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Spectrum analysis and computing have expanded in popularity in recent years as a critical tool for studying and describing the
structural properties of molecular graphs. Let O? be the strong prism of an octagonal network O,,. In this study, using the
normalized Laplacian decomposition theorem, we determine the normalized Laplacian spectrum of O? which consists of the
eigenvalues of matrices &, and £ of order 3n + 1. As applications of the obtained results, the explicit formulae of the degree-
Kirchhoff index and the number of spanning trees for O? are on the basis of the relationship between the roots and coefficients.

1. Introduction

Graphs are a convenient way to depict chemical structures,
where atoms are associated with vertices, while chemical
bonds are associated with edges. This manifestation carries a
wealth of knowledge about the molecule’s chemical char-
acteristics. In quantitative structure-activity/property rela-
tionship (QSAR/QSPR) studies, one may see that many
chemical and physical properties of molecules are closely
correlated with graph-theoretical parameters known as to-
pological indices. One such graph-theoretical parameter is
the multiplicative degree-Kirchhoff index (see [1]). In sta-
tistical physics (see [2]), the enumeration of spanning trees
in a graph is a crucial problem. It is interesting to note that
the multiplicative degree-Kirchhoft index is closely related to
the number of spanning trees in a graph. The normalized
Laplacian acts as a link between them.

Let G be an n-vertex simple, undirected, and connected
graph with the vertex set of V (G) and an edge set of E(G).

For standard notation and terminology, one may refer to the
recent papers (see [3, 4]). The (combinatorial) Laplacian
matrix of graph G is specified as L; = D — Ag, where Dy is
the vertex degree diagonal matrix of order n and A(G) is an
adjacency matrix of order n.

The normalized Laplacian is defined by

(1, ifi=j,
1 figi
(Z6)ij =1 dd, WEZ Vi~V (1)
i Vi
L 0, otherwise.

Evidently, L(G) = D(G) — A(G) and Z(G) = D(G)™ "2
L(G)D(G)" 2. As we all know, the normalized Laplacian
technique is useful for analyzing the structural features of
nonregular graphs. In reality, the interaction between a
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graph’s structural features and its eigenvalues is the focus of
spectral graph theory. For more information, see recent
articles [5-8] or the book [9].

Many parameters were used to characterize and describe
the structural features of graphs in chemical graph theory.
The Wiener index [10, 11] was a well-known distance-based
index, as it is known as W (G) = Y., ;d;;. Eventually, Gutman
[12] defined the Gutman index as follows:

Gut(G) = )’ did;d;;. )

i<j

In accordance with electrical network theory, Klein and
Randi¢ [13] presented a new distance function called re-
sistance distance that is denoted as r;.. The resistance dis-
tance in electrical networks is between two arbitrary vertices
i and j when every edge is replaced by a unit resistor. Klein
and Ivanciuc [14] called it the Kirchhoff index, the total sum
of resistance distances between each pair of vertices of G,
which is K f (G) = Y. r;;. Later, the degree-Kirchhoff index
was established by Chen and Zhang [1] and denoted by
Kf*(G) =Y ddr;

Because of their practical uses in physics, chemistry, and
other sciences, the Kirchhoff index and the degree-Kirchhoff
index have gained a lot of attention. Klein and Lovasz
[15, 16] separately established that

Kf(G)=nY 3)

k=2 Yk

where 0 =9, <v,< ... <v, are the eigenvalues of L(G).
According to Chen [17], the degree-Kirchhoff index is,

Kf*(G)=2m Zi, (4)

=1 %k

where v, <v, < --- <v, are the eigenvalues of Z(G).
Since the Kirchhoft index and multiplicative degree-
Kirchhoff index have been widely used in the domains of
physics, chemistry, and network science. During the pre-
vious few decades, many scientists have been working on
explicit formulae for the Kirchhoff and degree-Kirchhoft
indices of graphs with particular structures, such as cycles
[18], complete multipartite graphs [19], generalized phe-
nylene [20], crossed octagonal [21], hexagonal chains [22],
pentagonal-quadrilateral network [23], and so on. Other
research on the Kirchhoff index and the multiplicative de-
gree-Kirchhoft index of a graph has been published (see
[24-31]). In organic chemistry, polyomino systems have
received a lot of attention, especially in polycyclic aromatic
compounds. Tree-like octagonal networks are condensed
into octagonal networks that belong to the polycyclic
conjugated hydrocarbons’ family. The octagonal system
without any branches is known as a linear octagonal network
[32]. As shown in Figure 1, a linear octagonal network could
also be created from a linear polyomino network by adding
additional points to the line according to specified rules.
The strong product between the graphs G and H is
denoted by GRH, where the vertex set V(GRH) is V; x Vg
and (a, x) (b, y) is an edge of GRH if a = b and x is adjacent
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FiGure 1: Graph O,, with labeled vertices.

to yin H or x = y and a is adjacent to bin G or xy € E(H)
and ab € E. In particular, the strong product of K, and G is
known as the strong prism of G. Recently, Li [33] and Ali
[34] calculated the resistance distance-based parameters of
the strong prism of unique graphs, such as strong prism of S,
and L,RK,, respectively. Let O2 be the strong prism of K,
and O,, denoted by O? = K,RO,,, as shown in Figure 2.
Obviously, |E(O?)| = 34n+ 6 and |V (O2)| = 12n + 4.

In this paper, motivated by [34-36], we derive an explicit
analytical expression for the multiplicative degree-Kirchhoft
index and also spanning trees of O2.

2. Preliminaries

In this section, we start by going over some basic notation
and then introduce a suitable technique. Given the square
matrix R having order n, we refer to R[i;,1,,...,i] as the
submatrix of R that results from deleting the i, th, i,th, .. ., i th
columns and rows. Let ® (R) = det(xI,, — R) be the charac-
teristic polynomial of the square matrix R. The labeled vertices of
O? are as depicted in Figure 2 and V= {u,...,us,,,
Vioee s Vit and V, ={uf,..., s, iV, ..., V31 }. The
normalized Laplacian matrix & (O2) could be represented as a

block matrix below:
z, (02) 2, (O?
g(oi) :< Vll( ;l) VIZ( ;l) >
gvu(on) gvzz(O”)

It is simple to verify that &y, (O;) = %y (O;) and
Ly (02) = 2, (O2).

(5)

Let
1 1
W16n+2 ﬁlsmz
T= . (6)
1 1
mez _Wlénﬁ
Then,
z.,(0? 0
T(O)T = (03) ) (7)
0 2(0))
where

Q?A(Ofl) = gV11 + =(Zvlz’

8
ES(Oi) = gvll - ngZI ( )

Huang et al. obtained the following lemma.
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F1GURE 2: Graph O2 with labeled vertices.

Lemma 1 (see [8]). Let G be a graph and let &, (O?) and
be

Zs(0%) as described above. ‘Then, we have
O(Z(0)) = D(ZL,) - D(Zy).
1
1 — 0 0 (]
5
1 1
— 1 — 0 0 0
5 5
0 ! 1 L 0 0
5 V35
0 0 ! 1 0 0
V35
1
0 0 0 0 1 —
5
1
0 0 0 0 — 1
. 5
LVH(O"):
1
— 0 0 0 0 0
5
0 0 0 0 0 0
0 0 0 0 0 0
1
0 0 0 — 0 0
7
0 0 0 0 0 0
1
0 0 0 0 0 —
5

Lemma 2 (see [1]). Let p, <p, < --- <p,, be the eigenvalues
of Z (G); then, the degree-Kirchhoff index can also be written
as Kf*(G) =2mY, 1/p;.

Lemma 3 (see [17]). Let G be n-vertex connected graph of

size m; then, the spanning trees is
7(G) = 172m ][, d; [Tz, pic
3. Main Results

In this section, we are committed to the explicit analytical
solution for the multiplicative degree-Kirchhoff index, as
well as the spanning tree of O2. In terms of the role of
normalized Laplacian &, the following block matrices of
2y, (07) and Zy, (O;) are obtained according to equation
(8).

1
- 0 0 0 0 0
5
0 0 0 0 0 0
0 0 0 0 0
1
0 0 — 0 0
7
0 0 0 0 0
1
0 0 0 0 —
5
1
— 0 0 0 0
5
1 1
-1 — o --- 0 O
5 5
! 1 1 0 0
5 V35
0 0 ! 1 0 0
V35
1
0 0 0 1 —
5
1
0 0 0 —
5 (6n+2)x(6n+2),
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1 1 1
— — 0 0 0 0 — 0 0 0 0 0
5 5 5
1 1 1
—_— = - 0 0 0 0 O 0 0 0 0
5 5 5
0 ! 1 1 0O 0 0 O 0 0 0 0
5 5 V35
0 0 L 1 0 0 0 O 0 ! 0 0
V35 7 7
1 1
0 0 0 0 — — 0 0 0 0 0 0
5 5
1 1
0 0 0 0 — — 0 0 0 0 0 —
) 5 5 5
Lvlz(on) = 1 1 1 (9)
— 0 0 0 -0 0 —— 0 0 0 0
5 5 5
1 1 1
0 0 0 0 o 0 — — — 0 . 0 0
5 5 5
0 0 0 0 0 0 O 1 ! L 0 0
5 5 V35
0 0 0 L 0O 0 0 O L L 0 0
7 V35 7
1 1
0 0 0 0 0O 0 0 O 0 0 _—
7 5
1 1 1
0 0 0 0 0O — 0 O 0 0 —_— —
5 5 57 (6n+2)x(6n+2)

By equation (8), we have a matrix of order 6n + 2:
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2 1 1
- — 0 0 0 0 —-0 0 0 0 0
5 5 5
12 1
— - — 0 0000 O 0 0 0
55 5
o L 2 ! 0000 0 0 0 0
5 5 435
00— 0000 O ! 0 0
V35 7
2 1
00 0 0 -~ — 00 0 0 0 0
5 5
12 1
00 0 0 — = 00 0 0 0 —
55 5
Ly(0}) =2 , (10)
1 2 1
— 0 0 0 00 = — 0 0 -0 0
5 5 5
12 1
00 0 0 00— — 0 0 0
55 5
00 0 0 000 2 . 0 0
5 V3%
00 0 ! 000 0 —2 0 0
7 /35
2 1
00 0 0 0000 O 0 = =
5 5
1 12
00 0 0 00— 00 0 0 — =
5 55

and Z((0?) = diag(6/5,6/5,6/5,8/7,...,6/5, 6/5,8/7, Lemma 1. Given the fact that £¢(O?) is just a diagonal

6/5,6/5, 8/7,...,8/7,6/5,6/5,6/5)Q, a diagonal matrix with ~ matrix of order 6n + 2, it is obvious that 6/5 with multiplicity

order 6n + 2. 4n + 4 and 8/7 with multiplicity 2n — 2 are the eigenvalues of
The normalized Laplacian spectrum of O? is constructed ~ Z(O?).

by the eigenvalues of &, (02) and Z(O?), according to Let



2 1
- — 0 0 0 0
5 5
1 2 1
—Z = 0 0 0
55 5
0 ! 2 ! 0 0
5 5 \/35
A=l g o L 2 0 0
V35 7
1 1
0 0 0 0 - —
5 5
1 2
0 0 0 0 —_— =
55 (3n+1)x(3n+1),
1
— 0 0 O 0 0
5
0o 0 0 0 - 0 0
o 0 0 O - 0 0
1
cC=1 0 0 0 — - 0 0
7
0 0 0 O 0 0
1
o o0 o0 0 --- 0 —
57 (Bu+l)x(3n+1).
(11)
Thus, (1/2)Z , could be represented by the block matrix
below:
1 A C
2 C A
Let
1 1
WIMH WI&HI
T= . (13)
1 1
WIMH _WIMH
Then,
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T(%.,?A)T’ =<A+C ’ > (14)

0 A-C

where T' indicates the transposition of T. Let P = A + C and
Q= A -C. Then,

1 1
- — 0 0 0 O
5 5
1 2 1
_— = — 0 0 0 0
55 5
0 1 2 1 0 0 O
5 5 V35
0 0 L 2 0 0 0
p= V35 7
2 1
0 0 0 0 - — 0
5 5
1 2 1
0 0 0 0 _— - —
55 5
1
0 0 0 0 0 — -
5 5 / Gusl)x(3n+1),
(15)
3 1
- — 0 0 0 0 O
5 5
1 2 1
-— = — 0 -0 0 O
55 5
0 ! 2 1 0 0 0
5 5 V35
0 0 1 0 0 O
V35
Q=
2
0 0 0 0 - — 0
5
1 2 1
0 0 0 0 — = —
55 5
1 3
0 0 0 0 e 00— =
5 5 / 3n+)x(3n+1).

By Lemma 1, it is simple to verify that the eigenvalues of
(1/2)Z 4 consist of those of P and Q. Suppose that the
eigenvalues of P and Q are denoted by y; and
fj(i,j =1,2,...,3n+1) with p,<y,<---<y;,,; and
& <& <. <&, respectively. Then, the eigenvalues of
L4 are 291,295, ..., 2Y5,, and 28,2, ...,2&;,  .where
0=9p, <P, <+ <3, and 0<& <& <000 <&, are ei-
genvalues of P and Q, respectively.
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Lemma 4. Suppose that O is the strong product of octagonal
network. Then,

Kf*(0}) =2(34n +6) (4n+4) +(2 2)7+13m1l+13§ll
=aloan T4 2 =R
(16)

On the basis of the relation between the coefficients and
roots of @ (P) (resp. ®(Q)), the formulae of 23”“ 1/y; (resp.
23"“1/5 ) are obtained in the next lemmas.

Lemma 5. Suppose that 0 =17y, <y, <
scribed as above. Then,

- <3 are de-

nz 1 1359%° + 1115n° + 434n (17)
=y, 14(17n + 3) '

Suppose  that @ (P) = x> +a,x* +--- +ay, x°
tas,x = x (" +a; x4+ ay, X+ asy). Then,
V2> V3s - - -» Vang1 Satisfy the equation below:

a4 vay, x+as, =0, (18)
s0 1/y,,1/y5, ..., 1/ys,,, satisfy the equation below:
Ay x> +ag, x4 vax+1=0. (19)

Hence, by Vieta’s theorem, we obtain

3n+1 3n-1

1 1 a

1_CED7 ayn L (20)
=Y (1D)7a,

For the sake of convenience, consider W; of P, which is
the ith order principal submatrix generated by the first i
columns and rows, i = 1,2,...,3n. Let w; = detW,. Then,

1
w, = -,
175
1

w, = —,
275

3n+1

(-1)*a, = ) detPli]
i=1

i=2

n-1

3n
=) det P[i] + 2w,,

7
1
ws = oo
1
Wy = s
1
Ws = 2o
1
We = 21875 (21)
2 1 .
wy; = §w3i 25w3l 5, forl<i<mn,
2 1

S Wi = Wy — —W forl<i<n-1
3+ T o 3 35 %1’ >

2

SWairt ~ 35Wap forl<i<n-1.

Wsjyp =

By explicit calculation, these general formulae can be
obtained as follows:

7/ 1YV
w3i=—<—>, forl<i<n,
5\175
1/ 1Y
<w3i+1:g(ﬁ>, for0<i<n-1, (22)

1 1y )
W3iyp = 25(175>, for0<i<n-1.

The structure and determinant of matrix &, are pre-
served by a permutation similarity transformation of a
square matrix, and one gets detUs,,, ; = detW,, ., ;. We
have

n-1

= ) detP| 3k]+ZdetP k+1]+ZdetP 3k +2] + 2w,
k=1

n-1

11
M=

=
I

1 k=1

17n+3( 1 )”‘1
625 175

as desired.

(23)

n-1

W3 (k-1)+2 " W3 (n-k)+1 T Z Wik~ W3 (k) T Z Wspp1 * W3 (ng-1)42 + 2W3,

k=0



Claim 1. (=1)""'as, | = 13591° + 11151 + 434n/8750
(1/175)" .

Proof of Claim 1. Noticing that (=1)*""'a,,_, is equal to the
sum of all principal minors of P with 3n — 1 columns and
rows, we have

W,, 00
3n+l
(D lag, = Y | 0 Z 0| 1<i<j<3n+l,
1<i<j 0 0U
(24)
where
1
ki1 5 0
1
Z-| V& kiizjii 0 ’
0 0 ki
2 1 0 0
7 V35
1 2 1 0
V35 5 5
0 1 2 1
5 5 V35
detZ = 0 0 1 2
V35 7
0 0 0 0
0 0 0 0
Case 2. Let i=3p and j=3q+1, for

1<i<i+1<j<3n+1. S0, 1<p<g<n-1:

|
&1_ NIES)
wu
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kj+1,j+1 0 0
U= 1 . (25)
0 : k3n,3n _g
1
0 _g k3n+1,3n+1
Note that
3n+1 3n+1
(-1 'ay, = ) detPlijl= ) w-ws,, ;-detZ
1<i<j 1<i<j

(26)

Remark 1. If 1<i<i+1=j<3n+1, then Z is an empty
matrix and let detZ = 1. By equation (26), there are different
possibilities which can be selected for i and j. Therefore, all
these cases are classified as follows.

Case 1. Let i =3p and j=3q, for 1<i<j<3n+1. So,
1<p<gsn:

1 \dP
. = (3q-3p+ 1>(ﬁ) . (27)

|
4
(9]

[S20 1 S

(3g-3p-1)
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detZ =

Case 3. Leti=3p and j=3g+2, for 1<i<j<3n+1. So,

I<p<g<n-1:

detZ =

TR &,__
w

Case 4. Leti=3p+1 and j=3q, for 1<i<j<3n+1. So,

0<p<gsm

(2N

| =

w| =

(S0 8]

(39-3p)

(3g-3p+1)

_ (3q—3p+2)(
7 175

_(3q-3p+3)

35

1

(

1
175

)

)

(28)

(29)
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2 1
= - 0 0 0 0
5 5
1 2 1 0 0 0
5 5 V35
0 1 2 1 0 0
V35 7 V35
detZ 12 ( (L)
etZ = =35(3q-3p-1 <—> . (30)
0 o = - - 0 0 1
V35 5 75
0 0 0 0 2 !
7 V35
0 0 0 0 ! 2
V35 5 ligap-2)
Case 5. Leti=3p+1and j=3g+1, for 1<i<j<3n+1.
So,0<p<g<n—1:
2 1
= - 0 0 0 0
5 5
1 2 1 0 0 0
5 5 V35
0 1 2 1 0 0
V35 7 V35
detz ( ) 1 \9-P
etZ = 1 2 =7(3q-3 (—) . 31
0 0 —= = 00 17 °P\175 (31)
V35 5
2 1
0 0 0 0 - —
5 5
1 2
0 0 0 0 -— =
5 5 1@3g-3p-1)

Case 6. Let i=3p+1 and j=3g+2, for
1<i<i+1<j<3n+1.50,0<p<g<n-1:
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2 1
S o= 0 0
5 5
1 2 1 0
5 5 435
0 1 2 1
V35 7 V35
detZ = 1 2
0 0 — = .
V35 5
0 0 0 0
0 0 0 0
Case 7. Let i=3p+2 and j=3q

1<i<i+1<j<3n+1. S0, 0<p<p+1l<g<n:

2 1 o o
5 \/35

1 2 1 0

V35 7 /35
0 1 2 1
V35 5 5
detZ = 1 2
0 0 — =
5 5

|
ﬁ_‘ Wil
w

for

NN

V35

Case 8. Leti=3p+2and j=3g+1, for 1<i<j<3n+1.

So,0<p<g<n—1:

NI ﬁ_
w

(3q-3p)

(3g-3p-3)

= (3q-3p+1)(

175

1
175

1 )‘Z—P

= (3q-3p+ 1)1

)

11

(32)

(33)
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2 1
S — 0 0 -0 0
5 \/35
1 2 1 0 0 o
V357 /35
0 1 2 1 0 o
V35 5 5
etz ( | 1 \4- P
etZ = ) =35(3g -3 —1<—> ) 34
0 0 — Z ...0 0 =P 175 (34
5 5
2 1
0 0 0 0 ... = —
5 5
12
0 0 0 0 = =
5 5 1(3g-3p-2)
Case 9. Leti=3p+2and j=3q+2, for 1<i<j<3n+1.
So,0<p<gsn—-1:
2 L 0 0 0 0
5 \/35
1 2 1 0 0 o
V35 7 \/35
0 1 2 1 0 o
V35 5 5
detZ ( (L)
etZ = 1 2 =5(3g-3 (—) . 35
0 o - = 0o 0 1= °P\ 175 (35)
5 5
0 0 0 0 2 1
5 \/35
0 0 0 0 1 2
V35 7 l(3g-3p-1)

Combining these results with equation (26) and Cases
1-9 yields



Journal of Mathematics 13

3n—1
(-1 " A3yl = Z w;_q - U)3n+1_j - det Zj—l—i where
1<i<j<3n+l (36)

=E, +E, +Ej,

E,= ) detP[3p,3q]+ )  detP[3p,3q+1]+ )  detP[3p,3q+2]

1<p<g<n 1<p<g<n-1 1<p<g<n-1

+ ) detP[3p,3n+1]

1<p<n

+

f’l(i’l —1)< 1 >”‘1+3n2+n< 1 )”‘1

250 \175 350 \175

_21n’ +15n° - 16n< 1 )H
- 1750 175/

Ey= Y detPBp+1,3gl+ Y  detP[3p+1,3g+1]+ Y  detP[3p+1,3q+2]

1<p<g<n 1<p<g<n-1 1<p<g<n-1

+ ) detP[3p+1,3n+1]+ ) detP[l,3g]+ Y detP[l,3q+1]

1<p<n-1 1<g<n 1<g<n-1

+ Z detP[1,3q +2] + Zs,_,

0<g<n-1
7n2(n—1)< 1 >“’1 49n(n—1)(n—2)< 1 )”*1 7n(n—1)2< 1 >n—1 )
= — +— | — + -
250 \175 1250 175 250  \175

+21n(n—1)( 1 >"-1+n(3n+1)( 1 >"-1+21n(n—1)< 1 >"-1
250 175 50 175 250 175

n(3n—l)< 1 )”*1 3n< 1 )”*1
+— = +— =

50 \175 25\175

~ 119n3+108n2+73n( 1 )“*1

- 1250 245)

Ey= ) detP[3p+2,3q]+ )  detP[3p+2,3q+1]+ )  detP[3p+2,3q+2]

0<p<g<n 0<p<g<n-1 0<p<g<n-1

+ ) detP[3p+2,3n+1]

0<p<n-1

_n(n+1)(n+3)< 1 )"‘1+7n2(n—1)< 1 )"‘1+n(n2—1)< 1 )"‘1
- 8750 175 250 175 50

+n(3n+ 1) ( 1 )"*1
50 175

4210 + 2841 + 3n< 1 >"*1
- 8750 175/
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Substituting E,, E,, and E; in Equation (36), we get

Claim 2.
Also, we can get Lemma 5 by combining Claims 1 and 2.

3n+1 1
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Lemma6. Let0<& <&, <
as above. Then,

- <&5,,,1 be the eigenvalues of Q

5(m + 1)

3+ -

=

where
1, = (1500 +401+/15 +n(1605 + 397/15)) (4 + V15 )" *
and

1, = (1500 — 40115 +n (1605 — 397/15)) (4 — V15)" .
Proof

. Suppose  that ®(Q)=x*""1+b X+ +

(45 + 13v15) (4 + V15)" ! + (45 - 13V15) (4 - V15)" "

(38)

In order to find (—1)3”b3n and detQ in (40), consider R;
of Q, which is the ith order principal submatrix generated by
the first i columns and rows, 1 <i<3n. Let r; = detR;. Then,
ry =305, 1, =1/5 ry=7/125, r, = 23/875, rs = 39/4375,
re = 11/4375, and

2 1 .
by, x + by, T3 = grﬁ,l - Erﬁ,z, forl<i<n,
So, 1/&,,1/&,,...,1/&,,,, satisfy the equation below:
b M by x4 bx+1=0. 39
a1 % n 1 (39) 1 731 = i;r3i - %rﬁ,l, forl<i<n-1, (41)
By Vieta’s theorem, we obtain
3n+1
+l_21: oG S S rs; =%r. lr forl<i<n-1.
Z E - 1—[3n+1€ | " 3i+2 5 3i+l 35 3> =t=
(40) Similar to the method used as described above, we have
_ (_1)3nb3n _ (_1)371193”
(_ 1)3n+1b3n+1 detQ
35+ 715 (4+ V15 35 7VI5 (4- V15 ,
r3 = , forl<i<n,
50 175 50 175
75+ 19 4+ 75 -19 4 —
1 T3ir1 = V15 \/_ vis \/_ , for0<i<n-1, (42)
750 175 750 175
45+ 1115 (4+VI5\ 45-11V15 [4- V15 _
T340 = + , for0<i<n-1.
150 175 150 175

Fact 1. detQ =45+ 13V15/9375 (4 + VI5/175)" ' +45-
13+/15/9375 (4 — /15/175)" L.

35 + 74/15

O
Proof . Fact 1. Expanding detQ along the last row, we have

3 1 3
detQ = gdet T3y — Edet R [ =0

45+ 1115 (4 + V15 \" "
e G I

150 175

4++/15\" 35-74/15 (4-+15\"
< 175 )+ 50 ( 175 )]

() |

(43)

150 175

45+ 13V15 (4+ V15 \"!
9375 175

+45—13\/13 4-V15\"!
9375

175
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Fact 2.

(-1)""bs, =

1500 + 40115 + n(1605 + 39715) (4 + V15 \"'
1875 175

+1500—401x/ﬁ+n(1605—397x/ﬁ) 4-y15\"!
1875 175 ’

(44)

Proof of Fact 2. Noting that (~1)*"b,, is the summation of
all principal minors of Q with 3n columns and rows, we have

3n+1 i 0
Z det( )
0

SSn+1—i

3n+l1

(-1)*"by, = Y detQli] =
i=1

(45)

3n+1

= Z detr;_; - detss, ;s

3n+1

(~1)"bs, =

15
where
li+1,i+1 0 0
N 0 ] 1 (46)
3n,3n Nﬁgg
1
0o - N Lt 3n41

The structure and determinant of matrix &Z, are pre-
served by a permutation similarity transformation of a
square matrix, and one gets detSs,,,_; = detRs,,,_;. In line
with Equation (45), we have

n—1 n-1
> detQli] = ZdetQ 3pl+ ) detQ[3p+ 1]+ ) detQ[3p+2]+7s,

1 p=1 p=0
- (47)
n
Z T3(p-142 " T3(n-p)+1 T Z T3p " "3(n-p) T Z T3pi1 " T3(nop-1)42 + 213
p=1 p=1 p=0
The following forms can also be generated by using the
above equations:
i 150 + 3715 (4 + V15 ”"+150—37\/E 4- 15 \"!
r =n
& D2 773 (n-p)+l 375 175 375 175
(48)
+14\/E 4++/15\" 14V15/4-+15\"
3 175 3 175 ’
nl 35+7v15 (4+ 15\ 35-7+15 (4-+/15)\"
Zr3p-r3(n,p) =(n-1) +
4 25 175 25 175
= (49)
. V15 (4 + 15 \"! \/_ 4 - \/_
1875\ 175 1875\ 175 )
"i 150 + 3715 (4 + V15 \" 1+150 3715 (4 - V15 \"
r - r =n
L, 3ptl T3 (nmp=)e2 375 175 375 175
p=0 (50)
+14\/E 4++/15\" 14/15/4-+15\"
3 175 3 175 ’
35+ 715 (4++15\" 35-7+/15(4-+15\"
213, = + . (51)
25 175 25 175

We can obtain the desired result of Fact 2 by substituting
equations (48)-(51) into (47).

In view of (40), Facts 1 and 2 and Lemma 6 hold

immediately. O
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The following theorem is derived from Lemmas 4-6.

Theorem 1. Let O% = K,RO,. Then,
40771 +10604n” + 48447 + 399

Journal of Mathematics

where

* 2
Kf*(0}) o
n I bl
detQ
1) 1500 + 40115 + (1605 + 397V/15) (4 + V15 \"
n 1875 175
+1500—401\/T§+n(1605—397x/ﬁ) 415 \"! (53)
1875 175
detQ 45+ 1315 (4 + V15 ”’1+45—13m 4- 15 \"!
€ = .
9375 175 9375 175

The explicit formulae of the spanning trees of O? are

given below.

(16n-3) (4n+3)
2 -3
2 —_—
T(On) B T—

Proof . By Lemma 2, we have (6/5)"*"%. (8/7)"?
H?:;IZ% H?:flzfi Hvsvozdog = 2|E031|T(Of,). Note that

1_[ d02 - 58n+8 i 74n—4’

=34n+6,

s _17n+3< 1 )"*1
625 \175)

. =detQ =

9375

Hence, Theorem 2 immediately follows, along with
Lemma 2. o

Snil 45 + 1315 (4 + /15
H & 175

Theorem 2. Let O? = K,®O,,. Then,

[(45+13V15) (4 + V15)" ' + (45 - 13V15) (4 - V15)"']. (54)

(55)

1 45— 13V15 (4 - V15 "'
9375 175 '
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4. Conclusion

In this study, we consider O?, which is the strong prism of
the octagonal network. Using the normalized Laplacian
theorems, we have determined the multiplicative degree-
Kirchhoff index and the spanning tree of O%. New discov-
eries, developments, and advancements in research are still
required. In the near future, we will be exploring a more
complex chemistry network.
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