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In this paper, we consider the fractional-stochastic Boussinesq-Burger system (FSBBS) generated by the multiplicative Brownian
motion. The Jacobi elliptic function techniques are used to create creative elliptic, hyperbolic, and rational fractional-stochastic
solutions for FSBBS. Furthermore, we draw 2D and 3D graphs by using the MATLAB Package for some obtained solutions of
FSBBS to discuss the influence of the Brownian motion on these solutions. Finally, we indicate that the Brownian motion
stabilizes the solutions of FSBBS around zero.

1. Introduction

Nonlinear partial differential equations (NLPDEs) have
grown in popularity in the area of nonlinear science, owing
to their large variety of uses in economics [1], engineering
[2], civil engineering [3], soilmechanics [4], physics [5], quan-
tummechanics [6], statistical mechanics [7], solid-state phys-
ics [8], population ecology [9], etc. Solitons are among the
most common in the setting of NLPDE solutions, and they
are essential for understanding nonlinear physical phenom-
ena. Solitons are utilized to understand the properties of non-
linear media in various areas including quantum electronics,
plasma physics, nonlinear optics, and fluid dynamics
[10–13]. Recently, the searching of exact soliton solutions to
NLPDEs has become an enthralling research topic in engi-
neering and applied sciences. Many techniques have been
used to determine exact solutions for NLPDE including
tanh-sech [14, 15], Darboux transformation [16], sine-
cosine [17, 18], exp ð−ϕðςÞÞ-expansion [19], ðG′/GÞ-expan-

sion [20–22], Lie symmetry analysis method [23], improved
F-expansion method [24, 25], Hirota’s function [26], the
Jacobi elliptic function [27, 28], and perturbation [29, 30].

The fractional differential equation is extensively used in
fluid mechanics, solid state physics, optical fibers, neural
physics, quantum field theory, mathematical biology, plasma
physics, and other areas [31–34]. Researchers recommend
fractional-order derivative over ordinary order derivative
because integer-order derivative is essentially a local opera-
tor, but fractional-order derivative is so much more. Also,
they explain physical phenomena such as quantum mechan-
ics, diffusion, gravity, heat, elasticity, fluid dynamics, electro-
dynamics, electrostatics, and sound. Recently, the exact
solutions with conformable derivative have been obtained
in many papers for instance [35–40].

On the other hand, a wide variety of complex nonlinear
physical phenomena can be represented using stochastic par-
tial differential equations (SPDEs). These kind of equations
can be found in many fields, such as physics and finance.
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On the other side, stochastic partial differential equa-
tions (SPDEs) can be used to represent a wide range of com-
plicated nonlinear physical processes. These kind of
equations appear in a variety of areas including engineering,
geophysical, biology, climate dynamics, finance, and physics
[41–43].

To realize a higher level of qualitative accord, we take the
following fractional-stochastic Boussinesq-Burger system
(FSBBS) perturbed in the itô sense by multiplicative noise:

dΦ + 2ΦDα
xΦ −

1
2D

α
xΨ

� �
dt = σΦdB, ð1Þ

dΨ + 2Dα
x ΦΨð Þ − 1

2D
3α
x Φ

� �
dt = σΨdB, ð2Þ

where Φðx, tÞ denotes the horizontal velocity field. Dα is the
conformable derivative (CD) [44].Ψðx, tÞ is the height of the
water surface above the bottom horizontal level. BðtÞ is a
Brownian motion (BM) and σ is the noise strength.

The Boussinesq–Burgers system (BBS), with α = 1 and
σ = 0, appears in fluid flow research and explains how shal-
low water waves spread. Due to the importance of BBS,
many researchers have created its exact solutions by using
various methods such as Hirota method [45], Lie symmetry
method [46], sine-Gordon expansion method [47], Jacobi
elliptic function method [48], extended homogeneous bal-
ance [49], Darboux transformation [50], The modified exp
ð−ϕðζÞÞ-expansion function method [51], and Exp-
function method [52]. On the other side, many techniques
have been documented for fractional BBS, including a
domain decomposition method [53] and generalized
Kudryashov method [54]. The exact solutions of the FSBBS
(1-2) have not yet been studied.

Our novelty of this paper is to find the exact fractional
stochastic solutions of FSBBS (1-2). In the presence of a sto-
chastic term and the fractional space, this study is the first to
obtain analytical solutions to the FSBBS (1-2). Numerous
solutions, including those involving elliptic, trigonometric,
rational, and hyperbolic functions, can be obtained using
the Jacobi elliptic function technique. Moreover, we utilize
MATLAB to build 2D and 3D figures for some of the
obtained solutions in this study to display how the BM influ-
ences on the solutions of FSBBS (1-2).

The layout of the document is as follows: in Sec. 2, we
define and give some properties of the CD and BM. In Sec.
3, we use an effective wave transformation to establish the
FSBBS (1-2) wave equation. In Sec.4, we use the Jacobi ellip-
tic function method to generate the analytic of FSBBS (1-2).
While, in Sec.5, the effect of the BM on the solutions
obtained is studied. In Sec. 6, the document’s conclusion is
shown.

2. Preliminaries

In this section, we define and clarify some characteristics of
the BM and CD. In the following, we define BM BðtÞ as:

Definition 1 (see [55]). Stochastic process fBðtÞgt≥0 is said a
BM if the following conditions satisfy: BðtÞ is continuous
function of t ≥ 0; Bð0Þ = 0; for τ1 < τ2,Bðτ2Þ − Bðτ1Þ is inde-
pendent; and Bðτ2Þ − Bðτ1Þ has a Gaussian distribution ℵð
0, τ2 − τ1Þ:

Lemma 2 (see [55]). EðeσBðtÞÞ = eðð1/2Þσ
2tÞ for σ ≥ 0:

Definition 3 (see [44]). Let ϕ : ð0,∞Þ⟶ℝ, then the CD of
ϕ of order α ∈ ð0, 1� is defined as

Dα
xϕ xð Þ = lim

κ⟶0

ϕ x + κx1−α
� �

− ϕ xð Þ
κ

: ð3Þ

Let us go through some of the CD’s features. If a, b are
constant, then

(1) Dα
x ½a� = 0,

(2) Dα
x ½xb� = bxb−α,

(3) Dα
x ½aΘ1ðxÞ + bΘ2ðxÞ� = aDα

xΘ1ðxÞ + bDα
xΘ2ðxÞ,

(4) Dα
xΘðxÞ = x1−αðdΘ/dxÞ,

(5) Dα
xðΘ1 ∘Θ2ÞðxÞ = x1−αΘ2′ðxÞΘ1′ðΘ2ðxÞÞ:

3. Wave Equation of FSBBS

The next wave transformation is used

Φ x, tð Þ = φ ξð Þe σB tð Þ− 1/2ð Þσ2tð Þð Þ,Ψ x, tð Þ
= ψ ξð Þe σB tð Þ− 1/2ð Þσ2tð Þð Þ, ξ = 1

α
xα + ωt,

ð4Þ

in order to attain the wave equation of FSBBS (1-2). Where
ω is a constant, φ and ψ are deterministic functions. Plug-
ging Equation (4) into Equations (1) and (2) and utilizing

dΦ = ωφ′dt + σφdB
h i

e σB tð Þ− 1/2ð Þσ2tð Þð Þ,

dΨ = ωψ′dt + σψdB
h i

e σB tð Þ− 1/2ð Þσ2tð Þð Þ,

Dα
xΦ = φ′e σB tð Þ− 1/2ð Þσ2tð Þð Þ,Dα

xΨ = ψ′e σB tð Þ− 1/2ð Þσ2tð Þð Þ,
D3α

x Φ = φ′′′e σB tð Þ− 1/2ð Þσ2tð Þð Þ,Dα
x ΦΨð Þ = φψð Þ′e σB tð Þ− 1/2ð Þσ2tð Þð Þ,

ð5Þ

we get

ωφ′ + 2φφ′e σB tð Þ− 1/2ð Þσ2tð Þð Þ − 1
2ψ

′ = 0, ð6Þ

ωψ′ + 2 φψð Þ′e σB tð Þ− 1/2ð Þσ2tð Þð Þ − 1
2φ

′′′ = 0: ð7Þ

Taking expectation Eð·Þ for Equations (6) and (7), we
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attain

ωφ′ + 2φφ′e− 1/2ð Þσ2tð ÞE eσB tð Þ
� �

−
1
2ψ

′ = 0, ð8Þ

ωψ′ + 2 φψð Þ′e− 1/2ð Þσ2tð ÞE eσB tð Þ
� �

−
1
2φ

′′′ = 0: ð9Þ

Since BðtÞ is a Gaussian distribution, then EðeσBðtÞÞ =
eððσ

2/2Þ tÞ: Now Equations (8) and (9) become

ωφ′ + 2φφ′ − 1
2ψ

′ = 0, ð10Þ

ωψ′ + φψð Þ′ − 1
2φ

′′′ = 0: ð11Þ

Integrating Equations (10) and (11) and putting the con-
stants of integration equal zero, we have

ψ = 2ωφ + 2φ2, ð12Þ

ωψ + 2 φψð Þ − 1
2φ

′′ = 0: ð13Þ

Plugging Equation (12) into (13), we attain

φ′′ − 8φ3 − 12ωφ2 − 4ω2φ = 0: ð14Þ

4. Exact Solutions of FSBBS

We use the Jacobi elliptic functions approach described by
Peng [56] to find the solutions of Equation (14). Conse-
quently, we can therefore derive the exact solutions of FSBBS
(1-2).

4.1. Jacobi Elliptic Functions Method. First, we suppose the
solutions of Equation (14) are

φ ξð Þ = 〠
N

i=1
aiχ

i, ð15Þ

where χ is the solution of

χ′ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 pχ

4 + qχ2 + r

r
, ð16Þ

where r, q and p are real parameters.
We note from the next Table 1 that Equation (16) has

different types of solutions relying on r, q and p:
Where dnðξ,mÞ = dnðξ,mÞ, cnðξÞ = cnðξ,mÞ, snðξÞ = snð

ξ,mÞ, for 0 <m < 1 are the Jacobi elliptic functions (JEFs).
Ifm⟶ 1, then JEFs are converted into the hyperbolic func-
tions as follows:

dn ξð Þ⟶ sech ξð Þsn ξð Þ⟶ tanh ξð Þ, cn ξð Þ⟶ sech ξð Þ,
cs ξð Þ⟶ csch ξð Þ, ds⟶ csch ξð Þ:

ð17Þ

4.2. Solutions of FSBBS. By balancing φ′′ with φ3 in Equation
(14), we can calculate the parameter N as

N + 2 = 3N ⇒N = 1: ð18Þ

Hence, Equation (15) with N = 1 becomes

φ = a0 + a1χ: ð19Þ

Differentiating Equation (19) twice, we have, by using
(16),

φ′′ = a1qχ + a1pχ
3: ð20Þ

Substituting Equation (19) and Equation (20) into Equa-
tion (14) we obtain

a1p − 8a31
� �

χ3 − 24a0a21 + 12ωa21
� �

χ2

+ a1q − 24a20a1 − 24ωa0a1 − 4ω2a1
� �

χ

− 8a30 + 12ωa20 + 4ω2a0
� �

= 0:
ð21Þ

Equating each coefficient of χk, for k = 0, 1, 2, 3, to zero,

Table 1: All possible solutions for Equation (16).

Case p q r χ ξð Þ
1 2m 2 -(1 +m 2) 1 sn ξð Þ
2 2 2m 2-1 -m 2(1-m 2) ds ξð Þ
3 2 2-m 2 (1-m 2) cs ξð Þ
4 -2m 2 2m 2-1 (1-m 2) cn ξð Þ
5 -2 2-m 2 (m 2-1) dn ξð Þ

6 m2

2
m2 − 2
� �

2
1
4

sn ξð Þ
1 ± dn ξð Þ

7 m2

2
m2 − 2
� �

2
m2

4
sn ξð Þ

1 ± dn ξð Þ

8 −1
2

m2 + 1
� �

2
− 1 −m2� �2

4
mcn ξð Þ ± dn ξð Þ

9 m2 − 1
2

m2 + 1
� �

2
m2 − 1
� �

4
dn ξð Þ

1 ± sn ξð Þ

10 1 −m2

2
1 −m2� �

2
1 −m2� �

4
cn ξð Þ

1 ± sn ξð Þ

11 1 −m2� �2
2

1 −m2� �2
2

1
4

sn ξð Þ
dn ± cn ξð Þ

12 2 0 0
c
ξ

13 0 1 0 ceξ
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we have

a1p − 8a31 = 0,
24a0a21 + 12ωa21 = 0,

a1q − 24a20a1 − 24ωa0a1 − 4ω2a1 = 0,

ð22Þ

and

8a30 + 12ωa20 + 4ω2a0 = 0: ð23Þ

We get by solving these equations:

a0 =
1
2

ffiffiffiffiffiffiffiffiffi
−
1
2 q

r
, a1 = ±

ffiffiffi
p
8

r
, ω = ±

ffiffiffiffiffiffiffiffiffi
−
1
2 q

r
, ð24Þ

for p > 0 and q ≤ 0: Then, the Equation (14) has the

solutions:

φ ξð Þ =
ffiffiffiffiffiffiffiffiffi
−
1
8 q

r
±

ffiffiffi
p
8

r
χ ξð Þ: ð25Þ

Therefore, by utilizing (4) and (12), the solution of the
FSBBS (2-1) are

Φ x, tð Þ =
ffiffiffiffiffiffiffiffiffi
−
1
8 q

r
+

ffiffiffi
p
8

r
χ ξð Þ

" #
e σB tð Þ− 1/2ð Þσ2tð Þð Þ,

Ψ x, tð Þ = −
3q
4 + ffiffiffiffiffiffiffiffi

−pq
p

χ ξð Þ + p
4χ

2
� �

e σB tð Þ− 1/2ð Þσ2tð Þð Þ:

ð26Þ

There are numerous cases, by using the previous Table 1,
for q ≤ 0, p > 0 and r as follows:
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Figure 1: 3D-graph of Equation (33) with σ = 0 and various values of α = 1,0:5:
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Figure 2: 3D-graph of Equation (34) with σ = 0 and various values of α = 1,0:5.
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Case 1. If q = −ð1 +m2Þ,p = 2m2 and r = 1, then χðξÞ = snðξÞ:
Therefore, the FSBBS (1-2) has the solution

Φ x, tð Þ =
ffiffiffiffiffiffiffiffiffi
−
1
8 q

r
+

ffiffiffi
p
8

r
sn

1
α
xα +

ffiffiffiffiffiffi
−q
2

r
t

 !" #
e σB tð Þ− 1/2ð Þσ2tð Þð Þ,

ð27Þ

Ψ x, tð Þ = −
3q
4 + ffiffiffiffiffiffiffiffi

−pq
p

sn
xα

α
+

ffiffiffiffiffiffi
−q
2

r
t

 !
+ p
4 sn

2
"

xα

α
+

ffiffiffiffiffiffi
−q
2

r
t

 !
�e σB tð Þ− 1/2ð Þσ2tð Þð Þ:

ð28Þ

If m⟶1, then Equations (27) and (28) degenerates to
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Figure 3: 3D-graph of Equation (33) with σ = 1, 2 and α = 1,0:5.

Φ x, tð Þ =
ffiffiffiffiffiffiffiffiffi
−
1
8 q

r
+

ffiffiffi
p
8

r
tanh 1

α
xα +

ffiffiffiffiffiffi
−q
2

r
t

 !" #
e σB tð Þ− 1/2ð Þσ2tð Þð Þ,

Ψ x, tð Þ = −
3q
4 + ffiffiffiffiffiffiffiffi

−pq
p tanh 1

α
xα +

ffiffiffiffiffiffi
−q
2

r
t

 !
+ p
4 tanh2 1

α
xα +

ffiffiffiffiffiffi
−q
2

r
t

 !" #
e σB tð Þ− 1/2ð Þσ2tð Þð Þ:

ð29Þ
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Case 2. If q = 2m2 − 1 for m ≤ ð1/√2Þ,p = 2 and r = −
m 2ð1 −m2Þ, then χðξÞ = dsðξÞ: So, the FSBBS (1-2) has the
solution:

Φ x, tð Þ =
ffiffiffiffiffiffiffiffiffi
−
1
8 q

r
+

ffiffiffi
p
8

r
ds

1
α
xα +

ffiffiffiffiffiffi
−q
2

r
t

 !" #
e σB tð Þ− 1/2ð Þσ2tð Þð Þ,

ð30Þ

Ψ x, tð Þ = −
3q
4 + ffiffiffiffiffiffiffiffi

−pq
p

ds
xα

α
+

ffiffiffiffiffiffi
−q
2

r
t

 !
+ p
4 ds

2
"

� xα

α
+

ffiffiffiffiffiffi
−q
2

r
t

 !
�e σB tð Þ− 1/2ð Þσ2tð Þð Þ:

ð31Þ

If m⟶1, then Equations (30) and (31) degenerates to
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Figure 4: 3D-graph of Equation (34) with σ = 1, 2 and α = 1,0:5.

Φ x, tð Þ =
ffiffiffiffiffiffiffiffiffi
−
1
8 q

r
+

ffiffiffi
p
8

r
csch xα

α
+

ffiffiffiffiffiffi
−q
2

r
t

 !" #
e σB tð Þ− 1/2ð Þσ2tð Þð Þ,

Ψ x, tð Þ = −
3q
4 + ffiffiffiffiffiffiffiffi

−pq
p csch xα

α
+

ffiffiffiffiffiffi
−q
2

r
t

 !
+ p
4 csc h2 xα

α
+

ffiffiffiffiffiffi
−q
2

r
t

 !" #
e σB tð Þ− 1/2ð Þσ2tð Þð Þ:

ð32Þ

6 Journal of Mathematics



Case 3. If q = ððm2 − 2Þ/2Þ,p = ðm2/2Þ and r = ð1/4Þ
ðor r = ðm2/4ÞÞ, then χðξÞ = ððsnðξÞÞ/ð1 ± dnðξÞÞÞ: There-
fore, the FSBBS (1-2) has the solution:

If m⟶ 1, then Equations (33) and (34) degenerates to

Case 4. If q = 0,p = 2 and r = 0, then χðξÞ = ðC/ξÞ: Hence, the
FSBBS (1-2) has the solution:

Φ x, tð Þ = αC
2 x−α

� �
e σB tð Þ− 1/2ð Þσ2tð Þð Þ,

Ψ x, tð Þ = αC
2 x−2α

� �
e σB tð Þ− 1/2ð Þσ2tð Þð Þ:

ð37Þ

Remark 4. If we set σ = 0 and α = 1 in Equations (27) and
(36), then we get the same results as reported in [48].

5. The Influence of Fractional Derivative
and Noise

Here, the influence of noise on the achieved solutions of
FSBBS (1-2) is explained. For various values of α (the frac-
tional derivative order) and σ (noise strength), some graphs
are provided using the MATLAB tools.

Firstly the Fractional Derivative Influence. In Figures 1
and 2, if σ = 0 and m= 0:4, we can observe that the surface
shrinks when α is decreasing:

Secondly the Noise Influence. In Figures 3 and 4, when
noise is introduced, the surface flattens significantly if its
strength is increased σ = 1, 2

In Figure 5, we introduce 2D-graph of the Φðx, tÞ in (33)
with α = 1 and with σ = 0, 0:5,1, 2, which highlights the pre-
vious outcomes:

We may deduct from Figures 1–5 that:

(1) When the fractional-order α increases, the surface
expands,

(2) The multiplicative noise stabilizes the solutions of
FSBBS at zero.

This results show that it is important to add the stochas-
tic term into the Boussinesq-Burger equation in order to
obtain accurate solutions.

Φ x, tð Þ =
ffiffiffiffiffiffiffiffiffi
−
1
8 q

r
+

ffiffiffi
p
8

r tanh 1/αð Þxαð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffi
−q/2ð Þp

t
� �� �

1 ± sech 1/αð Þxαð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffi
−q/2ð Þp

t
� �� �

2
4

3
5e σB tð Þ− 1/2ð Þσ2tð Þð Þ, ð35Þ

Ψ x, tð Þ = −
3q
4 + ffiffiffiffiffiffiffiffi

−pq
p tanh 1/αð Þxαð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffi

−q/2ð Þp
t

� �� �
1 ± sech 1/αð Þxαð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffi

−q/2ð Þp
t

� �� �++ p
4

tanh2 xα/αð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffi
−q/2ð Þp

t
� �� �

1 ± sech xα/αð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffi
−q/2ð Þp

t
� �� �2

2
64

3
75e σB tð Þ− 1/2ð Þσ2tð Þð Þ:

ð36Þ

Φ x, tð Þ =
ffiffiffiffiffiffiffiffiffi
−
1
8 q

r
+

ffiffiffi
p
8

r sn 1/αð Þxαð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffi
−q/2ð Þp

t
� �� �

1 ± dn 1/αð Þxαð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffi
−q/2ð Þp

t
� �� �

2
4

3
5e σB tð Þ− 1/2ð Þσ2tð Þð Þ, ð33Þ

Ψ x, tð Þ = −
3q
4 + ffiffiffiffiffiffiffiffi

−pq
p sn 1/αð Þxαð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffi

−q/2ð Þp
t

� �� �
1 ± dn 1/αð Þxαð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffi

−q/2ð Þp
t

� �� �++ p4
sn2 1/αð Þxαð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffi

−q/2ð Þp
t

� �� �
1 ± dn 1/αð Þxαð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffi

−q/2ð Þp
t

� �� �2
2
64

3
75e σB tð Þ− 1/2ð Þσ2tð Þð Þ:

ð34Þ
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6. Conclusions

In this article, the exact fractional-stochastic solutions of the
fractional-stochastic Boussinesq-Burger system (1-2) driven
by multiplicative noise were successfully obtained by using
the Jacobi elliptic function method. Numerous analytical
solutions for FSBBS (1-2) including elliptic, trigonometric,
rational, and hyperbolic functions can be determined using
the Jacobi elliptic function method. Because of the impor-
tance of FSBBS in fluid flow research and in explaining the
propagation of shallow water waves, the acquired solutions
are far more beneficial and efficient in understanding several
critical complicated physical phenomena. In addition, we
utilized the MATLAB package to demonstrate how multipli-
cative noise and fractional derivative influenced the solu-
tions of FSBBS. As a result, we concluded that the
stabilization of the solutions of the FSBBS (1-2) is affected
by the multiplicative noise.
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