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In this paper, we study oscillatory properties of solutions to a class of third-order di�erential equation (a(t)((r(t)x′(t))′)α)′ +
(p(t)((r(t)x′(t)))′)α + q(t)f(x(σ(t))) � 0, where f(x)/xβ ≥ k> 0 and α and β are quotients of odd positive integers. By using
the generalized Riccati technique, we obtain some oscillation and asymptotic criteria when α≥ β and α< β. Finally, some examples
are given to show the e�ectiveness of the criteria obtained.

1. Introduction

Oscillation phenomena take part in di�erent models from
real-world applications (see, e.g., the papers [1, 2]), where
oscillation and delay situations take part in models from
mathematical biology when their formulation includes
cross-di�usion terms. �e oscillation theory of di�erential
equations is an active area of research. Many scholars have
studied the oscillation of solutions to various classes of
di�erential equations andmade some progress, especially for
the �rst-order and second-order equations (see, e.g., the
monographs [3, 4], the papers [5, 6], and the references cited
therein). �ird-order di�erential equations originate in
many di�erent �elds of applied mathematics and physics, for
example, the de�ection of a buckling beam with a �xed or
varying cross section, three-layer beam, electromagnetic
waves, and the rising tide caused by gravitational blowing.
�e theory of third-order di�erential equations can be ap-
plied to many �elds, such as to biology, population growth,
engineering, generic repression, control theory, and climate
model. Recently, a great deal of interest in asymptotic
properties and oscillatory behavior of solutions to di�erent
classes of third-order delay di�erential equations has been
manifested (see, e.g., the papers [7–19] and the references
cited therein).

In particular, by using the Riccati transformation
technique, the oscillation properties of the equation

r u′
∣∣∣∣
∣∣∣∣c− 1u′( )′(t) + q|y(σ)|β− 1y(σ)( )(t) � 0, (1)

have been considered by Liu et al. [20] under the conditions
c≥ β, r′(t)> 0, and σ′(t)> 0. Based on the properties of
comformable fractional di�erential and integral, Feng and
Meng have considered the following fractional-order dy-
namic equation on time scales [21]:

a(t) r(t)x(α)(t)[ ]
(α)

( )
c

( )
(α)

+ p(t) r(t)x(α)(t)[ ]
(α)

( )
c

+ q(t)f(x(t)) � 0,
(2)

and obtained some oscillation criteria where f(x)/xc ≥L> 0
for x≠ 0, and c≥ 1 is a quotient of two odd positive integers.
By using the integral averaging technique, the equation

r2(τ) r1(τ) y′(τ)( )α( )′( )′ + ϕ τ, y′(δ(τ))( )

+ q(τ)f(y(σ(τ))) � 0,
(3)

has been studied by Moaaz et al. [22] under the conditions
that f(x)/xβ ≥ k2, α≥ β, and σ(t) is nondecreasing. How-
ever, most of the oscillation criteria have been obtained
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under the condition α≥ β or α< β. Motivated by the above
works, we further study the oscillation criteria of third-order
equation when α≥ β and α< β .

In this paper, we mainly study the oscillation solution of
the following third-order delay differential equation:

a(t) r(t)x′(t)( ′( 
α

 ′ + p(t) r(t)x′(t)( ′( 
α

+ q(t)f(x(σ(t))) � 0,
(4)

where t≥ t0 and α is a quotient of odd positive integers.
)roughout this paper, we assume that

(A1) a(t) ∈ C1([t0,∞)t, n(q0,∞)),
r(t) ∈ C2([t0,∞)t, n(q0,∞)),
p(t) ∈ C([t0,∞)t, n(q0,∞)),
q(t) ∈ C([t0,∞)t, n(q0,∞)).

(A2) σ(t) ∈ C([t0,∞),R), σ(t)≤ t, σ′(t)≥ 0, and
limt⟶∞σ(t) �∞.

(A3) f ∈ C(R,R) and f(x)/xβ ≥ k> 0, and β is a
quotient of odd positive integers.

A function x(t) is called a solution of (4) if x(t) satisfies
(4) on [Tx,∞) and if x(t), r(t)x′(t) and
((r(t)x′(t))′)α ∈ C1([Tx,∞],R) where Tx ≥ t0. We con-
sider solutions of (4) which satisfy
sup|x(t)|: T≤ t<∞, Tx ≥ tx. A solution of (4) is called
oscillatory if it has arbitrarily large zeros; otherwise, it is
called nonoscillatory. Equation (4) is said to be oscillatory if
all its solutions are oscillatory.

2. Preliminaries

In this section, we give the following lemmas which are used
as tools in establishing new oscillation criteria for (4).

We introduce the following notation:

v(t) � exp 
t

t0

p(s)

a(s)
ds ,

η t, t0(  � 
t

t0

1
r(s)

ds,

v t, t0(  � 
t

t0

1
(v(s)a(s))

1/αds,

R t, t0(  � 
t

t0

v s, t0( 

r(s)
ds,

Q(t) �

λ1, ifβ> α;

1, ifβ � α;

λ2R
β− α/α

t, t1( , ifβ< α,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

where λ1 and λ2 are positive real constants.

Lemma 1. Assume that x(t) is the positive solution of (4) and


∞

t0

1
(v(s)a(s))

1/αds �∞, (6)


∞

t0

1
r(s)

ds �∞. (7)

�en, one of the following two cases holds.

(I) x(t)> 0, x′(t)> 0, (r(t)x′(t))′ > 0.
(II) x(t)> 0, x′(t)< 0, (r(t)x′(t))′ > 0 for t≥ t1 ≥ t0,

where t1 is sufficiently large.

Proof. Let x(t) be the positive solution of (4). Without loss
of generality, we may assume that there exists a sufficiently
large t1 such that x(t)> 0 and x(σ(t))> 0.

From (4), we obtain

v(t)a(t) r(t)x′(t)( ′( 
α

 ′ � v(t) a(t) (r(t)x′(t))′ 
α

 
′

+ v(t)p(t) (r(t)x′(t))′ 
α

� −v(t)q(t)f(x(σ(t)))

< 0.

(8)

Hence, v(t)a(t)((r(t)x′(t))′)α is strictly decreasing on
[t1,∞). Because a(t)> 0, v(t) > 0, we can deduce that
(r(t)x′(t))′ is eventually of one sign.

We can claim that (r(t)x′(t))′ > 0 for t≥ t2 ≥ t1. In fact,
if (r(t)x′(t))′ ≤ 0, according to the monotonicity of
v(t)a(t)((r(t)x′(t))′)α, we have

v(t)a(t) r(t)x′(t)( ′( 
α ≤ v t2( a t2(  r t2( x′ t2( ( ′( 

α
� −M,

(9)

for M> 0. Integrating (9) from t2 to t, we obtain

r(t)x′(t)≤ r t2( x′ t2(  − 
t

t2

M
1/α

(v(s)a(s))
− 1/αds. (10)

Letting t⟶∞, from (6), we have r(t)x′(t)⟶ −∞.
)us, there exists a sufficiently large t3 such that
r(t)x′(t)< 0 for t≥ t3 ≥ t2. Furthermore, we have
r(t)x′(t)≤ r(t3)x′(t3). Dividing by r(t) and integrating on
[t3, t], we have

x(t)≤ x t3(  + r t3( x′ t3(  
t

t3

1
r(s)

ds. (11)

From (7), we have limt⟶∞x(t) � −∞. )is contradicts
x(t)> 0, which implies (r(t)x′(t))′ > 0. We complete the
proof. □
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Lemma 2. Assume that x(t) satisfies case (II). Suppose


∞

t0

1
r(v)


∞

u

1
r(u)a(u)


∞

u
v(s)q(s)ds 

1/α

dudv �∞,

(12)

and then limt⟶∞x(t) � 0.

Proof. Let x(t) be an eventually positive solution of equa-
tion (4). Because x(t) has property (II), we obtain
limt⟶∞x(t) � l≥ 0.

We claim l � 0. Otherwise, if we assume l> 0, then it
follows that x(t)≥ l for t≥ t1 ≥ t0.

From (A3), we have

v(t)a(t) r(t)x′(t)( ′( 
α

 ′ � −v(t)q(t)f(x(σ(t)))

≤ − kv(t)q(t)x
β
(σ(t))

≤ 0.

(13)

Integrating the above inequality on [t,∞), we have

−v(t)a(t) (r(t)x′(t))′ 
α
≤ − limt⟶∞v(t)a(t) (r(t)x′(t))′ 

α

− k 
∞

t
v(s)q(s)x

β
(σ(s))ds

≤ − k 
∞

t
v(s)q(s)x

β
(σ(s))ds

≤ − kl
β


∞

t
v(s)q(s)ds,

(14)

which means

− r(t)x′(t)( ′ ≤ − k
1/α

l
β/α 1

v(t)a(t)

∞

t
v(s)q(s)ds 

1/α

.

(15)

Integrating inequality (15) on [t,∞), we obtain

r(t)x′(t)≤ limt⟶∞r(t)x′(t) − k
1/α

l
β/α


∞

t

1
v(u)a(u)


∞

u
v(s)q(s)ds 

1/α

du

≤ − k
1/α

l
β/α


∞

t

1
v(u)a(u)


∞

u
v(s)q(s)ds 

1/α

du.

(16)

Further integrate the above inequality on [t1, t] to get

x(t)≤ x t1(  − k
1/α

l
β/α


t

t1

1
r(v)


∞

v

1
v(u)a(u)


∞

u
v(s)q(s)ds 

1/α

dudv. (17)

Letting t⟶∞, by (12), we can deduce that
limt⟶∞x(t) � −∞, which leads to a contradiction. So, we
have l � 0, and then limt⟶∞x(t) � 0. We complete the
proof. □

Lemma 3. Assume (6) and (7) hold. If x(t) is a positive
solution of equation (4) with case (I) for t≥ t1 ≥ t0, where t1 is
sufficiently large, then for t ∈ [t1,∞), the following inequality
holds:

x′(t)≥
v t, t1( 

r(t)
v(t)a(t) (r(t)x′(t))′ 

α
 

1/α
,

x
β− α

(t)≥

m, ifβ> α,

1, ifβ � α,

MR
β− α

t, t1( , ifβ< α,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(18)

where m, M are positive real constants.

Proof. Let x(t) be a positive solution of (4). We assume that
there exists a t1 ≥ t0 such that x(t)> 0 and x(σ(t))> 0 for
t≥ t1. By Lemma 1, we know

r(t)x′(t)≥ r(t)x′(t) − r t1( x′ t1(  � 
t

t1

(r(s)x′(s))′ds

≥ 
t

t1

v(s)a(s) (r(s)x′(s))′ 
α

 
1/α

(v(s)a(s))
1/α ds.

(19)

From (13), we can see that v(t)a(t)((r(t)x′(t))′)α is
decreasing on [t1,∞). Hence,

r(t)x′(t)≥ v(t)a(t) r(t)x′(t)( ′( 
α

 
1/α


t

t1

1
(v(s)a(s))

1/αds

� v(t)a(t) r(t)x′(t)( ′( 
α

 
1/α

v t, t1( .

(20)
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)us,

x′(t)≥
v t, t1( 

r(t)
v(t)a(t) (r(t)x′(t))′ 

α
 

1/α
. (21)

Since x(t) is positive and increasing, we have
x(t)≥ x(t1) � m1 for t≥ t1 ≥ t0. Moreover, due to the
monotonicity of v(t)a(t)((r(t)x′(t))′)α, we have

v(t)a(t) (r(t)x′(t))′ 
α
≤ v t1( a t1(  r t1( x′ t1( ( ′( 

α
� M1,

(22)

where M≥ 0 for t≥ t2 ≥ t1 ≥ t0. Hence,

(r(t)x′(t))′ ≤M
1/α
1

1
(v(t)a(t))

1/α. (23)

Integrating the above inequality from t1 to t, we have

r(t)x′(t)≤ r t1( x′ t1(  + M
1/α
1 

t

t1

1
(v(s)a(s))

1/αds

� r t1( x′ t1(  + M
1/α
1 v t, t1( 

≤
r t1( x′ t1( 

v t, t1( 
+ M

1/α
1 v t, t1( 

≤
r t1( x′ t1( 

v t2, t1( 
+ M

1/α
1 v t, t1(  � M

∗
1v t, t1( ,

(24)

where M∗1 � r(t1)x′(t1)/v(t2, t1) + M1/α
1 . )us,

x′(t)≤
1

r(t)
M
∗
1v t, t1( . (25)

Furthermore,

x(t)≤ x t1(  + M
∗
1 

t

t1

1
r(s)

v s, t1( ds

≤
x t1( 

R t, t1( 
+ M
∗
1 R t, t1( 

≤
x t1( 

R t2, t1( 
+ M
∗
1 R t, t1( 

� M2R t, t1( ,

(26)

where M2 � x(t1)/R(t2, t1) + M∗1 . )en, we have

x
β− α

(t)≥

m, ifβ> α,

1, ifβ � α,

MR
β− α

t, t1( , ifβ< α,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(27)

for t≥ t2 ≥ t1, where m � m
β−α
1 , M � M

β−α
2 . )e proof is

complete. □

Lemma 4 (see [23, )eorem 41]). Assuming that A and B

are nonnegative real numbers, then

A
c

+(c − 1)B
c

− cAB
c− 1 ≥ 0 (c> 1), (28)

3. Oscillation Results

In this section, we establish some new oscillation criteria for
(4). For the following theorem, we introduce a class of
function R. Let

D � (t, s): t0 ≤ s≤ t,

D0 � (t, s): t0 ≤ s< t.
(29)

)e function H ∈ C(D,R) is said to belong to the class
R, if

(i) H(t, t) � 0 for t≥ t0, H(t, s)> 0 for (t, s) ∈ D0.
(ii) H has a continuous and nonpositive partial deriv-

ative zH(t, s)/zs on D0 with respect to s.

Theorem 1. Assume that (6), (7), and (12) hold. If there
exists a function ρ(t) ∈ C1([t0.∞), R+) such that for all
sufficiently large T, the following condition holds:

lim sup
t⟶∞


t

T
kρ(s)v(s)q(s) −

ρ(s)

(α + 1)
α+1

αr(σ(s))

βσ′(s)v σ(s), t1( Q(σ(s))
⎛⎝ ⎞⎠

α
ρ+′(s)

ρ(s)
 

α+1
⎡⎢⎢⎣ ⎤⎥⎥⎦ds �∞, (30)

where ρ+′(t) � max(0, ρ′(t)), then every solution of equation
(4) is oscillatory or tends to zero.
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Proof. Let x(t) be a nonoscillatory solution of (4). Without
loss of generality, we may assume that there exists a suffi-
ciently large t1 such that x(t)> 0 and x(σ(t))> 0 for t> t1.
According to Lemma 1, x(t) is either the case of (I) or the
case of (II).

Now we assume x(t) satisfies the (I); define

w(t) � ρ(t)
v(t)a(t) (r(t)x′(t))′ 

α

x
β
(σ(t))

t≥ t1.
(31)

)en, w(t)> 0, and

w′(t) �
ρ′(t)

ρ(t)
w(t) + ρ(t)

v(t)a(t) r(t)x′(t)( ′( 
α

 ′

x
β
(σ(t))

− ρ(t)
βv(t)a(t) r(t)x′(t)( ′( 

α
x′(σ(t))σ′(t)

x
β+1

(σ(t))
. (32)

From (13), we know

w′(t)≤
ρ′(t)

ρ(t)
w(t) − kρ(t)v(t)q(t) − ρ(t)

βv(t)a(t) r(t)x′(t)( ′( 
α
x′(σ(t))σ′(t)

x
β+1

(σ(t))

≤
ρ′(t)

ρ(t)
w(t) − kρ(t)v(t)q(t) − β

x′(σ(t))σ′(t)

x(σ(t))
w(t).

(33)

By Lemma 3 and (A2), it is obvious that

x′(σ(t))≥
v σ(t), t1( 

r(σ(t))
v(σ(t))a(σ(t)) (r(σ(t))x′(σ(t)))′ 

α
 

1/α

≥ v(t)a(t) (r(t)x′(t))′ 
α

 
1/αv σ(t), t1( 

r(σ(t))
.

(34)

)us,

w′(t)≤
ρ′(t)

ρ(t)
w(t) − kρ(t)v(t)q(t) − β

σ′(t)

x(σ(t))

v(t)a(t) (r(t)x′(t))′ 
α

 
1/α

v σ(t), t1( 

r(σ(t))
w(t).

(35)

So, we can obtain

w′(t)≤
ρ′(t)

ρ(t)
w(t) − kρ(t)v(t)q(t) − β

σ′(t)v σ(t), t1( 

r(σ(t))ρ1/α(t)
x
β− α/α

(σ(t))w
1+1/α

(t). (36)

By Lemma 3, we have

w′(t)≤
ρ+
′(t)

ρ(t)
w(t) − kρ(t)v(t)q(t) − β

σ′(t)v σ(t), t1( 

r(σ(t))ρ1/α(t)
Q(σ(t))w

1+1/α
(t). (37)
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By Lemma 4, let

c � 1 +
1
α

,

A �
βσ′(t)v σ(t), t1( Q(σ(t))

r(σ(t))ρ1/α(t)
 

1
c

 w(t),

B �
r(σ(t))ρ1/α(t)

βσ′(t)v σ(t), t1( Q(σ(t))
⎛⎝ ⎞⎠

α/c
ρ+
′(t)

ρ(t)
 

α 1
c
α.

(38)

)en,

ρ+
′(t)

ρ(t)
w(t) − β

σ′(t)v σ(t), t1( 

r(σ(t))ρ1/α(t)
Q(σ(t))w

1+1/α
(t)≤

ρ(t)

(α + 1)
α+1

αr(σ(t))

βσ′(t)v σ(t), t1( Q(σ(t))
⎛⎝ ⎞⎠

α
ρ+
′(t)

ρ(t)
 

α+1

. (39)

Combining (30) and (37), we obtain

w′(t)≤ − kρ(t)v(t)q(t) +
ρ(t)

(α + 1)
α+1

αr(σ(t))

βσ′(t)v σ(t), t1( Q(σ(t))
⎛⎝ ⎞⎠

α
ρ+
′(t)

ρ(t)
 

α+1

. (40)

Integrating (39) from t1 to t,


t

t1

kρ(s)v(s)q(s) −
ρ(s)

(α + 1)
α+1

αr(σ(s))

βσ′(s)v σ(s), t1( Q(σ(s))
⎛⎝ ⎞⎠

α
ρ+
′(s)

ρ(s)
 

α+1
⎡⎢⎢⎣ ⎤⎥⎥⎦ds≤w t1(  − w(t) <w t1( . (41)

Letting t⟶∞, we have

lim sup
t⟶∞


t

t1

kρ(s)v(s)q(s) −
ρ(s)

(α + 1)
α+1

αr(σ(s))

βσ′(s)v σ(s), t1( Q(σ(s))
⎛⎝ ⎞⎠

α
ρ+
′(s)

ρ(s)
 

α+1
⎡⎢⎢⎣ ⎤⎥⎥⎦ds≤w t1( <∞, (42)

which contradicts condition (30).
If y(t) satisfies (II), then from Lemma 2, it is obvious

that limt⟶∞x(t) � 0. )e proof is complete. □

Theorem 2. Assume that (6), (7), and (12) hold. If there exist
functions ρ(t) ∈ C1([t0.∞), R+) and H ∈R such that

lim supt⟶∞
1

H t, t1( 


t

t1

kH(t, s)ρ(s)v(s)q(s) −
αr(σ(s))

βH(t, s)σ′(s)v(σ(s), t)Q(σ(s))
⎛⎝ ⎞⎠

α
h+(t, s)

α + 1
 

α+1

ρ(s)⎡⎢⎢⎣ ⎤⎥⎥⎦ds �∞, (43)

for t≥ t1 ≥ t0, where h(t, s) � H(t, s)ρ+
′(s)/ρ(s) + Hs

′(t, s),
h+(t, s) � max(0, h(t, s)), then every solution of equation (4)
is oscillatory or tends to zero.

Proof. Let x(t) be a nonoscillatory solution of (4). Without
loss of generality, we may assume that there exists a suffi-
ciently large t1 such that x(t)> 0 and x(σ(t))> 0 for t> t1.
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According to Lemma 1, x(t) is either the case of (I) or the
case of (II). Now we assume x(t) satisfies (I). Let w(t) be
defined as in )eorem 1; by (37), we have

kρ(t)v(t)q(t) ≤ − w′(t) +
ρ+
′(t)

ρ(t)
w(t) − β

σ′(t)v σ(t), t1( 

r(σ(t))ρ1/α(t)
Q(σ(t))w

1+1/α
(t). (44)

Substituting t with s in the above inequality, multiplying
each side by H(t, s), and integrating from t1 to t, we obtain

k 
t

t1

H(t, s)ρ(s)v(s)q(s)ds≤ − 
t

t1

H(t, s)w′(s)ds + 
t

t1

H(t, s)
ρ+
′(s)

ρ(s)
w(s)ds − 

t

t1

H(t, s)β
σ′(s)v σ(s), t1( 

r(σ(s))ρ1/α(s)
Q(σ(s))w

1+1/α
(s)ds

≤H t, t1( w t1(  + 
t

t1

H(t, s)
ρ+
′(s)

ρ(s)
+ Hs
′(t, s) w(s)ds − 

t

t1

H(t, s)β
σ′(s)v σ(s), t1( 

r(σ(s))ρ1/α(s)
Q(σ(s))w

1+1/α
(s)ds

≤H t, t1( w t1(  + 
t

t1

h+(t, s)w(s) − H(t, s)β
σ′(s)v σ(s), t1( 

r(σ(s))ρ1/α(s)
Q(σ(s))w

1+1/α
(s)⎡⎣ ⎤⎦ds.

(45)

By Lemma 4, let

c � 1 +
1
α

,

A � H(t, s)
βσ′(s)v σ(s), t1( 

r(σ(s))ρ1/α(s)
Q(σ(s))⎡⎣ ⎤⎦

1/c

w(s),

B �
r(σ(s))ρ1/α(s)

H(t, s)βσ′(s)v σ(s), t1( Q(σ(s))
⎡⎣ ⎤⎦

α/c
h+(t, s)

c
 

α

.

(46)

)en,

h+(t, s)w(s) − H(t, s)β
σ′(s)v σ(s), t1( 

r(σ(s))ρ1/α(s)
Q(σ(s))w

1+1/α
(s)≤

αr(σ(s))

βH(t, s)σ′(s)v σ(s), t1( Q(σ(s))
⎛⎝ ⎞⎠

α
h+(t, s)

α + 1
 

α+1

ρ(s). (47)

Combining (45) and (47), we have

k 
t

t1

H(t, s)ρ(s)v(s)q(s)ds≤H t, t1( w t1(  + 
t

t1

αr(σ(s))

βH(t, s)σ′(s)v σ(s), t1( Q(σ(s))
⎛⎝ ⎞⎠

α
h+(t, s)

α + 1
 

α+1

ρ(s)ds. (48)

Because Hs
′(t, s)≤ 0 for t≥ t1 ≥ t0, we can get

H(t, t0)≥H(t, t1)> 0. Hence,

Journal of Mathematics 7




t

t1

kH(t, s)ρ(s)v(s)q(s) −
αr(σ(s))

βH(t, s)σ′(s)v σ(s), t1( Q(σ(s))
⎛⎝ ⎞⎠

α
h+(t, s)

α + 1
 

α+1

ρ(s)⎡⎢⎢⎣ ⎤⎥⎥⎦ds

≤H t, t1( w t1( ≤H t, t0( w t1( .

(49)

Dividing H(t, t0), we have

1
H t, t0( 


t

t1

kH(t, s)ρ(s)v(s)q(s) −
αr(σ(s))

βH(t, s)σ′(s)v σ(s), t1( Q(σ(s))
⎛⎝ ⎞⎠

α
h+(t, s)

α + 1
 

α+1

ρ(s)⎡⎢⎢⎣ ⎤⎥⎥⎦ds≤w t1( . (50)

Letting t⟶∞, we have

lim supt⟶∞
1

H t, t0( 


t

t1

kH(t, s)ρ(s)v(s)q(s) −
αr(σ(s))

βH(t, s)σ′(s)v σ(s), t1( Q(σ(s))
⎛⎝ ⎞⎠

α
h+(t, s)

α + 1
 

α+1

ρ(s)⎡⎢⎢⎣ ⎤⎥⎥⎦ds≤w t1( <∞, (51)

which contradicts (43).
If y(t) satisfies (II), then from Lemma 2, it is obvious

that limt⟶∞x(t) � 0. )e proof is complete. □

4. Examples

Example 1. Consider the equation

t
α− 1/2

(x″(t))
α

 
′ +

1
t
(x″(t))

α
+
1
t
2x

β t

β
  e

x(t/β)
+ 1  � 0, (52)

where β, α> 1, a(t) � tα− 1/2, r(t) � 1, p(t) � 1/t,
q(t) � 1/t2, f(x) � xβ(ex + 1), σ(t) � t/β. )en, we have

1≤ v(t) � e


t

t0

p(s)/a(s)ds
� e


t

t0

1/ s
α+1/2

 ds
� e

2/1− 2α 1/tα−1/2− 1/tα−1/2
0( ) ≤ e

2
.

(53)

Now we check conditions (6), (7), and (12).


∞

t0

1
(v(s)a(s))

1/αds≥ e
− 2/α


∞

t0

1
s
1− 1/2αds �∞,


∞

t0

1
r(s)

ds � 
∞

t0

ds �∞,


∞

t0

1
r(v)


∞

u

1
r(u)a(u)


∞

u
v(s)q(s)ds 

1/α

dudv

≥ 
∞

t0


∞

v

1
uα− 1/2 

∞

u

1
s2
ds 

1/α
dudv

� 
∞

t0


∞

v

1
u
1+1/2αdudv

� 2α
∞

t0

1
v
1/2αdv �∞.

(54)
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So, conditions (6), (7), and (12) hold. Because
v(∞, t0) �∞, there exists a sufficiently largeT≥ t1 such that
v(t, t1)≥ v(t/β, t1)≥ 1 for t ∈ [T,∞). Furthermore,

f(x)/xβ ≥ k � 1, and letting ρ(t) � t, we have the following
three situations.

For β> α,

lim supt⟶∞ 
t

t1

kρ(s)v(s)q(s) −
ρ(s)

(α + 1)
α+1

αr(σ(s))

βσ′(s)v σ(s), t1( Q(σ(s))
⎛⎝ ⎞⎠

α
ρ+
′(s)

ρ(s)
 

α+1
⎡⎢⎢⎣ ⎤⎥⎥⎦ds

≥ lim supt⟶∞ 
T

t1

1
s

−
1

(α + 1)
α+1

α
λ1v s/β, t1( 

 

α

·
1
s
α ds + lim supt⟶∞ 

t

T

1
s

−
1

(α + 1)
α+1

α
λ1

 

α

·
1
s
α ds

�∞.

(55)

For β � α, from the above, it is obvious that (30) holds. For β< α,

v t, t1( ≤ 
t

t1

1
a
1/α

(s)
ds≤ 

t

t1

1
s
1− 1/2αds≤ 2αt

1/2α
,

R t, t1( ≤ 
t

t1

2α · s
1/2αds≤ 2α · t

1/2α+1
,

lim supt⟶∞ 
t

t1

kρ(s)v(s)q(s) −
ρ(s)

(α + 1)
α+1

αr(σ(s))

βσ′(s)v σ(s), t1( Q(σ(s))
⎛⎝ ⎞⎠

α
ρ+
′(s)

ρ(s)
 

α+1
⎡⎢⎢⎣ ⎤⎥⎥⎦ds

≥ lim supt⟶∞ 
∞

t1

1
s

−
1

(α + 1)
α+1

αλ2
v s/β, t1( 

 

α

R
α− β s

β
, t1  ·

1
s
α ds

≥ lim supt⟶∞ 
T

t1

1
s

−
2α2λ2 

α

(α + 1)
α+1

(2α)
β

1
v s/β, t1( 

 

α

·
1

s
β/2α+β− 1/2

⎡⎢⎣ ⎤⎥⎦ds

+ lim supt⟶∞ 
t

T

1
s

−
2α2λ2 

α

(α + 1)
α+1

(2α)
β ·

1
s
β/2α+β− 1/2

⎡⎢⎣ ⎤⎥⎦ds

�∞.

(56)

From above, we know

lim supt⟶∞ 
t

t1

kρ(s)v(s)q(s) −
ρ(s)

(α + 1)
α+1

αr(σ(s))

βσ′(s)v σ(s), t1( Q(σ(s))
⎛⎝ ⎞⎠

α
ρ+
′(s)

ρ(s)
 

α+1
⎡⎢⎢⎣ ⎤⎥⎥⎦ds �∞. (57)

)erefore, by )eorem 1, every solution of (52) is os-
cillatory or tends to zero.

Example 2. Consider the equation

t
α− 1/2 1

t
x′(t) 
′

 
α

 
′

+
1
t

1
t

x′(t) 
′

 
α

+
1
t
2x

β t

β
 e

x2(t/β)
� 0, (58)

where a(t) � tα− 1/2, r(t) � 1/t, p(t) � 1/t, q(t) � 1/t2,
f(x) � xβex2 , σ(t) � t/β, which satisfy conditions
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(A1)–(A3). Similar to the Example 1, we can easily verify that
(6), (7), and (12) hold. Furthermore, we choose ρ(t) � t,
H(t, s) � t − s. By )eorem 2, we have h(t, s) � t/s − 2 and

lim supt⟶∞
1

H t, t1( 


t

t1

kH(t, s)ρ(s)v(s)q(s) −
αr(σ(s))

βH(t, s)σ′(s)v(σ(s), t)Q(σ(s))
⎛⎝ ⎞⎠

α
h+(t, s)

α + 1
 

α+1

ρ(s)⎡⎢⎢⎣ ⎤⎥⎥⎦ds �∞. (59)

)en, by)eorem 2, we know that any solution of (58) is
oscillatory or tends to zero.

5. Conclusions

In this work, by using the generalized Riccati technique, we
establish some new oscillation criteria of (4) and give some
examples to verify the oscillation criteria. )ese new os-
cillation criteria complement some known results for third-
order delay differential equations. Furthermore, in future
work we will study the forced oscillatory behavior of this
equation with forcing term.
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[9] B. Bacuĺıková and J. Džurina, “Oscillation of third-order
nonlinear differential equations,” Applied Mathematics Let-
ters, vol. 24, no. 4, pp. 466–470, 2011.
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