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Recently, Yuankui et al. (Filomat J. 35 (5):17, 2022) studied q-analogues of Catalan-Daehee numbers and polynomials by making
use of p-adic q-integrals on Zp. Motivated by this study, we consider q-analogues of degenerate Catalan-Daehee numbers and
polynomials with the help of p-adic q-integrals onZp. By using their generating function, we derive some new relations including
the degenerate Stirling numbers of the �rst and second kinds. Moreover, we also derive some new identities and properties of this
type of polynomials and numbers.

1. Introduction

Numerous exceptional numbers and polynomials have been
concentrated by utilizing di�erent techniques, including
producing capacities, p-adic investigation, combinatorial
techniques, umbral math, di�erential conditions, likelihood
hypothesis, and scienti�c number hypothesis. In [1],
Kuculoglu et al. developed producing capacities for new
classes of Catalan-type numbers and polynomials. Utilizing
these capacities and their useful conditions, they gave dif-
ferent personalities and relations, including these numbers
and polynomials, and di�erent classes of extraordinary
numbers, polynomials, and capacities. Some endless series
portrayals, including Catalan-type numbers and combina-
torial numbers, were examined. In addition, a few repeat
relations and computational calculations in the Python
programming language represented the Catalan-type
numbers and polynomials with their plots under the ex-
traordinary circumstances. �ey likewise gave a few sub-
ordinate equations for these polynomials. Above,
polynomials and numbers can be determined by utilizing the
Riemann indispensable, shape fundamental, Volkenborn
vital, and fermionic p-adic essential.

Catalan-Daehee numbers and polynomials were pre-
sented in [2], and a few properties and personalities related

with those numbers and polynomials were inferred by using
umbral analytic procedures. �e group of straight di�er-
ential conditions emerging from the creating capacity of
Catalan-Daehee numbers was thought of as in [3]. In [4], a
few properties and personalities related with Catalan
numbers and polynomials were inferred by using umbral
analytic procedures. Dolgy et al. [5] gave a few new char-
acters for those numbers and polynomials got from p-adic
Volkenborn vital on Zp. Recently, Yuankui et al. [6] pre-
sented and contemplated q-analogues of the Catalan-Daehee
numbers and polynomials with the help of p-adic q-integrals
on Zp. �e point of this study is to present q-analogues of
the ru¡an Catalan-Daehee numbers and polynomials by
utilizing p-adic q-essential on Zp and infer a few un-
equivocal characters for those numbers and polynomials
connected with di�erent exceptional numbers and poly-
nomials. For the remainder of this segment, we review the
important realities that are required throughout this study.

Let p be a �xed odd prime number. �roughout this
study, Zp, Qp, and Cp will denote, respectively, the ring of
p-adic integers, the �eld of p-adic rational numbers, and the
completion of the algebraic closure of Qp. �e p-adic norm
| · |p is normalized as using |p|p � 1/p. Let q be an inde-
terminate inCp with |1 − q|p <p− (1/(p− 1)).�e q-analogue of
x is de�ned through [x]q � (1 − qx)/(1 − q). Note that
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limq⟶1[x]q � x. Let f be a uniformly differentiable func-
tion on Zp. (en, the p-adic q-integral on Zp is defined by
Kim as [4, 7]

􏽚
Zp

f(x)dμq(x) � lim
N⟶∞

􏽘

pN− 1

x�0
f(x)μq x + p

N
Zp􏼐 􏼑

� lim
N⟶∞

1
p

N
􏽨 􏽩

q

􏽘

pN− 1

x�0
f(x)q

x
, (see[7, 8]).

(1)

From (1), we note that

q􏽚
Zp

f(x + 1)dμq(x) � 􏽚
Zp

f(x)dμq(x) +(q − 1)f(0)

+
q − 1
log q

f′(0),

(2)

where f′(0) � (df/dx)|x�0 ([7–12]).
Let us take f(x) � ext. By (1), we get

(q − 1) +((q − 1)/log q)t

qe
t

− 1
� 􏽚

Zp

e
xtdμq(x). (3)

(e q-Bernoulli numbers are defined by ([6])

(q − 1) +((q − 1)/log q)t

qe
t

− 1
� 􏽘

∞

n�0
Bn,q

t
n

n!
. (4)

From (4), we note that

q Bq + 1􏼐 􏼑
n

− Bn,q �

q − 1, if n � 0,

q − 1
log q

, if n � 1,

0, if n> 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

with the usual convention about replacing Bn
q by Bn,q.

(e Catalan numbers are defined by the generating
function as follows ([1, 4, 6, 13, 14]):

2
1 +

�����
1 − 4t

√ �
1 −

�����
1 − 4t

√

2t
� 􏽘

∞

n�0
Cnt

n
, (6)

where t ∈ Cp with |t|p <p− (1/p− 1) and

Cn �
2n

n
􏼠 􏼡(1/(n + 1)), (n≥ 0).

(e Catalan polynomials are defined by the generating
function as follows ([4, 13]):

􏽚
Zp

(1 − 4t)
(x+y)/2dμ− 1(y) �

2
1 +

�����
1 − 4t

√ (1 − 4t)
x/2

� 􏽘
∞

n�0
Cn(x)t

n
,

(7)

where t ∈ Cp with |t|p <p− (1/(p− 1)).
When x � 0, Cn � Cn(0) are called the Catalan numbers.

(us, by (6) and (7), we have

Cn(x) � 􏽘
n

m�0
􏽘

m

j�0

x

2
􏼒 􏼓

j

S1(m, j)(− 4)
mCn− m

m!
. (8)

Kim-Kim [2, 3] introduced the Catalan-Daehee poly-
nomials defined by

􏽚
Zp

(1 − 4t)
(x+y)/2dμ(y) �

(1/2)log(1 − 4t)
�����
1 − 4t

√
− 1

(1 − 4t)
x/2

� 􏽘

∞

n�0
dn(x)t

n
.

(9)

When x � 0, dn � dn(0) are called the Catalan-Daehee
numbers.

From (6) and (9), we get

dn �

1, if n � 0,

4n

n + 1
− 􏽘

n− 1

m�0

4n− m− 1

n − m
Cm, if n≥ 1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10)

By using (2), the q-analogues of Catalan-Daehee num-
bers are defined by ([6])

􏽚
Zp

(1 − 4t)
x/2dμq(x) �

q − 1 +((q − 1)/log q)(1/2)log(1 − 4t)

q
�����
1 − 4t

√
− 1

� 􏽘
∞

n�0
dn,qt

n
.

(11)

Note that limq⟶1dn,q � dn, (n≥ 0).
Jeong et al. [15] introduced the degenerate q-Daehee

polynomials defined by

􏽚
Zp

1 + log (1 + λt)
1/λ

􏼐 􏼑
x+y

dμq(y)

�
q − 1 +((q − 1)/log q)log 1 + log (1 + λt)

1/λ
􏼐 􏼑

q − 1 + q log (1 + λt)
1/λ

· 1 + log (1 + λt)
1/λ

􏼐 􏼑
x

� 􏽘
∞

n�0
Dn,q(x|λ)

t
n

n!
.

(12)

In the case when x � 0,Dn,q(λ) � Dn,q(0|λ) are called the
degenerate q-Daehee numbers.

Note that

lim
λ⟶0

Dn,q(x|λ) � Dn,q(x), (n≥ 0). (13)

For n≥ 0, the Stirling numbers of the first kind are
defined by ([4, 5, 8, 9, 13, 15, 16])

(x)n � 􏽘
n

l�0
S1(n, l)x

l
, (14)
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where (x)0 � 1, and (x)n � x(x − 1) · · · (x − n + 1), (n≥ 1).
From (14), it is easy to see that ([1–3, 7, 10, 14, 17, 18])

1
l!

(log(1 + t))
l

� 􏽘
∞

n�l

S1(n, l)
t
n

n!
. (15)

For n≥ 0, the Stirling numbers of the second kind are
defined by ([6, 11, 12, 18–22])

x
n

� 􏽘
n

l�0
S2(n, l)(x)l. (16)

From (16), we see that

1
l!

e
t

− 1􏼐 􏼑
l

� 􏽘
∞

n�l

S2(n, l)
t
n

n!
. (17)

2. The q-Analogues of Degenerate Catalan-
Daehee Numbers and Polynomials

In this section, we introduce q-analogues of degenerate
Catalan-Daehee numbers which are derived from the fer-
mionic p-adic q-integral on Zp. First, we present the fol-
lowing definition.

For λ, t, q ∈ Cp with |1 − q|p < 1 and |λt|<p− (1/(p− 1)),
(1 + λt)x/λ � e(x/λ)log(1+λt). Now, we define the q-analogue of
degenerate Catalan-Daehee numbers which are given by the
generating function

􏽚
Zp

1 − 4 log (1 + λt)
1/λ

􏼐 􏼑
x/2

dμq(x) �
q − 1 +((q − 1)/log q)(1/2)log 1 − 4 log (1 + λt)

1/λ
􏼐 􏼑

q

�����������������

1 − 4 log (1 + λt)
1/λ

􏽱

− 1

� 􏽘
∞

n�0
dn,λ,qt

n
.

(18)

Note that [13]

lim
λ⟶0

dn,λ,q � dn,q, (n≥ 0)(see[6]). (19)

From (6) and (18), we have

􏽘

∞

n�0
dn,λ,qt

n
�
1
2

2(q − 1) +((q − 1)/log q)log 1 − 4 log (1 + λt)
1/λ

􏼐 􏼑

q
2 1 − 4 log (1 + λt)

1/λ
􏼐 􏼑 − 1

⎛⎝ ⎞⎠ q

������������������

1 − 4 log (1 + λt)
1/λ

􏼐 􏼑

􏽱

+ 1􏼒 􏼓

�
1
2

􏽘

∞

l�0
(− 4)

l
Dl,q(0|λ)

t
l

l!
⎛⎝ ⎞⎠ 1 + q − 2q 􏽘

∞

m�0
Cm,λt

m+1⎛⎝ ⎞⎠

�
[2]q

2
􏽘

∞

n�0
(− 4)

n
Dn,q(0|λ)

n!
t
n

− q 􏽘
∞

n�1
􏽘

n− 1

m�0

(− 4)
n− m− 1

(n − m − 1)!
Dn− m− 1,q(0|λ)Cm,λ

⎛⎝ ⎞⎠t
n

� 1 + 􏽘
∞

n�1

[2]q

2
(− 4)

n

n!
Dn,q(0|λ)t

n
− q 􏽘
∞

n�1
􏽘

n− 1

m�0

(− 4)
n− m− 1

(n − m − 1)!
Dn− m− 1,q(0|λ)Cm,λ

⎛⎝ ⎞⎠t
n

� 1 + 􏽘
∞

n�1

[2]q

2
(− 4)

n

n!
Dn,q(0|λ) − q 􏽘

n− 1

m�0

(− 4)
n− m− 1

(n − m − 1)!
Dn− m− 1,q(0|λ)Cm,λ

⎛⎝ ⎞⎠t
n
.

(20)

(erefore, by comparing the coefficients on both sides of
(20), we obtain the following theorem.
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Theorem 1. For n≥ 0, we have

dn,λ,q �

1, if n � 0,

[2]q

2
(− 4)

n

n!
Dn,q(0|λ) − q 􏽘

n− 1

m�0

(− 4)
n− m− 1

(n − m − 1)!
Dn− m− 1,q(0|λ)Cm,λ, if n≥ 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(21)

By (18), we note that

􏽚
Zp

1 − 4 log (1 + λt)
1/λ

􏼐 􏼑
x/2

dμq(x) � 􏽘

∞

m�0
􏽚
Zp

x
mdμq(x)

1
2m

1
m!

− 4 log (1 + λt)
1/λ

􏼐 􏼑
m

� 􏽘

∞

m�0
Bm,q(− 2)

mλn− m
􏽘

∞

n�m

S1(n, m)
t
n

n!

� 􏽘
∞

n�0
􏽘

n

m�0
Bm,q(− 2)

mλn− m
S1(n, m)⎛⎝ ⎞⎠

t
n

n!
.

(22)

(erefore, by (18) and (22), we obtain the following
theorem.

Theorem 2. For n≥ 0, we have

dn,λ,q �
(− 1)

m

n!
􏽘

n

m�0
Bm,q2

mλn− m
S1(n, m). (23)

On replacing t by (1/λ)(eλt − 1) in (18), we have

􏽚
Zp

(1 − 4t)
x/2dμq(x) � 􏽘

∞

m�0
dm,λ,qm!

(1/λ) e
λt

− 1􏽨 􏽩􏼐 􏼑
m

m!

� 􏽘
∞

m�0
dm,λ,qλ

− m
m! 􏽘
∞

n�m

S2(n, m)λnt
n

n!

� 􏽘
∞

n�0
􏽘

n

m�0
dm,λ,qλ

n− m
m!S2(n, m)⎛⎝ ⎞⎠

t
n

n!
.

(24)

On the other hand,

􏽚
Zp

(1 − 4t)
x/2dμq(x)

�
q − 1 +((q − 1)/log q)(1/2)log(1 − 4t)

q
�����
1 − 4t

√
− 1

� 􏽘

∞

n�0
dn,qt

n
.

(25)

(erefore, by (24) and (25), we obtain the following
theorem.

Theorem 3. For n≥ 0, we have

dn,q � 􏽘
n

m�0
dm,λ,qλ

n− m
S2(n, m)

m!

n!
,

􏽘

n

m�0
(− 1)

n22n− m
Bm,qS1(n, m) � 􏽘

n

m�0
dm,λ,qλ

n− m
S2(n, m)m!.

(26)

From (18), we observe that

􏽚
Zp

1 − 4 log (1 + λt)
1/λ

􏼐 􏼑
x/2

dμq(x) � 􏽘

∞

m�0
(− 1)

m4m
􏽚
Zp

x

2

m

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠dμq(x)
log (1 + λt)

1/λ
􏽨 􏽩

m

m!

� 􏽘

∞

m�0
dm,q(− 1)

m4mλn− m
􏽘

∞

n�m

S1(n, m)
t
n

n!

� 􏽘

∞

n�0
􏽘

n

m�0
dm,q(− 1)

m4mλn− m
S1(n, m)⎛⎝ ⎞⎠

t
n

n!
.

(27)
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(erefore, by (18) and (27), we get the following
theorem.

Theorem 4. For n≥ 0, we have

dn,λ,q �
1
n!

􏽘

n

m�0
dm(− 1)

m4mλn− m
S1(n, m). (28)

For λ, t, q ∈ Cp with |1 − q|p < 1 and |λt|<p− (1/(p− 1)).
(e q-analogue of λ-Daehee polynomials Dn,λ,q(x) are de-
fined by the following generating function ([6]):

􏽚
Zp

(1 + t)
λy+xdμq(y) �

q − 1 + λ((q − 1)/log q)log(1 + t)

q(1 + t)
λ

− 1

· (1 + t)
x

� 􏽘
∞

n�0
Dn,λ,q(x)

t
n

n!
.

(29)

When x � 0, Dn,λ,q � Dn,λ,q(0) are called the q-analogue
of λ-Daehee numbers.

On setting λ � 1/2 and t⟶ − 4 log (1 + λt)1/λ in (29),
we have

􏽚
Zp

1 − 4 log (1 + λt)
1/λ

􏼐 􏼑
x/2

dμq(x)

� 􏽘
∞

m�0
Dm,(1/2),q

− 4 log (1 + λt)
1/λ

􏼐 􏼑
m

m!

� 􏽘
∞

m�0
Dm,(1/2),q(− 4)

mλ− m
􏽘

∞

n�m

S1(n, m)
λn

t
n

n!

� 􏽘
∞

n�0
􏽘

n

m�0
Dm,(1/2),qλ

n− m
S1(n, m)

(− 4)
m

n!
⎛⎝ ⎞⎠t

n
.

(30)

(erefore, by (18) and (30), we obtain the following
theorem.

Theorem 5. For n≥ 0, we have

dn,λ,q � 􏽘

n

m�0
Dm,(1/2),qλ

n− m
S1(n, m)

(− 4)
m

n!
,

􏽘

n

m�0
(− 1)

m
Bm,q2

mλn− m
S1(n, m) � 􏽘

n

m�0
Dm,(1/2),qλ

n− m
S1(n, m)(− 4)

m
.

(31)

By replacing t by log (1 + λt)1/λ in (11), we get

q − 1 +((q − 1)/log q)(1/2)log 1 − 4 log (1 + λt)
1/λ

􏼐 􏼑

q

�����������������

1 − 4 log (1 + λt)
1/λ

􏽱

− 1
� 􏽘
∞

m�0
dm,qm!

log (1 + λt)
1/λ

􏽨 􏽩
m

m!

� 􏽘
∞

m�0
dm,qλ

− m
m!

(log(1 + λt))
m

m!

� 􏽘
∞

m�0
dm,qλ

− m
m! 􏽘
∞

n�m

S1(n, m)
λn

t
n

n!

� 􏽘
∞

n�0
􏽘

n

m�0
dm,qλ

n− m
m!S1(n, m)⎛⎝ ⎞⎠

t
n

n!
.

(32)

(erefore, by (18) and (32), we get the following
theorem.

Theorem 6. For n≥ 0, we have

dn,λ,q � 􏽘
n

m�0
dm,qλ

n− m
m!S1(n, m)

m!

n!
. (33)

Now, we observe that
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1 − 4 log (1 + λt)
1/λ

􏼐 􏼑
x/2

� 􏽘
∞

m�0

x

2
􏼒 􏼓

m

(− 1)
m4m

log (1 + λt)
1/λ

􏽨 􏽩
m

m!

� 􏽘
∞

m�0

x

2
􏼒 􏼓

m

λ− m
(− 1)

m4m
􏽘

∞

n�m

S1(n, m)
λn

t
n

n!

� 􏽘
∞

n�0
􏽘

n

m�0

x

2
􏼒 􏼓

m

λn− m
(− 1)

m4m
S1(n, m)⎛⎝ ⎞⎠

t
n

n!
.

(34)

Now, we consider the q-analogue of degenerate Catalan-
Daehee polynomials which are given by the following
generating function:

􏽚
Zp

1 − 4 log (1 + λt)
1/λ

􏼐 􏼑
(x+y)/2

dμq(y) �
q − 1 +((q − 1)/log q)(1/2)log 1 − 4 log (1 + λt)

1/λ
􏼐 􏼑

q

�����������������

1 − 4 log (1 + λt)
1/λ

􏽱

− 1
1 − 4 log (1 + λt)

1/λ
􏼐 􏼑

x/2

� 􏽘
∞

n�0
dn,λ,q(x)t

n
.

(35)

When x � 0, dn,λ,q � dn,λ,q(0) are called the q-analogue
of degenerate Catalan-Daehee numbers.

From (35), we note that

q − 1 +((q − 1)/log q)(1/2)log 1 − 4 log (1 + λt)
1/λ

􏼐 􏼑

q

�����������������

1 − 4 log (1 + λt)
1/λ

􏽱

− 1
1 − 4 log (1 + λt)

1/λ
􏼐 􏼑

x/2

� 􏽘
∞

n�0
dn,λ,qt

n⎛⎝ ⎞⎠ 􏽘

∞

m�0

x

2

m

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠(− 1)

m22m
m!

log (1 + λt)
1/λ

􏼐 􏼑
m

m!

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 􏽘
∞

n�0
dn,λ,qt

n⎛⎝ ⎞⎠ 􏽘

∞

m�0

x

2

m

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠(− 1)

m22mλ− m
m! 􏽘
∞

l�m

S1(l, m)
λl

t
l

l!

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 􏽘
∞

n�0
dn,λ,qt

n⎛⎝ ⎞⎠ 􏽘

∞

l�0
􏽘

l

m�0

x

2

m

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠(− 1)

m22mλl− m
m!S1(l, m)

t
l

l!

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 􏽘
∞

n�0
􏽘

n

l�0
􏽘

l

m�0

x

2

m

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠(− 1)

m22mλl− m
S1(l, m)dn− l,λ,q

m!

l!

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠t

n
.

(36)

By (35) and (36), we obtain the following theorem. Theorem 7. For n≥ 0, we have
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dn,λ,q(x) � 􏽘
n

l�0
􏽘

l

m�0

x

2

m

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠(− 1)

m22mλl− m
S1(l, m)dn− l,λ,q

m!

l!
. (37)

From (35), we see that

􏽘

∞

n�0
dn,λ,q(x)t

n
�

q − 1 +((q − 1)/log q)(1/2)log 1 − 4 log (1 + λt)
1/λ

􏼐 􏼑

q

�����������������

1 − 4 log (1 + λt)
1/λ

􏽱

− 1
1 − 4 log (1 + λt)

1/λ
􏼐 􏼑

x/2

� 􏽘

∞

n�0
dn,λ,qt

n⎛⎝ ⎞⎠ 􏽘

∞

k�0
􏽘

k

m�0

x

2
􏼒 􏼓

m

λk− m
(− 1)

m4m
S1(k, m)⎛⎝ ⎞⎠

t
k

k!
⎛⎝ ⎞⎠

� 􏽘
∞

n�0
􏽘

n

k�0
􏽘

k

m�0

x

2
􏼒 􏼓

m

λk− m
S1(k, m)(− 1)

m4m
dn− k,λ,q

1
k!

⎛⎝ ⎞⎠t
n
.

(38)

(erefore, by (38), we obtain the following theorem.

Theorem 8. For n≥ 0, we have

dn,q,λ(x) � 􏽘
n

k�0
􏽘

k

m�0

x

2
􏼒 􏼓

m

λk− m
(− 1)

m4m
S1(k, m)dn− k,λ,q

1
k!

.

(39)

On replacing t by (1/λ)eλt − 1 in (35), we define q-an-
alogue Catalan polynomials are given by

􏽚
Zp

(1 − 4t)
(x+y)/2dμq(y) �

q − 1 +((q − 1)/log q)(1/2)log(1 − 4t)

q
�����
1 − 4t

√
− 1

��������

(1 − 4t)
x

􏽱

� 􏽘
∞

n�0
dn,q(x)t

n
. (40)

On the other hand,

􏽘

∞

m�0
dm,λ,q(x)m!

(1/λ)e
λt

− 1􏼐 􏼑
m

m!
� 􏽘

∞

m�0
dm,λ,q(x)m!λ− m

􏽘

∞

n�m

S1(n, m)
λn

t
n

n!

� 􏽘
∞

n�0
􏽘

n

m�0
dm,λ,q(x)λn− m

S1(n, m)m!⎛⎝ ⎞⎠
t
n

n!
.

(41)

(erefore, by (40) and (41), we state the following
theorem.

Theorem 9. For n≥ 0, we have

dn,q(x) � 􏽘
n

m�0
dm,λ,q(x)λn− m

S1(n, m)
m!

n!
. (42)

From (35), we have
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q − 1 +((q − 1)/log q)(1/2)log 1 − 4 log (1 + λt)
1/λ

􏼐 􏼑

q

�����������������

1 − 4 log (1 + λt)
1/λ

􏽱

− 1
1 − 4 log (1 + λt)

1/λ
􏼐 􏼑

x

2

� 􏽚
Zp

1 − 4 log (1 + λt)
1/λ

􏼐 􏼑
(x+y)/2

dμq(y)

� 􏽘
∞

m�0
2− m 1

m!
− 4 log (1 + λt)

1/λ
􏼐 􏼑

m
􏽚
Zp

(x + y)
mdμq(y)

� 􏽘
∞

m�0
2m

(− 1)
m

Bm,q(x)λ− m
􏽘

∞

n�m

S1(n, m)
λn

t
n

n!

� 􏽘
∞

n�0
􏽘

n

m�0
2m

(− 1)
m

Bm,q(x)λn− m
S1(n, m)

1
n!

⎛⎝ ⎞⎠t
n
.

(43)

(us, by (35) and (43), we get the following theorem.

Theorem 10. For n≥ 0, we have

dn,λ,q(x) � 􏽘
n

m�0
2m

(− 1)
m

Bm(x)λn− m
S1(n, m)

1
n!

. (44)

Replacing t by (e− (λt/4) − 1)/λ in (35), we get

􏽚
Zp

(1 + t)
(x+y)/2dμq(y) � 􏽘

∞

n�0
2− n

􏽚
Zp

(x + y)
ndμq(y)

t
n

n!
.

(45)

On the other hand, we have

􏽘

∞

m�0
dm,λ,q(x)m!

e
− (λt/4)

− 1􏼐 􏼑/λ􏼐 􏼑
m

m!
� 􏽘
∞

m�0
dm,q,λ(x)m!λ− m

􏽘

∞

n�m

S2(n, m)
(− 4)

nλn
t
n

n!

� 􏽘
∞

n�0
􏽘

n

m�0
dm,λ,q(x)m!λn− m

(− 1)
n4n

S2(n, m)
t
n

n!
.

(46)

(erefore, by (45) and (46), we obtain the following
theorem.

Theorem 11. For n≥ 0, we have

􏽚
Zp

(x + y)
ndμq(y) � (− 2)

n
􏽘

n

m�0
dm,λ,q(x)m!λn− m

S2(n, m).

(47)

3. Conclusion

By utilizing various apparatuses, many unique numbers
and polynomials have been concentrated. Beforehand, the
Catalan-Daehee numbers and polynomials were presented
through p-adic Volkenborn, and a few intriguing outcomes
for them were obtained by utilizing creating capacities,
differential conditions, umbral math, and p-adic Volken-
born integrals. In this study, we presented degenerate
q-analogues of the Catalan-Daehee numbers and

polynomials and acquired a few unequivocal articulations
and personalities connected with them. In more detail, we
communicated the Catalan-Daehee numbers as far as
ruffian q-Daehee numbers and the q-Bernoulli polynomials
and Stirling quantities of the primary kind. We acquired a
personality, including q-Bernoulli numbers, degenerate
q-Catalan-Daehee numbers, and Stirling quantities of the
subsequent kind. Likewise, we got an unequivocal articu-
lation for the ruffian q-analogues of Catalan-Daehee
polynomials, which include the savage q-analogues of
Catalan-Daehee numbers and Stirling quantities of the
primary kind.
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