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In this paper, we make use of a certain Ruscheweyh-type g -differential operator to introduce and study a new subclass of g
-starlike symmetric functions, which are associated with conic domains and the well-known celebrated Janowski functions in D.
We then investigate many properties for the newly defined functions class, including for example coefficients inequalities, the
Fekete-Szeg6 Problems, and a sufficient condition. There are also relevant connections between the results provided in this study
and those in a number of other published articles on this subject.

1. Introduction, and Preliminaries

Let % (D) be a class of analytic functions where D is the open
unit disk and is given by the following equation:

z:z€C,
D:{ } M
lz] <1

and let f € o be those functions in the open unit disk D
which are normalized by the following equation:

f(0)=0,
£l =1,

thus, we have the following series form for f € &/

(2)

f(z)=z+OZO:anz”, z € D. (3)
n=2

Moreover, all normalized univalent functions in D are
contained in the set &/ c¢ §. For two given functions
91> 9, € 9, we say that g, is subordinate to g,, written
symbolically as g,<g,, if there exist a Schwarz function w,
which is holomorphic in D with

w(0) =0, @)
lw(2)[ <1,
so that
91(2) = g, (w(z)) (zeD). (5)

Moreover, if the function g, is univalent in D, then the
following equivalence hold true:
91<9,29:(0) = g, (0),

(6)
9, (D) ¢ g, (D).
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Let & be the class of Carathedory function, an analytic
function y € & if

X(@) =1+ x2" (7)
n=1
such that
0)=1,
*(0 (8)
R{x(2)}>0 (VzeD).

Definition 1. A given function p is said to be in the class

P(%,9) if
1+%Xz
1+9z

p(z)< (-1<9Y<X<1). (9)

Janowski [1] investigated the class of functions 2 (%, 9))
and found that p(z) € P (%,9) if and only if there exist a
function y € & such that

X+ -(X-1)
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Definition 2. A function f of the form (3) be in the functions
class §* (%,9) if and only if

z2f'(2) _ (X+Dy(2)-(X-1)
flz) Q+x)-(Y-1)

Historically speaking, Kanas and Wisniowska were the
first (see [2], [3]), (see also [4]) who introduced and defined
the class of A-uniformly convex functions (A - #€7") and
A-starlike functions (A — ) subject to the conic domain
Q,, where

le{u+iv:u>/h/(u—l)2+v2, u>0},A20. (12)

Moreover if A, is fixed and (A = 0) then Q, denote the
conic region bounded by the imaginary axis, if A =1, we
have a parabola, if 0 <A < 1 this domain represents the right
branch of hyperbola and for 1> 1 an ellipse.

For these conic areas, the following functions serve as
extremal functions

(-1<YP<X<l). (11)

zZ) = -1<9PY<X<1). 10
PO gy -@-p 'EP<ESD 10
(1+2z 2
=1+2z+2z°+---, (A=0),
1-z
2 1++/z 2
1+ 71—2<10g1—\/2) N (/\ = 1),
P (2) =1 (13)
1+ 2Azsinh2 {(E arccos A)arctan pVz }, (0<A<),
- b
1+ 1sin(n JM(Z)/W dt ) + ! A>1)
[ V-1 \2K(®) Jo Vic2Vi—de) V-1 ’
2
where w 0<A<l,
/R T (1 - K )
z— K
u(z)—l_\/ﬁ (V z e D), (14) .
=4 = A=1, 16
and k€ (0,1) is chosen such that “ n (16)
A = cosh(nK' (x)/ (4K (x))). Here, K(x) is Legendre’s
complete elliptic integral of first kind and 2
K' (k) = K(V1-«?%), that is K'(t) is the complementary 5 5 >1,
integral of K (t). 4(K - I)R (OVE (1+1)
The function p, (z) in [5] be given as follows:
61 =61 (61)s (17)

P1(2) =14+ Gz+6uZ° +62 +-) (15)

where
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) 2
((2/m)arccos k)° +2 0<i<1,
3
2 n
= by - 1) ETEY
G < 3 A T!(n_r)!’
AR (1) (£ + 6t +1) -
( )g ) A> 1,
24R* (1) (1 + )VE

(18)

and t € (0,1).
The following is defined by Noor et al. [6], who combine
the ideas of Janowski functions and conic regions.

Definition 3. A function p from the functions class & be in
the functions class A — 2 (%,9), if

(X+1D)py(z) - (X-1)
@+ Dp(2)-(Y-1)

~1<P<X<1,
p(z)< )

A>0
(19)

where p) (z) is defined by (13).
Geometrically for the domain Q,[¥,%)], we have the
following

(20)

Q,[%,9)] :1w: m(

or equivalently for w=uwu+iv, we have the following
equation:

[(2)2 - 1)(u2 + vz) —2(%X9 - u +(3€2

The domain Q, [%, 9)] denote the conic type regions (see
[6]).

Definition 4 (see [6]). An analytic function f be in the class
A-S8T(%X,9), if
zf' (2)
f(2)

The angle 271/i at which domain D rotates around the
origin maps D onto itself The domain D is thus said to as
i-fold symmetric. In D a function f is said to be i-fold
symmetric if for every z in D

f(eZHI/iZ) - eZnI/if(Z), ie Z+. (23)

€ M0P(%X,9)) (Vz €D and 1>0). (22)

Here, & denote the i-fold symmetric functions and i
symbolize the imaginary unit. For
(j=0,1,2,...,i-1; i=2,3,...;), the (j,i)-symmetric
functions are an extension of the concept of even, odd, and
i-symmetric functions. Several applications of the theory of
(j,i) -symmetric functions may be found in [7]. For
e = e the functions f: D — C is known to be (j,i)
—symmetrlc if

(9-Dw-(X-D)_ (-
@D+N)w-(X+1)

Dw - (36—1)|}
|@+nw (X+1)

-1)) >,\[(—2(g) D))+ V) 42X+ D +2u-2(X +1) +4(X - 9.

(21)

f(ejz) = ejf(z). (24)

The set of all (j,i)-symmetric functions is denote by
&N First of all, if j = 0 and i = 2, then § U is called even
symmetric functions. Secondly, if j = 1 and i = 2, then & %)
is called odd symmetric functions. Thirdly, if j =1, then
&) s called i-symmetric functions.

Theorem 1 (see [7]). For mapping f: D — C, there is just
one series of (j,i) -symmetrical functions f ;;(z) exists that
given as follows:

i-1
f@)=) f. (25)
j=0

From equation (25), we can get the following equation:

f],(z)— Ze’”f(ez Ze”(Za e’z >,
(26)

then



4
(e8]
fi@=Y was a =1y =1, (27)
n=1
where f € o and
= (N ={1,2,3,.. }), (28)
1Q gy |Ln=lit]
= — = . 29
Y i;e 0, n#li+j (29)

2. Some Basic Concepts of g-Calculus

The usage of the quantum (or g -) calculus in many diverse
areas of mathematics and physics are quite significant. In the
theory of Univalent functions, Srivastava [8] firstly apply the
g-calculus in order to put the foundation of a new direction
for other researchers. Motivated by [8] of Srivastava, many
researchers have worked on this direction. For example, the
convolution theory, enable us to investigate various prop-
erties of analytic functions. Due to the large range of ap-
plications of g-calculus and the importance of g-operators
instead of regular operators, many researchers have explored
g-calculus in depth, such as, Kanas and Reducanu [9],
Muhammad and Sokol [10] and Noor et al. [11-15]. Also in
[1-5, 9, 16-22], Ahmad et al. see also [21], have used the
g-derivative operator to define a new subclass g-mero-
morphic starlike functions. They also developed some re-
markable results for their defined classes of analytic
functions. In addition, Srivastava [23] see also
[8, 12-15, 23-26] recently published survey-cum-expository
review paper this might be useful for researchers and
scholars working on these subjects. For some recent and
related study about g-series, we may refer the interested
readers to see [27-29].

Definition 5 (see [30]). Let q € (0,1) and g-integer n, be
defined as follows:

1-q"

1_q:1+q+---+q"_1, [0,q] = 0. (30)

[l’l, Q] =

Definition 6. We define the q-shifted factorial as follows:

p/l,q (x> g’? Z) =

(XA+a)+(-q+3)p(2) - (XA +q-(-q+3))
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0,q]'=1,
[0,4] (31)
[nql! =[1,q](2,q] ... [nq].
It could be seen that
lim [n,q] = n,
q—1"
(32)

lim [n,q]! =nl

q—1"
In general [t,q] =1-¢'/1-q.
Definition 7 (see [20]). For an analytic function f, the

q-deformation or q-generalization of derivative is defined by
the following equation:

_f(2) - f(g2)
9,f (2) = gz (z € D), (33)
0,f(2) =1+ [nqla,z"", (34)
n=2
and
0,2" =1[n, qlz" L (35)

Definition 8. The generalized q-Pochhammer symbol is
given by the following equation:
(t,ql, =[t,ql[t+ L qllt+2,q]...[t+n—-1,4] (36)
and q-gamma function be given as follows:
T, (t+1)=[t,q]T, (1),
(37)
r,(1)=1

Definition 9 (see [31]). A function p € -2 (%,9) if and
only if

p(2)<p)q(%,9,2), (38)

where

and p, (z) is defined by (13).
Geometrically, we have the following equation:

0),(X,9) ={w =u+iv: R(¥)>A¥ - 1]}, (40)

where

(DA +q) +(=q+3)py(2) - (DA +q) - (=q +3))

A>0. (39)

_ D0 +q-(q+3)w(z) - (XA +q-(=q+3))
DA +q)+(—q+3)w(z) - (X1 +q)+(-q+3))
(41)

For more detail (see [31]).
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Definition 10 (see [9]). For f € &/, the Rusceweyh q -dif-
ferential operator be defined as follows:

R f(2)=f(2) % Hypn(2) (z€DA>-1), (42)
where
X T, (A +n)
_ q\""1 n
%q,/\1+1 (Z) =zt ’;2 [n_ l)q]!rq (1 +A1)Z
[/\ +1 q]n 1 n
=zt Z ~Lq]! (43)
=z+ Z goq’n,lz”,
n=2
with
[’11 +1, q]n—l
= — 44
q)q,n—l [n _ l, q]| ( )
By “*” we mean convolution (or Hadamard product).
Moreover from (42), we have the following equation:
RIf(2) = f(2), Rf(2)=20,f(2), (45)
and
m m—1
20, (2" f (2))
R'f(z)=———T% (meN) (46)

Making use of (42) and (43), the power series of Rél f(2)
is given by the following equation:
(A +n)
n—l ql'T, (1 +,) P

71

R’“f(z)—z+z

5
where ¢, ,,_; is given by (44) and y,, is given by (49).
Note that,
. z
limg_ -7 4,01(2) = ——55 (49)
(1-2)"
I W - z
img_- Ry fi(2) = f,(2) e (50)
and
. A 4
hmqﬁlfRq f(2)=f(z)* W (51)

When q — 1-, Ruscheweyh gq-differential operator
reduce to Ruscheweyh differential operator [14]. Also, note
that

As
20,( 40,11 (2)) = (1 + [ ;Alq])%MﬁZ(Z)

(52)
—_ [Al/{lq]%q,/{l+l (Z),
q
and
Abs N AL
( lf(z):< [ql/‘lq])Rgl 1f(z)_[ql/\1q] ﬁ
(53)

Definition 11. A g1ven function f is said to be in the
functions class -7 f’)(Al,x 2), 1>0, -1<P<X<1,if

—z+ Z—“[l il 11’ "]]"'-lanz” (47) R(p(%.9.9.4)) > Ao (X, 9.0.4,) - 1], (54)
= [n-1,q]!
’ or equivalently
R n 9, Ry
= z+;‘l’q,n—1anz . z (@ )L—gjq (X,9), (55)
.. qlfj,i(z
Similarly,
h
Rﬁlfj,i (2) = f1i(2) * Hp1(2) (2 €D, A > - 1), here
< M+ 1.4,
Z Tl Y
=z+ Z q’q,n—ananzn’ a, = L, ¥ = 1, (pq,O =1
n=2
(48)
1+q)- +3))(20,R™ f (2)/RM ii(2))-(X(1+q)—(—q+3
D g1 - DU OO N(DRS @R (@) = (R4 @)= (q +3) o

(D1 +q) +(-q+3)(20, R} f (2R f1,(2)) = (X(1+q) +(—q +3))



Each of the following special case of the above-defined
functions class )L-%é]") (A1, %,9) is worthy of note.

(i) One can easily seen that
lim, , A-7900,29) =1- 79 (x,9), (57

where A-77 ) (%,9)) is the functions classes studied
by Al-Sarari and Latha (see [18]).

(i) If we set

q— 1-,
1 =0, (58)
j=1

in Definition 11, we have class A-8§7 (%, 9),i) in-
troduced in [17].

(iii) If we put

qg—1-
A =0, (59)
j=1=i

we get the functions class A-8§T (%X, 9) (see [30]).
(iv) We see that

lim,_, 07"V (0,1,-1) = M08, (60)

4—1-

where Kanas and Wisniowska [3] have studied the
class -8 7.

(v) If we set

q— 1~
P=1=i=j=21+1, (61)
X=1-2a.

in Definition 11, we get the class D (A, &) (see
[24]).

(vi) It can be easily seen that

lim, ., 007"{"" (0, %,9) = 8" (X,9), (62)
where the functions class §* (%, 9)) is studied in [1].
3. A Set of Lemmas

Lemma 1 (see [13]). Let x(2z) = 1+ Y2, x,2"<F (2) = 1+
Zflil C, 2" If F (z) is convex univalent in D, then

|Xn|S|Cll’
n>1.

(63)

(X(1+q)+(-q+3)p)(2) = (X(1+q) - (-q+3))
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Lemma 2 (see [32]). If x(2) =1+ y,z+),2° +-+- is an
analytic function with positive real part in D, then

—4y+2 if v<O0,
I, -] <1 2 if 0<v<l, (64)
4v-2 if v>1
The equality holds for
1+
X(Z)=%, when v<0 or v>1, (65)

or one of its relations. The equality holds for

2
1+z

1-z

when 0<v< 1. (66)

x(z) =

2°

or one of its relations. If v = 0, the equality holds if and
only if

1 1 \1+4z /1 1 \1-z
=301 G 3y ©sisy @)

or one of rotation of it. The above upper bound is sharp as
well, when

1
I, = vii| +V|X1|2£2,(0<VS§). (68)
and

1
o =il + 1=l <2(3<vs1) (©9)

Lemma 3 (see [32]). If the function y (z) given by (8) belongs
to the class P of analytic functions and have positive real part
in D, then

lx.<2 neN. (70)
The equality holds for
1+z
=— 71
f@=1— (71)

Lemma 4 (see [32]). Ifthe function x (z) given by (8) belongs
to the class P of analytic functions and have positive real part
in D, then

|c, — pci| <2max{1, 24 - 1|}, VupeC. (72)

Lemma 5. Let A € [0, 00) be fixed and

Prg(%.9.2) =

DA+ +(=q+3))py(2) = (DA +q) - (=g +3))

(73)
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then where Y5 (q), Y (q), 6, and ¢, given by (83), (84), (16), and

Pro(£,9,2) = 1+ Y5(0)612 +{Y5 (@) — Yo ()6 )" + -+, (17).

(74)  Proof. From (39), we have the following equation:

_ (XA +9)+(=q+3)p(2) - (XA +q) -~ (=9 +3))
(DA +q)+(=q+3)py(2) - (PA+q) - (-q+3))

=[(X(1+q)+(-q+3)p; (2) - (X(1 +q) - (—q +3))]

P1q(%,9,2)

(DA +a) +(=q+3)pa(2) - (DA +q) —(—q +3)]

_ (XA +q9)-(=q+3) [1_ (XA +q) +(-q+3)
Q1 +q)-(-q+3)) (X(1+q)-(-q+3)

‘ [1 +§ < (2)(1+q)+(—q+3))pl(z)) }

P (Z)]

A\ @A +q) - (-q+3))

_ (XA +q) -(-q9+3))

T DU +q) —(—q+3) +Y, (a)py (2) + Y, (a) (pa (Z))2 +Y5(q) (py (Z))3 LIRS

where

(XA +9)-(-9+3)(PA+9)+(-q+3)) (XA +q) +(-q+3))

Y = >
@ (D(1+q) - (—q+3) (DA +4q)-(-q+3))

(X(1+q) - (-q+3)( QU+ +(-q+3)* (XU +q+(-q+3)DA+0q) - (-q+3))

Y =
(@ D(1+q) - (-q+3)’° (D1 +q) - (—q+3)°

and

(X(1+9) - (-q+3) QU+ +(-q+3)’ EA+9+(-q+3) DU+ —(-q+3)

Y =
(@ D (1+q) - (-q+3) QDA +q) - (—q+3)°

By using (15) and (75), we have the following equation:

(75)

(77)



8 Journal of Mathematics
“2(Y9(1 +q) +(-q+3)"!

Prq(%,9:2) = Z D1+ - (Cqr3))

2n((X(1+)-9(1+a) (D +q) +(-q+3)""

(D1 +q) - (—q+3)™"
S X2n(X(1+q) =YL +a) (DA +q) +(-q+3)"" S 2| 2
+,§<"Z+{,§ D119 - (—qr3)™ ‘2"+,;Y4(q)”}z e
(78)

where

2n(PA+q)+(—q+3)N(XA+q) -1 +q)((3- q)+2)(1+q))

Y,(q) = 79
0= @ +a)- (G- Q)™ 7
The series and
Z—Z((S D+YA+q)"!
(YA +q - (—q+3)"
ZZn((BE(l+q))—¥)(1+q))(2)(l+q)+( —q+3)"!
= (DA +q) - (—q+3)"™" ’
(80)
§2n(2)(1+q)+(—q+3))((3€(1+q) Y (1+q)((3- q)+2)(1+q)) (81)

n=1 (DA +q)- G-

are convergent and convergent to 1, (1 + q) (X —9))/4
and (P(1+q)+ (—q+3))(X-2)(1+ q)/8, respectively.
Therefore (78) becomes

Prg (£.9,2) = 1+ Y5(9)62 +{Ys (o — Y (@i }2" +---,

(82)
where
Y, (q) = w (83)
and
V(- CORDE- DAYy
which s our required result. O

Remark 1. If we set A=1, B=-1 and let g — 1-, in
Lemma 5, we will arrive it that of a result given by Sim et al.
[25].

q))n+2

Lemma 6. Let x(z) = 1+ )2 x,2" € -2, (%,9), then

Xl < Y5 (a)]cy| =WI¢AL n>1. (85)

Proof. By Definition 9 and y (z) € /\_giq (%,9) if and only if
X(2)<p)q(%,9,2) (1 20) (86)

Prq(%X,9),2) is given by (39).
By using (82) and (86), we have the following equation:

X@D<1+ Y (@)]q|z +{Ys (@en| - Ys(@)ci]}* + .
(87)

Now by using Lemma 1 on (87), we have the following
equation:

bl < Y5 (@]r| = WkA" (88)

which is our required result. O
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4. Main Results

Theorem 2. An analytic function f of the form (3) belongs to
the class k—%;f") (A, X,9), if the following condition is
satisfied:

(o)

Z (gl + 92)§0q)n71|61n| < |g) - xl (1 + q)’ (89)
n=2
where

Fi=2(k+1)(3-qly,~[nql|, (90)

v, is given by (29) and

(1+ V)] (%,9.q.4,) - 1

F =D+ -CB-q)ngl-(X(g+1)+3 -y,
(91)

Proof. Suppose that (89) holds, then it is enough to show
that

Mo(%,9,0.4,) - 1| - R{p(%,9,q0,4,) - 1} <1.  (92)

where ¢(%,9),q,1,) is given by (56).
Now, we have the following equation:

21+ 1) )R} f1;(2) —20,R} f () |

(B—a) +D(1+a)2d,Ry f(2) — (X (1 +q) +(~q + I)RY f1,(2)| (93)

200G -0 X2y, ~ 1 all} oyl

(D =) (1+q) = Y52 Ay@ont|an

where
% Ay =|((3 =) +D(1+q)[n,q]) = (X (1 +q) +(=q +3)y,|
(94)
Expression in (93) is bounded above by 1 if
2 (F1+ F)ppursla| <D -EI(1+a),  (95)
n=2

where &%, and &%, are defined by (90) and (91) respectively.
Thus, we have completed the proof of our Theorem.
If in Theorem 1 we put

q—1-1, =0,

(96)
i=1

then the result was reduced to the following known
one. O

Corollary 1 (see [30]). An analytic function f of the form (3)
is in the class A-8T (X, %), if it hold the condition

YRA+) (-1 +n(D+1) - (X + 1D}, <D - XL
n=2

(97)

If in Theorem 1, we set

M+tl=j=1=i=X=9+2 (98)

and let ¢ — 1-, then we get the following well-known
consequence.

Corollary 2 (see [2]). An analytic function f of the form (3)
is in the class A-S8T, if it satisfies the condition

i{n+/\(n— D}a,|<1. (99)
n=2

If we put
M+tl=j=1=i=9+2,

(100)
X=1-2a(0<a<l),

and let ¢ — 1—, in Theorem 2, then we have the fol-
lowing known result.

Corollary 3 (see [24]). An analytic f € o and of the form
(3) is in the class A-8'D (A, «), if it satisfies the condition

& 0<ac<l,
D= <1- .
;{n(n) (A + @)}|a,| <1 oc( =0 ) (101)

Theorem 3. If f(2) € k-7 (A, X,9), then
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|60 (X - 2) (1 +9) - 4][h.q] - 3]0,
4l[h+1,q) = Wit |9gn

n-1
|an|sn(
h=1

wherek>0,-1<9<X<land b, ¥, ¢,,, are defined by
(16), (29) and (44).

Proof. Let f(z) € -7 (A, %,9) and
20,R} f (2)
qlfj,i( 2)
which implies that
A _ ph
ZaqRq f(Z) = Rq fj),‘ (Z)X(Z)

By using (47) and (48) on (104), we have the following
equation:

= x(2), (103)

(104)

(o]
z+ Z [n, q](pq)n_lanzn
n=2

=|z+ Z Pon1Vnd,Z || 1T+ z c,z" |
n=2 n=1

By making use of the well-known Cauchy Product
formula on Right hand side of (105), we get the following
equation:

(105)

[ee]

Z ( [n’ CI] - ll’n)goq,n—lanzn

n=2
00 n-1
— n
=212 Pan-1¥pCn-pap [Z
n=2 | p=1

On both sides of equation (106), comparing the coefhi-
cients of z", we have the following equation:

(106)

([”) CI] - 1/’n)(hoq,n—lan
- (107)
= Z Pan1VpCupap @1 =1 ¥ =1 ¢5=1,
p=1
which implies that
1
| |—| Z|‘Pqn Wollagllenpl  (108)

n> CI] Wn)q)qn 1

By using Lemma 6 together with (108), we have the
following equation:

(x 2))(1+q)|chl

(109)

We claim that
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(X-9)(1+9)s| S
4| [”>Q] l/]n)(pqnl Z‘ qp 11//1’” P‘

< n-1 <|CA(x -P(1+q) —4( (p.a] - pr)ﬁ"q,p—lg)|>
- el 4( [p+1,q] - ll/p+1)(Pq,P |
(110)

We prove (110) by using the principle of the mathe-
matical induction method.
For n = 2, from (109), we have the following equation:

lay| < )| (X-2)(1+9q)

4|( (2,4] ‘/’2)%1'

Again from (110), we have the following equation:
oy < || (-9 +9q)

4|( (2,4q] ‘!’2)%1'

(111)

(112)

Let the hypothesis be true for n = m, then from (109), we
have the following equation:

X-90+q| &
5} 2) (1 +q)| |qp11//pHap|}-

X

Am| = ¢
| l {4“ [m’ q] - Wm}goq,m—l' p=1
(113)

From (110), we have the following equation:

|a |<ﬁ |<A(x_g))(1+q)—4{[p,q]—1/fp}¢q,p—1g)'
mj= 4( [p+1,Q]—Wp+1)‘Pq,P |

p=1
(114)

Using modulus properties we get the following equation:

o |<rln_[1<|q(3g_g))(1+q)|+4|[p, Wp|‘/’qp1>
ml= 4K p+lal-vp, |(PqP

p=1
(115)

By the induction hypothesis, we have the following
equation:

| (X-9)(1+9q)]
4' [m’ q] l//m}(pqm 1'

<ﬁ<lc"(x 9)(1+ )| +4|[p.a] - wp|</’qp1>
- 1 4|( p+1 CI] I//erl |‘Pqp

Z' a.p- 1‘/’P|| p|

(116)

Multiplying both sides of (116) by the following
equation:

) (X -2)(1+q)| +4|[m,q
4|lm+1,q] -

IPm|(qu 1

(117)
1l’m+1|(noqm

we have
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o) (X -92)(1+a)| + 4| [m, ] = ¥, |0qm
4| [m +1 q] - l//m+1|§0q,m

mt (o) (% - @xuqn+4w, = V| Papr
4(p+ 1,91 = Y001 |94,

1
(118)

p=
{kﬂx 2) (1 +q)| +4|[m, q] wA%m4}
4l [P+ L CI] l!]erllgoq,m

(X-9)0+9)| &
4|(c?m,q] Vo) ;:n Z' -1 |25]

Furthermore,

f] <lq(f ~) 1+ q)| +4(pa) - wp|¢q,p1>
4(p+ 1,1 - vy g,

p=1

o) (X -9)(1+q)| o (X-9)(1+q) &
. {4| [WlﬁL 1’ q] 71l/m+1|¢q,m 4| m, q] lllml(pq,m 1 Zl|q)qp 11”17” P|
m-1
+ ; (905195l )

o) (X-9)(1+q)| =
T4|[m+ 1,q] = Y [9gm la,,| + ;"Pq,p—ﬂ/’p“%l

:|wx2m+ﬂ ZMwMHl

4|[m+ 1 q V/m+1|(/)qm
(119)
That is,
loE-DA+q)| &
4l [m +1, CI] - 1Pm+1|(pq,m };|¢q,p71wp"ap|

Sﬁcqa ) (1+q)| +4|[p,al - %Mpv
p=1 4' [P +1 CI] l//p+l‘(:0qp

(120)
Hence inequality is true for n = m + 1. Which completes
the proof. O
If in Theorem 2, we set
A =0,
(121)
j =1= i’
| | (x - 2)) (1 + Q)
3

<
23-9((1+9+q°) —v3)9,

O Ok (27+2)4+3—‘1)+(x 2) (1 +4) (8) 1/’2'

11

and let ¢ — 1—, we get the following known result. [J

Corollary 4 (see [30]). An analytic function f of the form
)(3) belongs to the class A\-ST (X, 9), if it satisfies

(o (X-9) - 29|
|a,| < H( G+ D ) (122)
If we set
A =0,
(123)

j:l:i:x:—g),

and let ¢ — 1—, in Theorem 2, we have the following
result.

Corollary 5 (see [3]). An analytic function f of the form (3)
belongs to the class A\-S8T, if it satisfies

n-2 lC,1+]l
|61n| < H(m) (124)
If we set
A =0,,
(125)

j:l:i:x:—g}

and let ¢ — 1-, also by taking A = 0, then ¢, =2, in
Theorem 2, we have the following result.

Corollary 6 (see [1]). An analytic function f of the form (3)
is in the class $* (¥X,%), if it satisfies

n-2 .
|a,| < H(W) 1<Y<E<l

Ll G+ D) (126)

Theorem 4. If the function f (z) given by (3) belongs to the
class k—%é]”) (A, %,9), then

| | (x 2))(1+q)5k
R TER T (G S Pl

(127)

and

(128)

{

1 1 2(3-9q)

ol

23-q9)((1+¢q) - |
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If f (2) € A-7’ U7 (A, X,9), thus from (55), we have the

Proof. Let y € 9 and defined by the following equation:
following equation:

=1+w(z)

=1+4+c¢cz+ z2+~--, 129
—w(z) e (129)

x(2)

where w(z) is a Schwarz function, such that w(0) = 0 and
|w(2)| < 1. It follows seasily that

(130)

20,Ry f(2) (X(1+9)~(-q+3)pi(2) = ((1+) ~(-q +3)) (131)
R f;:(z) (D(1+a)+(=q+3)p(2) = (D1 +0q) - (-q+3))

where p, (z) is given in (15), thus from (131), we have the
following equation:

20,Ry f(2) _ (X(1+q)~(-q+3)p, (w(2) ~ (X (1 +q) ~(-q +3) (13
R fi(z) DU+ +(=q+3))p (w(2) - (D1 +q) - (-q+3))

From (130), we have the following equation:

Pr(W(2) = 1+ qu(z) + 6y (W(2)* + 65 (W(2) +---

2 3
ol 1 A\ 2 1 1 i\ 3
=1+CA 72"' ECZ—Z zZ + §C3—£C1C2+§ Z ...

vop( Dz 3 2+ e, -2 +c? z 2 1)
—z+|=c,—— —C;— =16 +— |z ...
il 5 27y T aa Ty
roy Dzl i 2+, -1 +C? z 3+
= —C;, —— —C3— =16 +— |z ...
2722 2372197
S et | 1 o 2
After some simplification we have the following p(w(z) =1 +?clz +( 4 ! +§(Cz —EI)CA>Z
equation: (134)

(228G (2D B, ) 1
8§ 4 8 2 2 2
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Using (134) and (132), we have the following equation:

QRSO +( E-90 +q)q)clz
RN fi(2) 4(3-9q)

{w<c_ o w)c)}
4 4 8(3-q)

2(3-q) 2

G, +<cﬁ 5 (2)+¥)c|+3—q)>clc2 (135)

22\ 2 2 4(3-9)

X -
+<( @)(IW))‘ O S S (D+9a+3-a)gon  (D+99+3-9) , (D+Da+3-q) 5\ 127+
2(-q+3) ~ Tt + S > G\
8 4 8 8(3—q) 8(3-q) 32(3-q)

3
31

From (47) and (48), we have the following equation:

z0,R" f (2)
W =1+((1+q)- ‘/’2)%,1“22

+‘}((1 +tq+ qz) - ‘/’3)‘/’.1,2“3 -((1+q)- 1/’2)(%,1)2‘/’2“;}22

3

+{((1 + q)(l + qz) - ‘//4)%,3‘14 _{((1 +49) - ¥2)ys +((1 Tq+ qz) - ‘/’3)%,2‘/’2}%,1“2“3 +(1+(a)- '»”2)(‘/’q,1)3‘//§a;]’z T

(136)
From (135) and (136), equating coefficients of z and z2 and
gives us the following equation:
(X-92)(1+4q)g, )
a, = [ (137)
? (4(3 ) ((1+a) -v2)p,, )
. (X-9)(1+q)
P26 -)((1+a+a)) - vs)e,,
(138)

{(cﬂ_c_)t_(2)+2)q+3—q)+(x—2)>(1+q>(cl)2w2)cz 3 }
4 4 8(3-4q) 8G-a)((1+q)-v,) '

By using Lemma 3, on (137) and (138) we obtain the Theorem 5. Let -1<Y <X <1 and 0<k<co be fixed and
result asserted by Theorem 3. O et f(z)ek- "7;]”) (A1, X,9), then for a complex number .
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-8 > X9,
_ 2 ,
X0, (‘“C1 xlg)l) + (.“ < 22
X x,(6
|as —ya§| lejk 42 ( 21(3231 < ﬂﬁ%>, (139)
1 1
8 2 X, (0 +9)
kxlak(/"cl_xlgl)_z <#>T >

where v, X,,%), and C, are given by (141), (142), (143), and
(144), respectively.

Proof. Using (137) and (138), we have

X 2
|a3 —ya§| = ;A cy —E(‘uCﬁ—xlg)l)cf , (140)
where
= Ci-%,9,)
V=g (KO - EiDy) (141)
(X-9)(1+q)
X, = ,
! 2(—q+3)((1+q+q2)—1//3)qoq>2 (142)
9 a9 (D+Ya+3-9)
74 4 8(3-1q)
, (143)
(E-D 0+ ()Y
8G-)((1+q) -y,)’
and
_ E-90+a9q
I TEER (R AP (4
Apply Lemma 2 on (140) we have. O

Theorem 6. Let 0<k <co and let f (2) € k-7 (1,, %,9)
of the form (3), then for a complex number

X,
2
where v, X,,%),,C, given by (141), (142), (143), and (144).

(145)

|a3 - uaﬂ < max{l,[2v-1]}, VueC.

Proof. From (140), we have the following equation:

XICA _ 2
2 X6,

|as — pas| = c, (ny - xlg)l)cf , (146)

Apply Lemma 4 in conjunction with (146), we obtain the
result asserted by Theorem 5. O

5. Conclusion

We have successfully studied the uses of certain Rusche-
weyh-type q-differential operator to a new subclass of
q-starlike symmetric functions, which involving both the

conic domains and the well-known celebrated Janowski
functions in the open unit disk D. We then investigated
many properties for the newly defined functions class, in-
cluding for example coefficients inequalities, the
Fekete—Szeg6 Problems, and a sufficient condition. We have
also emphasized certain known results of our key findings.
The interested readers should be advised not to be misled
to believe that the so-called k-Gamma function provides a
“generalization” of the classical (Euler’s) Gamma function.
Similar remarks will apply also to all of the usages of the so-
called k-Gamma function including (for example) the so-
called (k, s)-extensions of the Riemann-Liouville and other
operators of fractional integral and fractional derivatives.
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