty \} \).

\[
\Phi (u_i) = 3, \tag{13}
\]
\[
\Phi (u_2) = 11.
\]
and (see Table 15).

Hence,
\[
\Phi^* (u_i u_j) = 2,
\]
\[
\Phi^* (u_i u_j) = 6,
\]
\[
\Phi^* (u_i u_j) = 11, \tag{14}
\]
\[
\Phi^* (u_i v_j) = 3,
\]
\[
\Phi^* (u_i v_j) = 10.
\]
and (see Table 16).

Subcase (3). \(n \geq 5 \), \(3 \leq y \leq n - 2 \), and \(\Delta = 2n + 5 \).

Let us construct \(\Phi: V \rightarrow N - \{ \Delta + 1, \Delta + 2, \ldots, \infty \} \).

\[
\Phi (u_i) = 2y - 1, \tag{15}
\]
\[
\Phi (u_{i+1}) = 2y + 7.
\]
and (see Table 17)

Hence (see Table 18),

Table 12: Edge labeling of \(\Phi^* (e) \).

<table>
<thead>
<tr>
<th>(\Phi^* (e))</th>
<th>(1 \leq \delta \leq y - 1)</th>
<th>(\delta = y)</th>
<th>(y + 1 \leq \delta \leq n - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Phi^* (u_i u_{i+1}))</td>
<td>(2\delta)</td>
<td>(2y + 1)</td>
<td>(2\delta + 3)</td>
</tr>
<tr>
<td>(\Phi^* (u_i v_j))</td>
<td>(2\delta - 1)</td>
<td>(2\delta - 1)</td>
<td>(2\delta + 2)</td>
</tr>
</tbody>
</table>

Table 13: Vertex labeling of \(\Phi(v) \).

<table>
<thead>
<tr>
<th>(\Phi (v))</th>
<th>(\delta = 1)</th>
<th>(2 \leq \delta \leq 3)</th>
<th>(4 \leq \delta \leq n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Phi (u_i))</td>
<td>1</td>
<td>(2\delta + 4)</td>
<td>(2\delta + 4)</td>
</tr>
<tr>
<td>(\Phi (v_j))</td>
<td>2</td>
<td>(3\delta)</td>
<td>(2\delta + 3)</td>
</tr>
</tbody>
</table>

Table 14: Edge labeling of \(\Phi^* (e) \).

<table>
<thead>
<tr>
<th>(\Phi^* (e))</th>
<th>(\delta = 1)</th>
<th>(2 \leq \delta \leq 3)</th>
<th>(4 \leq \delta \leq n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Phi^* (u_i u_{i+1}))</td>
<td>3</td>
<td>(2\delta + 4)</td>
<td>(2\delta + 4)</td>
</tr>
<tr>
<td>(\Phi^* (u_i v_j))</td>
<td>5\delta - 4</td>
<td>(5\delta - 4)</td>
<td>(2\delta + 3)</td>
</tr>
</tbody>
</table>

Table 15: Vertex labeling of \(\Phi(v) \).

<table>
<thead>
<tr>
<th>(\Phi (v))</th>
<th>(\delta = 1)</th>
<th>(2 \leq \delta \leq 3)</th>
<th>(4 \leq \delta \leq n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Phi (u_i))</td>
<td>1</td>
<td>(2\delta + 3)</td>
<td>(2\delta + 5)</td>
</tr>
<tr>
<td>(\Phi (v_j))</td>
<td>1</td>
<td>(3\delta - 1)</td>
<td>(2\delta - 4)</td>
</tr>
</tbody>
</table>

Table 16: Edge labeling of \(\Phi^* (e) \).

<table>
<thead>
<tr>
<th>(\Phi^* (e))</th>
<th>(\delta = 1)</th>
<th>(2 \leq \delta \leq 3)</th>
<th>(4 \leq \delta \leq n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Phi^* (u_i u_{i+1}))</td>
<td>4</td>
<td>(2\delta + 3)</td>
<td>(2\delta + 5)</td>
</tr>
<tr>
<td>(\Phi^* (u_i v_j))</td>
<td>1</td>
<td>(3\delta - 1)</td>
<td>(2\delta - 4)</td>
</tr>
</tbody>
</table>

Table 17: Vertex labeling of \(\Phi(v) \).

<table>
<thead>
<tr>
<th>(\Phi (v))</th>
<th>(\delta = 1)</th>
<th>(2 \leq \delta \leq 3)</th>
<th>(4 \leq \delta \leq n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Phi (u_i))</td>
<td>2\delta</td>
<td>(2\delta + 3)</td>
<td>(2\delta + 5)</td>
</tr>
<tr>
<td>(\Phi (v_j))</td>
<td>(2\delta - 1)</td>
<td>(2\delta)</td>
<td>(2\delta + 9)</td>
</tr>
</tbody>
</table>

Figure 3 depicts the classical mean labeling of \(G \) in the preceding situations.

Case 3. \(e = u_i v_j \), \(e = u_i u_{i+1} \), and \(n = 2 \).

Figure 4 depicts classical mean labeling of \(G \) where \(e = u_i v_j \) and \(e = u_i u_{i+1} \) for \(n = 2 \).

\[\square \]

Theorem 3. If a graph \(G \) is formed by duplicating one edge of another graph \(G' \), then \(G \) is a classical mean graph, where \(G' \) represents the path \(C_n \) for \(n \geq 3 \).

\[\text{Proof.} \] Case 1. \(n \geq 6 \) and \(\Delta = n + 5 \).
Table 18: Edge labeling of $\Phi^*(e)$.

<table>
<thead>
<tr>
<th>$\Phi^*(e)$</th>
<th>$\delta \leq y - 2$</th>
<th>$\delta = y - 1$</th>
<th>$\delta = y$</th>
<th>$\delta = y + 1$</th>
<th>$\delta + 2 \leq \delta \leq n - 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Phi^*(u_1u_2)$</td>
<td>2δ</td>
<td>2δ</td>
<td>$2\delta + 3$</td>
<td>$2\delta + 5$</td>
<td>$2\delta + 5$</td>
</tr>
<tr>
<td>$\Phi^*(u_2u_0)$</td>
<td>$2\delta - 1$</td>
<td>$2\delta - 1$</td>
<td>$2\delta + 1$</td>
<td>$2\delta + 4$</td>
<td>$2\delta + 4$</td>
</tr>
</tbody>
</table>

Figure 3: A classical mean labeling of G obtained by duplicating an edge of a graph $P_n \circ K_1$.

Figure 4: A classical mean labeling of G.

Journal of Mathematics 5
Let us construct \(\Phi : V \longrightarrow N - \{\Delta + 1, \Delta + 2, \ldots, \infty \} \)
(see Table 19).

\[
\Phi (v_i) = n + 2 \gamma - 1 \quad \text{for} \quad 1 \leq \gamma \leq 2,
\]

\[
\Phi (v_i) = \begin{cases}
\gamma - 3, & 4 \leq \gamma \leq \left\lfloor \frac{1}{4} \left(\frac{n^2 + 14n + 41}{2n + 10} + \sqrt{n + 4} + \sqrt{\frac{n^2 + 8n + 17}{2}} \right) \right\rfloor + 2, \\
\gamma - 2, & 3 \leq \gamma \leq n - 1, \\
\end{cases}
\]

Hence, (see Table 20).

\[
\Phi^* (v_1v_n) = -1 + n,
\]

\[
\Phi^* (v_1v_n) = -2 + n,
\]

\[
\Phi^* (v_1v_k) = \left\lfloor \frac{1}{4} (X + Y + Z) \right\rfloor,
\]

\[
\Phi^* (v_1v_{\gamma+1}) = \begin{cases}
3 + \gamma, & 4 \leq \gamma \leq \left\lfloor \frac{1}{4} (X + Y + Z) \right\rfloor, \\
-2 + \gamma, & 3 \leq \gamma \leq n - 1, \\
\end{cases}
\]

Figure 5 depicts classical mean labeling of \(C_{15} \) in the preceding circumstances.

Case 2. \(n = 3, 4, 5 \).

Figure 6 depicts classical mean labeling of a graph for Case 2.

4.2. Classical Meanness of Graphs Obtained from Vertex Duplicating Operation

Theorem 4. If a graph \(G \) is created by duplicating a vertex of another graph \(G' \), then \(G \) is a classical mean graph, where \(G' \) is the path \(P_n \), for \(n \geq 3 \).

Proof. Let \(V (P_n) = v_1, v_2, \ldots, v_n \). Let the duplicating a vertex \(v_{\delta} \) by a vertex \(k_{\delta} \), for some \(\delta \) of the graph \(G' \).

Case 1. \(\delta = n \) or \(\delta = 1 \).

Let us take \(\Delta = n + 2 \).

Let us construct \(\Phi : V \longrightarrow N - \{\Delta + 1, \Delta + 2, \ldots, \infty \} \)
(see Table 21).

\[
\Phi (k_1) = 1.
\]

Hence (see Table 22),

\[
\Phi^* (v_1k_1) = 1.
\]

Case 2. \(2 \leq \delta \leq n - 1 \) and \(\Delta = n + 2 \).

Let us construct \(\Phi : V \longrightarrow N - \{\Delta + 1, \Delta + 2, \ldots, \infty \} \).

\[
\Phi (k_\delta) = 1 + \delta.
\]

and (see Table 23). Hence,

\[
\Phi^* (v_{\delta-1}k_\delta) = \delta - 1,
\]

\[
\Phi^* (v_{\delta+1}k_\delta) = \delta + 1.
\]

and (see Table 24). Figure 7 depicts classical mean labeling of \(G \) in the preceding circumstances.

Theorem 5. If a graph \(G \) is created by duplicating a vertex of another graph \(G' \), then \(G \) is a classical mean graph, where \(G' \) is the path \(P_n \ast K_1 \), for \(n \geq 3 \).

Proof. Case 1. \(v = u_\gamma \), for \(1 \leq \gamma \leq n \).

Let its duplication be \(v' = u_\gamma' \).

Subcase 1. \(\gamma = n \) or \(\gamma = 1 \) and \(\Delta = 3 + 2n \).
Table 19: Vertex labeling of $\Phi(v)$.

<table>
<thead>
<tr>
<th>$\Phi(v)$</th>
<th>$\delta = 1$</th>
<th>$2 \leq \delta \leq 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Phi(v_\delta)$</td>
<td>$n - 1$</td>
<td>$n + 2\delta - 2$</td>
</tr>
</tbody>
</table>

Table 20: Edge labeling of $\Phi^*(e)$.

<table>
<thead>
<tr>
<th>$\Phi^*(e)$</th>
<th>$1 \leq \gamma \leq 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Phi^*(v_{\gamma}v_{\gamma+1})$</td>
<td>$n + 2\gamma - 2$</td>
</tr>
<tr>
<td>$\Phi^*(v_{\gamma'}v_{\gamma'+1})$</td>
<td>$n + 2\gamma' - 2$</td>
</tr>
</tbody>
</table>

Figure 5: A classical mean labeling of the graph obtained by duplicating an edge of a graph C_{15}.

Figure 6: A classical mean labeling of the graph obtained by duplicating an edge of a graph C_3, C_4, and C_5.
Let us construct \(\Phi : V \to N - \{\Delta + 1, \Delta + 2, \ldots, \infty\} \) (see Table 25).

\[
\Phi(u_i) = 4.
\]

Hence (see Table 26),

Subcase 2. \(n \geq 3, 2 \leq y \leq n - 1 \), and take \(\Delta = 4 + 2n \).

Let us construct \(\Phi : V \to N - \{\Delta + 1, \Delta + 2, \ldots, \infty\} \) (see Table 27).

\[
\Phi(u_i) = 2\delta + 2
\]

Hence,

and (see Table 28).

Case 2. \(1 \leq y \leq n, v = v_i, \) and \(\Delta = 2 + 2n \).

Let us construct \(\Phi : V \to N - \{\Delta + 1, \Delta + 2, \ldots, \infty\} \).

\[
\Phi(v_i) = 2\gamma + 1.
\]

and (see Table 29).

Hence,

\[
\Phi(v_i) = 2\gamma.
\]

and (see Table 30).

Figure 8 depicts classical mean labeling of \(G \) in the preceding circumstances. \(\square \)

Theorem 6. If a graph \(G \) is created by duplicating a vertex of another graph \(G' \), then \(G \) is a classical mean graph, where \(G' \) is the path \(C_n \), for \(n \geq 3 \).

Proof. Let \(v_1, v_2, \ldots, v_n \) be the vertices of the cycle \(C_n \) and let \(v = v_1 \) and its duplicated vertex is \(v_1' \).

Case 1. \(n \geq 5 \) and \(\Delta = 4 + n \).

Let us construct \(\Phi : V \to N - \{\Delta + 1, \Delta + 2, \ldots, \infty\} \).
Table 28: Edge labeling of $\Phi^* (e)$.

<table>
<thead>
<tr>
<th>$\Phi^* (e)$</th>
<th>$1 \leq \delta \leq \gamma - 1$</th>
<th>$\delta = \gamma$</th>
<th>$\gamma + 1 \leq \delta \leq n - 1$</th>
<th>$\gamma = n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Phi^* (u_d u_{1_d})$</td>
<td>2δ</td>
<td>$2\delta + 2$</td>
<td>$2\delta + 3$</td>
<td>$-$</td>
</tr>
<tr>
<td>$\Phi^* (u_d v_{d})$</td>
<td>$2\delta - 1$</td>
<td>2δ</td>
<td>$2\delta + 2$</td>
<td>$2n + 2$</td>
</tr>
</tbody>
</table>

Table 29: Vertex labeling of $\Phi(v)$.

<table>
<thead>
<tr>
<th>$\Phi (v)$</th>
<th>$1 \leq \delta \leq \gamma$</th>
<th>$\delta + 1 \leq n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Phi (u_d)$</td>
<td>2δ</td>
<td>$2\delta + 1$</td>
</tr>
<tr>
<td>$\Phi (v_{d})$</td>
<td>$2\delta - 1$</td>
<td>2δ</td>
</tr>
</tbody>
</table>

Table 30: Edge labeling of $\Phi^* (e)$.

<table>
<thead>
<tr>
<th>$\Phi^* (e)$</th>
<th>$1 \leq \delta \leq \gamma - 1$</th>
<th>$\delta = \gamma$</th>
<th>$\delta = \gamma + 1$</th>
<th>$\gamma + 1 \leq \delta \leq n - 1$</th>
<th>$\delta = n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Phi^* (u_d u_{1_d})$</td>
<td>2δ</td>
<td>2δ</td>
<td>$2\delta + 1$</td>
<td>$2\delta + 1$</td>
<td>$-$</td>
</tr>
<tr>
<td>$\Phi^* (u_d v_{d})$</td>
<td>$2\delta - 1$</td>
<td>$2\delta - 1$</td>
<td>2δ</td>
<td>2δ</td>
<td>2δ</td>
</tr>
</tbody>
</table>

Figure 8: A classical mean labeling of G obtained by duplicating a vertex of the graph $P_n \circ K_1$.
\(\Phi(v_1') = n - 1, \quad \text{for} \ 2 \leq \delta \leq 3, \)
\(\Phi(v_i) = n - 1, \)
\(\Phi(v_j) = n + 2y - 2, \)
\[
\Phi(v_j) = \begin{cases}
\gamma - 3, & 4 \leq \gamma \leq \left\lfloor \frac{1}{4} \left(\frac{n^2 + 12n + 28}{2n + 8} + \sqrt{n + 3} + \frac{n^2 + 6n + 10}{2} \right) \right\rfloor + 2, \\
\gamma - 2, & 1 \leq \gamma \leq \left\lfloor \frac{1}{4} \left(\frac{n^2 + 12n + 28}{2n + 8} + \sqrt{n + 3} + \frac{n^2 + 6n + 10}{2} \right) \right\rfloor + 3 \leq \gamma \leq n.
\end{cases} \tag{29}
\]
Theorem 7. The graph $S'(P_n)$ is a classical mean graph, for $n \geq 2$.

Proof. Let v_1, v_2, \ldots, v_n be the vertices of the path P_n and v_1', v_2', \ldots, v_n' be the vertices of $S'(P_n)$.

Case 1. n is odd. Let us take $\Delta = 1 + 3n$.

Let us construct $\Phi: V \longrightarrow N - \{\Delta + 1, \Delta + 2, \ldots, \infty\}$ (see Table 31).

Hence (see Table 32).

Table 31: Vertex labeling of $\Phi(v)$.

<table>
<thead>
<tr>
<th>$\Phi(v)$</th>
<th>$y = 1$</th>
<th>$y = 2$</th>
<th>$y = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Phi(v_1)$</td>
<td>$5y-4$</td>
<td>$5y-4$</td>
<td>5</td>
</tr>
<tr>
<td>$\Phi(v_4)$</td>
<td>4</td>
<td>4$y-5$</td>
<td>$4y-5$</td>
</tr>
</tbody>
</table>

Table 32: Vertex labeling of $\Phi(v)$.

<table>
<thead>
<tr>
<th>$\Phi(v)$</th>
<th>$2 \leq y \leq \lfloor n/2 \rfloor$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Phi(v_1)$</td>
<td>$6y+1$</td>
</tr>
<tr>
<td>$\Phi(v_{2n-1})$</td>
<td>$6y$</td>
</tr>
<tr>
<td>$\Phi(v_{2n})$</td>
<td>$6y-2$</td>
</tr>
<tr>
<td>$\Phi(v_{2n+1})$</td>
<td>$6y-1$</td>
</tr>
</tbody>
</table>

Table 33: Edge labeling of $\Phi^*(e)$.

<table>
<thead>
<tr>
<th>$\Phi^*(e)$</th>
<th>$2 \leq y \leq \lfloor n/2 \rfloor$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Phi^*(v_1v_2)$</td>
<td>$3y-1$</td>
</tr>
<tr>
<td>$\Phi^*(v_3v_4)$</td>
<td>$5y-4$</td>
</tr>
<tr>
<td>$\Phi^*(v_4v_{2n})$</td>
<td>$6y-9$</td>
</tr>
</tbody>
</table>

Table 34: Edge labeling of $\Phi^*(e)$.

<table>
<thead>
<tr>
<th>$\Phi^*(e)$</th>
<th>$2 \leq y \leq \lfloor n/2 \rfloor$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Phi^*(v_1v_2)$</td>
<td>$6y+3$</td>
</tr>
<tr>
<td>$\Phi^*(v_2v_{2n})$</td>
<td>$6y+2$</td>
</tr>
<tr>
<td>$\Phi^*(v_2v_{2n+1})$</td>
<td>$6y+1$</td>
</tr>
</tbody>
</table>

Table 35: Edge labeling of $\Phi^*(e)$.

<table>
<thead>
<tr>
<th>$\Phi(v)$</th>
<th>$1 \leq y \leq 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Phi(v_1)$</td>
<td>$2y-1$</td>
</tr>
<tr>
<td>$\Phi(v_4)$</td>
<td>$6-y$</td>
</tr>
</tbody>
</table>

Table 36: Vertex labeling of $\Phi(v)$.

<table>
<thead>
<tr>
<th>$\Phi(v)$</th>
<th>$2 \leq y \leq \lfloor n/2 \rfloor$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Phi(v_2)$</td>
<td>$6y-2$</td>
</tr>
<tr>
<td>$\Phi(v_3)$</td>
<td>$6y-3$</td>
</tr>
<tr>
<td>$\Phi(v_2v_3)$</td>
<td>$6y-5$</td>
</tr>
<tr>
<td>$\Phi(v_{2n})$</td>
<td>$6y-4$</td>
</tr>
</tbody>
</table>

Table 37: Vertex labeling of $\Phi(v)$.

<table>
<thead>
<tr>
<th>$\Phi^*(e)$</th>
<th>$1 \leq y \leq 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Phi^*(v_1v_2)$</td>
<td>$4y-3$</td>
</tr>
<tr>
<td>$\Phi^*(v_3v_4)$</td>
<td>$2y$</td>
</tr>
<tr>
<td>$\Phi^*(v_{2n}v_{2n+1})$</td>
<td>$3y$</td>
</tr>
</tbody>
</table>
5. Conclusion

The classical meanness of some graphs generated from duplicating operations is addressed here, along with sufficient examples to aid comprehension. It is feasible to look into comparable outcomes for a variety of other graphs.

Data Availability

No data ware used in this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

References

[18] A. Rajesh Kannan, P. Manivannan, and A. Durai Baskar, "Exponential mean labeling of some graphs obtained from..."

