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To make a fuzzy value more reliable, Zadeh presented the notion of Z-number, which reflects a fuzzy value related to its reliability
measure. Since linguistic expression conforms to human thinking habits, linguistic neutrosophic decision-making is one of the
key research topics in linguistic indeterminate and inconsistent setting. In order to ensure the reliability of multiattribute group
decision-making (MAGDM) problems in the linguistic environment of truth, falsehood, and indeterminacy, we require a new
linguistic neutrosophic framework that combines the decision-maker’s linguistic neutrosophic judgment with its reliability
measure. Inspired by the linguistic Z-numbers of the truth, falsehood, and indeterminacy, this article first proposes a linguistic
neutrosophic Z-number (LNZN) to make the truth, falsehood, and indeterminacy linguistic values more reliable. Then, we define
the operational relations, score and accuracy functions, and sorting laws of LNZNs. Next, we establish the LNZN weighted
arithmetic mean (LNZNWAM) and LNZN weighted geometric mean (LNZNWGM) operators and indicate their properties.
Furthermore, an MAGDM approach is developed based on the two aggregation operators and the score and accuracy functions of
LNZNs in the LNZN setting. Lastly, an MAGDM example of industrial robot selection and comparison with existing related
methods are provided to verify the applicability and efficiency of the developed MAGDM method in the setting of LNZNs. In
general, the developed MAGDM approach not only makes the MAGDM information more reliable but also solves MAGDM

problems under the environment of LNZNGs.

1. Introduction

Decision-making is a hotspot of current research problems.
It is very significant to establish reasonable information
representation and decision-making models. Linguistic
representation may be more suitable for human thinking
habits, especially reflecting its advantages in qualitative
assessment of complex objective things. In this case, lin-
guistic decision-making indicates its importance. Thus,
linguistic multiattribute (group) decision-making (MADM/
MAGDM) research has attracted the attention of many
researchers in the past few decades. Since Zadeh [1] first
introduced the concept of linguistic variables, various lin-
guistic MADM/MAGDM methods have been utilized to
solve various decision-making problems [2-5]. In terms of
a membership/truth linguistic variable and

a nonmembership/falsity linguistic variable, Chen et al. [6]
proposed linguistic intuitionistic fuzzy numbers (LIFNs)
and used them for MAGDM problems. Then, Yager [7]
presented the ordinal LIFN aggregation operators, and
Zhang et al. [8] used LIFNs to indicate the preferred and
nonpreferred qualitative judgments of decision-makers in
linguistic MADM problems. Next, some LIFN aggregation
operators and their decision-making approaches [9-11] have
been proposed and applied in MADM issues with LIFN
information. Regarding the truth, falsehood, and in-
determinacy linguistic variables, Fang and Ye [12] defined
linguistic neutrosophic numbers (LNNs) and their opera-
tions; then, they presented the LNN weighted arithmetic and
geometric mean operators and their MAGDM approach to
solve MAGDM issues with LNN information. After that,
various aggregation operators of LNNs and their MAGDM
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methods [12-16] have been applied in MAGDM issues with
LNNs.

However, LIEN is a special case of LNN. LNN can de-
scribe indeterminacy and inconsistent linguistic information
as its highlighting advantage, while LIFN cannot do it. More
recently, according to the conceptual generalization of Z-
numbers [18], Ding et al. [19] presented the linguistic Z-
number QUALIFLEX (Qualitative Flexible Multiple Crite-
ria) method for MAGDM. Next, Du et al. and Ye proposed
neutrosophic Z-numbers (NZNs), their weighted arithmetic
and geometric mean operators [20], and their similarity
measures [21] and then applied them to MADM problems in
the environment of NZNs. Yong et al. [22] presented
trapezoidal neutrosophic Z-numbers and their weighted
arithmetic and geometric mean operators for MADM issues
with trapezoidal NZNs. Although NZN and trapezoidal
NZN contain the information of the truth, falsehood, and
indeterminacy Z-numbers, they cannot represent LNN in-
formation. Furthermore, existing LNN lacks the reliability
measure of the truth, falsehood, and indeterminacy lin-
guistic values, which shows its flaw. To make up for this flaw,
we should introduce the reliability measure to the truth,
falsehood, and indeterminacy linguistic values in LNN,
propose a linguistic neutrosophic Z-number (LNZN) so as
to strengthen the reliability of LNN, and then present some
operations and sorting laws of LNZNs to solve MAGDM
issues with the information of LNZNs. Therefore, this study
aims (a) to propose LNZNs and their operational relations,
(b) to define the score and accuracy functions and sorting
laws of LNZNss, (c) to establish LNZN weighted arithmetic
mean (LNZNWAM) and LNZN weighted geometric mean
(LNZNWGM) operators, (d) to develop an MAGDM ap-
proach by using the LNZNWAM and LNZNWGM opera-
tors and score and accuracy functions of LNZNs, and (e) to
apply the developed MAGDM approach to an MAGDM
problem of industrial robot selection in the environment of
LNZNs.

Generally, the critical contributions of this original study
are summarized as follows:

(a) The new notion of LNZN proposed in terms of
linguistic Z-numbers of the truth, falsehood, and
indeterminacy can make the linguistic values more
reliable

(b) The defined operational relations, score and accuracy
functions, and sorting laws of LNZNs and the
proposed LNZNWAM and LNZNWGM operators
provide the necessary mathematical tools for mod-
eling of MAGDM issues in the setting of LNZNs
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(c) The proposed MAGDM approach can solve

MAGDM issues with LNZNs

(d) The proposed MAGDM method can efliciently
handle the MAGDM problem of industrial robot
selection in the LNZN setting and show its usability

The rest of this study is composed of the following
structures: in Section 2, some basic concepts of LNNs are
reviewed as preliminaries of this study. Section 3 proposes
LNZNs and their operational relations, score and accuracy
functions, and sorting laws. Section 4 develops the
LNZNWAM and LNZNWGM operators and indicates their
properties. In Section 5, an MAGDM approach is developed
using the LNZNWAM and LNZNWGM operators and score
and accuracy functions to carry out MAGDM issues in the
LNZN environment. Section 6 applies the developed
MAGDM approach to an MAGDM example of industrial
robot selection for a manufacturing company under the
environment of LNZNs and then presents a comparison
with existing related MAGDM methods to reflect the effi-
ciency of the developed approach. Lastly, conclusions and
future research are indicated in Section 7.

2. Preliminaries of LNNs

Set U={6y, 1, . . ., §,} as a linguistic term set (LTS) with odd
cardinality v+ 1. Fang and Ye [12] first defined the LNN
le=<dp, 8, 8> on U such that 8p, 6, peUand T, I, F €
[0, v], where 07, 81, and 8 express the truth, indeterminacy,
and falsehood linguistic variables, respectively.

Regarding two LNNs le; = <8T(1),5,(1), 6F(1)> and le, =
<6T(2),61(2),8F(2)> on U and any real number p >0, the
following operational relations [12] are defined as follows:

@) ley®le, = <8T(1)>8I(1)’6F(1)>$<6T(2)’61( )a5F(z)> =

T()+T Q)=T ()T (2w OT()I (2)1v> F(I)F(Z)/v§

(ii) le,; ®le, =

é‘ST(n’ 811 Or(1)) ® {Or 2 012 Or () =

T ()T @) OT()+1(2)-T () 21> F(1)+F(2)—F(1)F(2)/v>

(iii) p-le, = p- <8T(1)’6I(1)>6F(1)>
51/(1(1)/1/)}” (Sv(F(l)/v)/J

(iv) lef = 5T(1)a51(1)>5F(1)>P = <6v(T(1)/v)P’
(D), 6,y (1= Fymyr

= <61/7V(17T(1)/V)P’
61/—1/(1—1

Regarding a series of LNNs lex = <&rk), 01k Op(> with
their weights px (k=1, 2, ..., n) for p,€[0, 1] and Y},
Pr =1, the LNN weighted arithmetic mean (LNNWAM)
and LNN weighted geometric mean (LNNWGM) operators
[12] are proposed as follows:

n
LNNWAM (le,,le,,...,le, ) = e, =( 6 n , 0 1n 1
(ley,le, n) ];Pk k < v [Te, a=Twm ST, (I(k)/v)Pk,SvH:=] (F(k)/v)Pk>) (1)

n
LNNWGM (le,,le,,...,le,) = | |lef* ={ & {4n 2
(ley, ley ") E €k [T (T(k)mPk,(SHH::l (=T, & 2)

v—v[ o, (- F(k)/v)Pk>.
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Then, Fang and Ye [12] defined the score and accuracy
functions of lek = <8T(k)a 8I(k)’ 8F(k)>:
_ (2v+T (k) - I(k) - F(k))

D(le) = Gley) ,

for D(le,) € [0,1],
(3)

(T (k) - F(k))

E (lek) = lek

, forE(le,) € [-1,1]. (4)

Regarding two LNNs, le, = <8T(1),51(1),8F(1)> and
le, = (07 () 81(2>,8F(2)>, their sorting laws [12] are defined
as follows:

(1) lel > lez if D(lel) >D(l€2)
(ii) le; > le, if D(le;) = D(le,) and E(le;) > E(le,)
(iii) le, = le, if D(le;) = D(le,) and E(le;) = E(le,)

3.LNZNs

To make LNN more reliable, this section proposes LNZNs in
terms of the truth, falsehood, and indeterminacy Z-numbers
and then defines the operational relations, score and ac-
curacy functions, and sorting laws of LNZNs.

Definition 1. Set U={dp, Jy, ..., v} as LTS with odd car-
dinality v+1. Then, LNZN on U'is defined as Iz = <(r1, Sa7)s
(Orp Op1)s (Ore Oair)> for Orrs Srps Ores Snirs O Opgr € Uand
RT, RI, RF, MT, MI, MF € [0, v], where (Ogy, Ops7) is the truth
linguistic Z-number that combines the truth linguistic term
value §pr with the linguistic reliability measure ;7 for Spr
specified from the LTS U; (8r;, Oa) is the indeterminacy
linguistic Z-number that combines the indeterminacy lin-
guistic term value &g; with the linguistic reliability measure
Oy for Ory specified from the LTS U; (Srp Oar) is the

(2v2+RT><MT—RI><MI—RF><MF)

falsehood linguistic Z-number that combines the falsity
linguistic term value &gr with the linguistic reliability
measure 8 for dxr specified from the LTS U.

Definition 2. Let two LNZNs be lzx = <(Or1(k)s Omrin))s
(Oriky> Smak)s (Oreky Omr)> (k=1,2) on U and any real
number p > 0. Then, their operational relations are defined as
follows:

(1) L2181z, = (B 1 Sir ) BOrrcry Orar ) ey Onar (1)) B B nar ) Brr 2 Svtr ) B o Oaira)))

= (@Brr(yerr@-&T (ORT @y ST 1y s07 )M ymr @) Grr 1 @y Sar onr i) (Ore rE @ Ovr M),

) GricySaarcnh Grryduir)) {6

(ii) e
={Brrayrr

i) GrrpOuir)
R R e —— )

Oty (Brr(1yerr (21-rF
(1111) p-lz :P<(8RT(1)’8MT(1))) (Ori 1) Oy (5Rr(1)v5Mrm)>
= (8v7v(17RT(l)/v)"’Sva(lfM'l‘(l)/v)p)’ (BL'(RI(l)/\/)P’Bv[ﬁ\dl(l)/u)f”)’ (5V(R1-(1)/‘/)%6u(M}-‘(1)/v)f)>
(IV) 125 = ((Brr (1> Snar (1)) (Orrays Saar 1y (O (1ys Saar 1)
= (@umrymm Soaraym?» Grvi=riaume Sovti-mr ) GumvrrE QP Srmvioatr )

Clearly, the above operational results are still LNZNs.

Example 1. Set two LNZNs as Iz; = <(8s, 87), (62, 86), (03, 67)
> and Iz, = <(87, 87), (82, 05), (83, 86)> on U= {0, 0y, . . ., Og}
with v=28 and p = 0.6. Then, based on the above operational
relations, one obtains their operational results:

(1) t=ie = (Crromremonren
BT S

o

. 4 v
(11) Iz, 81z, = < (Srr(vrr 2y

St ysmr e M apr e Grr ey Sy Creayreeim Suramran))
(B Orxsin)) = (87758, 205750 (811250 8525))

> Satr (e @-mr M)
-ME(DME @)l

mramrn)s Orieri@)-RIR
(ORp(1)+REQ)-RERE @ OMF (s

= (Borziss 7us)s (O3.2-20218 Os5-6x578)s (O3.3-3x378 Or16-7x618)) = (8525 9.125)s (8355 87250 (4575 8775))
(. . ) plzy = (B rrymrs Suevii-mrymyr)s Gyriymrs Svamarwmy)s Oyreymes Svanr ymye)
m) - é(ﬁs 8(1-697% 955171870 (Fg s Ty 92 )> (Bg s Oy o)
B (845178 05.7026)> (9545220 06.7317)> (05 413> O7.3841)
(IV) lzy = dav(RT(l)/v)"’5‘/1MTU)/V}'")) Oy 1= REMPs Ovv1- MIWP ) (‘;wufkrm/v)’)5m(17.wmrv)r)>

= (g ess> T 71804 (Bgg1-21806 Os-s1-619)7)> (T (13780 g1 7¢)
= (867317 07.3801)> (81 2683 Oy 5178)> (819655 5 7026

To compare LNZNs, we can present the score and ac-
curacy functions and sorting laws of LNZNs.

Definition 3. Set LNZN as Iz = <(8r1> Oprr)s (Orp Oan)> (Orp
Sar)> on U. Then, the score and accuracy functions of Iz are
presented as follows:

Y (lz) =

(3)

(RT x MT - RF x MF)

2 >
14

Z(lz) =

Definition 4. Set two LNZNs as Iz = <(8rr(k)> Onrci))> (Orici)s
Onrk))> (OrF(k)» Omr(ry)> for k=1, 2 on U. Then, their sorting
laws are defined as follows:

(1) 1z; > 1z, if Y(Iz;) > Y(lz,)
(ii) Iz; > 1z, if Y(Iz,) = Y(z,) and Z(lz,) > Z(1z,)
(iii) 1z, =1z, If Y(Iz,) =Y(z,) and Z(1z,) = Z(1z,)

Example 2. Set three LNZNs as Iz, = <(J¢, 06), (83, 67), (85,
06)>, Iz, = <(8¢, 86)s (83, J6), (83, 87)>, and Iz3 = <(87, J6), (83,
87), (83, 65)> on U={dp, &, ..., 8} with v=8. Then, by
equations (5) and (6), the values of their score and accuracy
functions are yielded as follows: Y(lz;) = (2 x 82 +6x6-3x%
7 -3x%x6)/192=0.651, Y(lzz)=(2><82+6><6—3 X6—-3x%x7)/
192=0.651, and Y(lz3) = 2x8+7 X 6-3 x 7—3 x 5)/

, forY(lz) € [0,1], (5)

for Z(lz) € [-1,1]. (6)

192=0.6979; Z(lz;) = (6 x 6 —3 X 6)/64 =0.2813 and Z(Iz,) =
(6 x 6—3 x 7)/64=0.2344.

According to the sorting laws in Definition 4, their
sorting order is lz3 > Iz; > Iz,.

4.LINZNWAM and LNZNWGM Operators
4.1. LNZNWAM Operator

Definition 5. Set lzx = <(8rry Omrn)s (Oriky Omrcry)>
(OrE() Omrgy)> (k=1,2, ..., n) as a series of LNZNs on U.
Then, the LNZNWAM operator can be defined as

LNZNWAM (Izy, 12y, . . ., 12,) = Y. py - Iz, (7)
k=1



where py is the weight of Iz (k=1, 2, .. ., n) for p; € [0, 1] and
Yo P = L.

Thus, the following theorem can be presented corre-
sponding to the operational relations in Definition 2 and
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Theorem 1. Set Iz = <(Srra) Snari))s (Oricry Snariy)s (Orrcicy
Omrr)> (k=1,2, ..., n)as aseries of LNZNs on U. Then, the
aggregation result yielded by equation (7) is also LNZN, which
is calculated by the following equation:

equation (7).

LNZNWAM (Iz,,12,,. .., 1z,) = Y. py - Iz,

k=1
=< (S n ,8 n >
v [ ] (= RT ()™ e [ T (1= MT (k)/v)P
k=1 k=1
8 8 |6 n 6 >
T RIGMPE T (MI()iv)Ps [T RE ()P o] T (MF (k)/v)™
k=1 k=1 k=1 k=1

(8)

where py. is the weight of Izi. (k=1, 2, . ., n) for px € [0, 1] and
Yra Pk =1

Proof

(1) Set n=2. By the operational relations in Definition 2,

In the following, Theorem 1 can be verified by means of there is the following result

mathematical induction.

LNZNWAM (Iz,,1z,) = p, - Iz,@p, - Iz,

L

< 5v-v(1- RT (1)/v)PL+v=v (1= RT (2)/v)P2=(v-v (1= RT (1)/q)** ) (v=v (1= RT (2)/v)?2 ) /v» )

)

< O,y (1= RT (1)W1 +v-v (1 RT ()/9)P2~(v=v(1- RT (1)/v)? v (1~ RT )W) +v(1- RT ()™ (1~ RT ))?2 ) >
5 >

8v—v(l—MT(1)/v)p‘ +v=v(1- MT (2)/v)F2 —(V—v(l—MT(l)/v)p‘ ) (v—v(l— MT (2)/v)P2 )/v

(SV(RI(I)/V)‘”] (RI(2)/v)P2> 6V(MI(1)/V)P1 (MI(2)/1/)P2)’ (6V(RF(1)/V)P1 (RFE (2)/v)P2> (sv(MF(l)/v)”1 (MF(Z)/V)PZ)

v—v(1- MT (1)/v)P1 +V—‘V(1—MT(Z)/V)PZ—(‘V—V(I—MT(I)/V)PI v (1= MT (2)/v)P2 +v(1- MT (1)/v)*1 (I—MT(Z)/‘V)PZ)

(5v(RI(1)/v)P1 RIQ@)72> Ov (M (1w (MI(Z)/V)PZ)’ (5v(RF(1)/v)P1 (RE(2))P2s Ou (ME (1)m)P1 (MF(z)/v)PZ)

< (51/—\/(1— RT ()W) (1— RT(2))?2> Ovey (1= MT ()W) (1- MT (2)/n)?2 )’ (8V(RI (WP (R O (MI (1)1 (MI (2)/)P2 )’ >

(5v(RF<1)/v)P1 (RE))P2> Ou(ME (1w (MF(z)/v)Pz)

6 2 ,6 2 > 8 2 ,8 2 Py
v [T = RT(R)m)P v [ ] (1= MT (k)/v)* T @RIGMP o] T (MI(Rk)/w)P
< k=1 k=1 k=1 k=1
5, 8
[T REG)mWP VT (MF (e)iv)
k=1 k=1

(9)
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(2) Set n=m. Equation (8) can keep the following result:

LNZNWAM (Izy,lz,, .. .,lz,,) = Z Pi - Iz
k=1

(|o & 8
v [ T (1= RT (k)1v)™
k=1

>

v—vﬁ (1 - MT(k)/V)pk
k=1

8 m 5 8 m 5 8 m 5 8 m >
T ®RIGmP T @artomy? |\ o] T REG)w)P o] | (MF (k)/v)
k=1 k=1 k=1 k=1
(10)
(3) Set n=m+ 1. By equations (9) and (10), the opera-
tional result is given as follows:
LNZNWAM (Iz},1z,, . . ., 12,,12,,,,) = Zx Pr 12®P i - 12,0
k=
l 6 m m >
v [T (1= RT(R))P* +v=v(1 = RT (m + D)/w)P - <vf v[Ja- RT(k)/v)"k>(v— v(1 = RT (m + 1)/v)P=1)/v
k=1 k=1
8 m 13 i
7< v [T (1= MT (W)™ +v=v(1 = MT (m+ 1)/v)P - (v— v[Ta- MT(k)/v)"*)(v— V(1= MT (m+1)/v)P=)v >
- k=1 k=1
S m O O m 8 m
T REGWY (RI(m+ D)iw)Per o T (MIR)WP (MI (m + 1)v)Pe [T (RE Ry (RE (m + 1)w)P o [T (MF (R)w)P (MF (m + 1)/v)P
k=1 k=1 k=1 k=1
ﬁ (1= RT(R)/W)P* +v=v(1 = RT (m + 1)/v)/™ 7<v7 vﬁ (1= RT(K)/W)P* = v(1 = RT (m+ 1)/v)P™ + vﬁ (1= RT(k)/v)P* (1= RT (m + 1)/v)1‘m">
k= k= k=
by . ,
7< v [T (1= MT(R)m)™ +v=v(1 = MT (m + 1)/w)Pn —<v— v[] (= MT (W)™ =v(1 = MT (m+ 1)) + v (1= MT (k)P (1= MT (m + 1)/v)Pn >
- k=1 k=1 k=1
S m 8 o 8 m
T RIG)M)P RI(m+ 1)1y [T (M (R))™ (RI (1 + 1)) [T (RERym)P (RE (m+ Div)Pet o T (MF (k)W) (MF (m + 1))
k=1 k=1 k=1 k=1
8w - .
aa] [ 1= RT(K)/@)* (1 = RT (m+ DIy’ q-q[ [ (1= MT (R)/q)™ (1 = MT (m + 1)/g)""
:< k=1 k=1 >
8 8 m o m 8 m
[T REGYWYP (RIGm o+ 1)) o[ (M (R))P (M (m+ D) T (REGOm)P (RE (m+ D))o T (MF ()Y (MF (m + 1)fv)P
k=1 k=1 k=1 k=1
- <<5HH:‘: (-RT (e 6\»\]—12: (1= MT ()P > (6»1—1“‘ RGN a»HHl (MR > <8vH:l’ (REG 6vl_[:" (MF () ) >
(11)
Based on the above results, equation (8) holds for any n. (i) Idempotency: set Iz, (k=1, 2, ..., n) as a series of
Thus, the proof is completed. LNZNs on U. If Izy=Iz for k=1, 2, ..., n, then
Then, the LNZNWAM operator implies the following LNZNWAM (Iz,1z,, .. .,lz,) = lz.
properties: (ii) Boundedness: set Iz, (k=1, 2, ..., n) as a series of

INZNs on U and then set the minimum and
maximum LNZNs as

(mkin(BRT(k)), mkin((SMT(k))>, (mkax((?Rl(k)), m]?X(SMI(k))>, (m}:ix((SRF(k)), mI?x(8MF(k))>>,

(m];ax((SRT(k)), ml?x((SMT(k))>, <mkin(8RI(k)), m](in((sMI(k))), (mkin((SRF(k)), m}:n((SMF(k))) N

Ny
|
1l
S

(12)

Ny
+
1l
S



and then there is [z <LNZNWAM(Iz,lz,, ...,
lz,)<lz".

(iii) Monotonicity: set Iz; (k=1, 2, ..., n) as a series of
LNZNs on U. If Iz; < Iz} for k=1, 2, .., n, there is
LNZNWAM (Iz,,1z,,.. ., lz,)<LNZNWAM (Iz,
Iz5,...,1z}).

(iv) Commutativity: set the LNZN sequence (lzj,lz,,
..., lz,) as an arbitrary permutation of (Iz,, Iz,, . . .,

n
LNZNWAM (Iz,, 12y, .., 1z,) = Y. py - Iz,
k=1

0 n 0

] (RI(k)/v)Pk’ o[ T a1 (eyrvy

k=1 k=1

8 n bl
< v [ ] (1= RT (kv
k=1
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Iz,). Then, there is LNZNWAM (lz},lz,,. ..
= LNZNWAM (Iz,, Iz,, .

1z,)
Llz,). O

Proof

(i) Because Iz =1z for k=1, 2, ..., n, there is the fol-
lowing operational result:

0

>

v—vﬁ (1 - MT(k)/V)pk
k=1

> 6 n b} 8 n >
T ®REGMP VT T (MF (k)1v)P

k=1 k=1

= (S n > 8 n s 6 n ) 6 " ,
<< V‘V“—RT/V)Zk:lPk V—V(I—RT/V)Zk1Pk> ( v(RI/v)Zkzlpk V(RI/V)ZklPk>
|0 ) . >
< V(RF/V)Zk=1P" v(RF/v)Zk=1Pk

= <(8V—V(I—RT/V)’ av—v(l—MT/v))’ (6V(RI/V)’ SV(MI/V))’ (8V(RF/V)’ 6v(MF/1/))>

= (Orr> Opr)s (Orp> Orar)> (Ores> Oir)) = I2.

(ii) Since the minimum and maximum LNZNs are Iz~
and Iz, there is Iz~ <lz;<Iz". Thus, there exists the
inequality Y, pylz” < Yi, pulzi < Y pilzt
Regarding property (i), there is the inequality
lz~ < ¥}, prlzi <lz*, namely, Iz~ <LNZNWAM

(lz),1z,, .. ., 1z,) <lz".

(iii) Because lz; <lz for k=1, 2, ..., n, there exists the
inequality Y, prlzi < Yoy pilzi,  namely,
LNZNWAM (Iz,,1z,, . . .,lz,) <LNZNWAM (Iz},

Iz3,...,1z};).

(iv) The commutativity of the LNZNWAM operator is
straightforward.

Hence, the proof of these properties is finished.

Especially when py=1/n for k=1, 2, ..., n, the
LNZNWAM operator reduces into the LNZN arithmetic
mean operator. O

(13)

4.2. LNNWGM Operator

Definition 6. Set lzx = <(Orrk)y Omr)s (Orickys Omarciy)s
(6rrk) Omry)> (k=1,2, ..., n) as a series of LNZNs on U.
Then, we can define the LNZNWGM operator:

LNZNWGM (Iz,lz,, . .., lz,) = [ [ 122, (14)
k=1

where p; is the weight of Iz (k=1, 2, .. ., n) for p; € [0, 1] and
Yo P = 1.

Based on the operational relations in Definition 2 and
equation (14), we can give the following theorem.

Theorem 2. Set Iz = <(Srrek) Onrrci))s (Oricky Samir)s (Srrei)y
Omrm)> (k=1,2, ..., n)as aseries of LNZNs on U. Then, the
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aggregation result yielded by equation (14) is also LNZN,
which is calculated by the aggregation equation:

LNZNWGM (Iz,1z,, . .., Iz,) = | [ 1z
k=1

(|2
v| | (RT (k)/v)P

k=1

0

0

where py is the weight of Iz (k=1, 2, . . ., n) for px € [0, 1] and
Y o1 Pr = 1. Especially when py=1/n for k=1, 2, ..., n, the
LNZNWGM operator reduces into the geometric mean op-
erator of LNZNs.

By the similar proof way of Theorem 1, one can verify
Theorem 2, which is not repeated here.

Similarly, the LNZNWGM operator also implies the
following properties:

v—vﬁ (1 - RI(k)/V)pk’
k=1

v—vﬁ (1 - RF(k)/V)pk’
k=1

7
)6 n >
o[ T (MT (k)1v)Px
k=1
(15)
6 n bl
v [T (= MI(R)v)P
k=1
6 n >7
v [T (1= MEF (k)
k=1
(i) Idempotency: set Iz (k=1, 2, ..., n) as a series of

INZNson U. If lzz =1z (k=1, 2, .. ., n), there exists

LNZNWGM (Izy,lz,, . . .,lz,) = lz.
(ii) Boundedness: set Iz, (k=1, 2, ..., n) as a series of
LNZNs on U and set the minimum and maximum

LNZNs as

lZ_ = <<mkin(6RT(k)), n’lkin((SMT(k))>, <mkaX(8RI(k)), mliix((SMI(k))>, (m}?X((SRF(k)), ml?.X((SMF(k))>>,

12" = { (max(8ur o) max(Bur o) s (min(Srsey ) min(Susr ) - (min(Sie o min(Susece) )

and then there exists the inequality [z~ <
LNZNWGM (Izy,1z,, . . .,1z,) <lz*.

(iii) Monotonicity: set Iz; (k=1, 2, ..., n) as a series of
LNZNson U. Iflz; <z} (k=1,2, ..., n), there exists
the inequality LNZNWGM(lz},lz,,..., Iz,)<
LNZNWGM (Iz},1z5, . . .,lz}).

(iv) Commutativity: set the LNZN sequence (lzj,lz,,
...,1z,) as an arbitrary permutation of (Iz, Iz, . . .,
Iz,). Then, there is LNZNWGM (Iz}, Iz, ...,lz,)
= LNZNWGM (Iz,1z,, . . ., lz,).

By the similar proof of the properties of the LNZNWAM
operator, one can verify these properties, which are not
repeated here.

5. MAGDM Approach in terms of the
LNZNWAM and LNZNWGM Operators

This section develops an MAGDM method by utilizing the
LNZNWAM and LNZNWGM operators and score and

(16)

accuracy functions to perform MAGDM issues in the setting
of LNZNs.

Regarding an MAGDM problem, experts/decision-
makers preliminarily propose a set of alternatives N={Nj,
N,, ..., N,,}, which needs to satisfy the requirements of n
attributes in a set of attributes H = {h;, h,, ..., h,} with the
weight vector of the attributes P= (py, p», . . ., p,,)- Then, a group of
decision-makers/experts G={G;, G, . . ., G} is invited along with
their corresponding weight vector D = (d,, d,, . . ., d;) to assess the
alternatives over the attributes by LNZNs from the predefined
LTS U={8p, Jy, ..., 6,} with odd cardinality v+1. In the as-
sessment process of each alternative N; (j=1, 2, .. ., m) over each
attribute hy (k=1, 2, . . ., n), each decision-maker can provide the
truth, falsehood, and indeterminacy linguistic term values and
their corresponding linguistic reliability measure values from U,
which are constructed as LNZN. Thus, the LNZNs provided
by each decision-maker G; (i=1, 2, ..., s) can be constructed as
each LNZN decision matrix M’ = (lz}k)m*,,, where Iz', =
<(5RTf (jky> Onar (jky)> (i (jkys Onari (jn))> (O (k> Onar (jk))§ (i
=1,2,..,8k=1,2,..,mj=1,2, ..., m) are LNZNs.



Thus, we can develop an MAGDM method by using the
LNZNWAM and LNZNWGM operators and score and
accuracy functions to perform the MAGDM issue with
LNZN information and introduce the decision steps below.

S
1 2 s i
Iz = INZNWAM(Izjy, 125, . .., 125 ) = Z d; - 12l =<

Step 2: obtain the aggregated LNZN Iz; for N; (j=1, 2,
..., m) by using the LNZNWAM or LNZNWGM
operator:

lz; = LNZNWAM(Iz;,, 1z, .. lz;,) = ) py -z =

“

B
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Step 1: obtain the aggregated matrix M = (Izji) x> Where
Iz = <(6RT(jk)>6MT(jk))> (ORi (k) Omr (i) (8rr (k>
Onr()? (k=1,2,..,mj=1,2, ..., m) is an aggregated
LNZN, by using the LNZNWAM operator:

0 s
(1= RTGom)™ o T (1= MT (k)"

1 i=1

“

i=1 i=1

5 6
JTRE Gy T (MF GRom)™

i=1 i=1

“

) 0 s
(v (Rﬁ(jk)/v)d" v (MIi(jk)/v)d‘ >

(17)

0 a
(1= RT (jl)w)P v [T (1 = MT (jk)/v)P*

=1 k=1

0 n

n _ 6 ) ’ >’
g < ( RIGRWP T ] (MI(lomP

lz; = LNZNWGM(Iz;,, 1z, .. 1z),) = [ [ 125 =< 8
k=1

=

B

B

k=1 k=1

6 » 0 n
(V (RE(jR)w)P o] | (MEF (jk)1v)P

k=1 k=1
(18)

n > 8 n
(RT (jl)w)Ps ] | (MT (jk)/v)*
k=1

=1

0

, n , (19)
(1 - RI(jk)/v)P H]—[(l- MI (jk)/v)Pe >

k=1

0

(1 - RF( jk)/v)P"’ Hﬁ (1 — MEF (jk)/v)P

k=1
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Step 3: calculate the score values of Y(lz;) (the accuracy
values of Z(Iz;) if necessary) (j=1,2, .. ., m) by equation
(5) (equation (6)).

Step 4: sort the alternatives based on the score (ac-
curacy) values and sorting laws of LNZNs and then
choose the best one.

Step 5: end.

6. MAGDM Example and Comparison

6.1. MAGDM Example of Industrial Robot Selection.
Because of the complexity, advanced features, and facilities
of industrial robots, selecting an industrial robot for a spe-
cific application is a multifaceted task. This requires de-
cision-makers to select the most suitable robot for a specific
application in terms of the various features, costs, and
benefits, which is an MAGDM issue. To illustrate the ap-
plicability and efficiency of the proposed MAGDM ap-
proach, this section provides an MAGDM application of
industrial robot selection in order to choose the most
suitable industrial robot for the flexible manufacturing
system of a manufacturing company.

A manufacturing company needs to select the most
suitable type of industrial robots from robot suppliers. Some
experts preliminarily choose four types of industrial robots,
which are denoted as a set of alternatives N = {N;, N,, N3, N,}
from robot suppliers. Meanwhile, they must satisfy four
indices (attributes): the operation dexterity (h;), the payload
capacity (h,), the programming versatility (readability, co-
ordination, and intelligent control capacity) (h3), and the
man-machine interface (h,). The weight vector of the four
attributes hy for k=1, 2, 3, 4 is given by P = (0.27, 0.23, 0.26,
0.24) to indicate the importance of the attributes. A group of
three experts/decision-makers G={G,;, G,, G3} with the
weight vector D = (0.37, 0.35, 0.28) is requested to assess the
four alternatives over the four attributes by LNZNs from the
predefined LTS U={§y(extremely low), &;(very low),
&,(low), &3(slightly high), d4(medium), &s(slightly high),
Os(high), J,(very high), dg(extremely high)} with v=8.
Therefore, the LNZNs specified by each decision-maker G;
(i=1,2, 3) can form the following LNZN decision matrix M
(i=1, 2, 3):

M3

[{(96:97), (91,86)> (85, 06)) ((87:06), (81, 95), (62, 35)) (95 5)s (35 5)> (85,07)) (865 95), (82, 95), (82 86)) ]
((67:36), (81,05), (81,85)) ((87,07), (85, 86), (82:84)) {(675)> (93, 5)s (85,05)) (86> 0)s (82 d6)> (62 35))
(8> 36)> (92, 05)> (95, 86)) (965 05), (81, 95), (81, 86)) (06> 07)> (92,84), (81,05)) (85> I5), (82 d6)> (63 86))

L((87,07), (81, 86), (8505)) (67 86)> (81, 06): (83,67)) (87, 85), (8, 05), (82, 9)) (85, B6): (61, 67), (81, 86))
[ (05, 95)> (91,86)> (82, 0)) ((86>67), (83, 95), (62, 85)) (I 0s)> (825 86)> (82,07)) (85> I5), (82, 85), (620 86)) ]

(8> 35), (93, 05), (91,67)) (35 07), (82,96, (83:84)) (06 0s)> (9185)s (35,05)) {(87:05)s (81 36)> (83 35))
<(65’ 65)’ (82’ 66)’ (82’ 86)) <(65’ 85)’ (82’85)’ (61’87)> <(65’67)’ (82’ 65)’ (84’ 65)) <(67’ 66)’ (63’ 66)’ (61’ 87)>

L{(96>05)> (91,67), (85,05)) ((8705), (81,97), (62, 36)) (96 05)s (81,67), (85,05)) (85, 95), (83, 05), (81 6))
[((05:95), (91, 85), (81,86)) (365 05)s (815 96)> (83, 95)) (05 86)> (92 85), (81,67)) (85, 04), (85, 95), (81, 86)) ]

((87,86), (62, 85), (81,87)) (85, 85)> (85,67), (8396)) (05 85), (62, 85)> (81,85)) (3> 0s)s (825 05), (82, 95))

<(64’65)’ (61’86)’ (82’86)> <(65’66)’ (81’66)’ (82’65)> <(67’86)’ (61’87)’ (62’85)> <(67’65)’ (82’65)’ (83’87)> |

(03, 36), (81, 06)> (85, 05)) (85, 05), (82, 95), (81,85)) (06 36)> (93 85)s (82, 86)) (85505, (85, 84), (81, 5))

(20)
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Then, the developed MAGDM approach can be used in
this MAGDM problem and depicted by the following steps:

<(65 4179> 86 2664) (61 0000> ~6. OOOO)’ (61‘6472> 86.0000)>
<(56 7254> 65 6950) (81 78352 65 OOOO)’ (81.0000> 66.6119)>
<(65 2013> 65 4179) (61 6472> 86 OOOO) (62.0000> 86.0000)>

<(85‘9998’ 6.4524)’ (8140000’ 66 3326) (52 2405> V5. 0000)>

>

<(65 3969> 86 OOOO) (82.0000’ 65 7014) (61 6472> 87.0000))
<(66 2664> 5 7595)’ (81.8232’ 86 0000) (61 8983> %5.2619 >
<(66 1017> 6 7858)’ (81.6472’ d
<(86 4524> %5, 3220)’ (81.7578’ 65 9195) (62 3050> ¥'6.0000

3s.2619)
5. 0586) (61 9725> 65.0000))
F6.0000))

Step 2: by equation (18), we obtain the aggregated
LNZNS Of lZ] fOr ZVJ (j: 1, 2, ey m): lZl = <(85.7769’
$5.9550)s (015877 Ss.4988) (017679 S5.9880)> lzp =
<(66.4423, $6.0917), (51.8486, s5.7688), (81.6372,
§5.5662)>, lz; = <(85.9368, 55.8558), (31.6832, $5.5011),
(61.7857, s5.8611)>, and Iz, = <(86.1127, $5.8027),
(61.4296, s5.8980), (81.7936, s5.7792)>, or by equation
(19), we obtain the aggregated LNZNs of Iz; for N; (j = 1,
2, ..., m): Izl = <(865.7177, s5.8316), (81.6841, $5.5431),
(61.7888, $6.1666)>, Iz, = <(§6.4270, $6.0216), (51.8726,
$5.8403), (61.7604, s5.7607)>, lz3 = <(85.8174, $5.7156),
(61.7300, s5.5426), (61.8309, $5.9682)>, and Iz, =
<(85.9907, $5.7334), (1.4983, $5.9404), (81.9052,
$5.8523)>.

Step 3: by equation (5), we obtain the score values:
Y(lz;) =0.7452, Y(lz,)=0.7681, Y(lz3)=0.7450, and
Y(lz4) =0.7535, or Y(lz;)=0.7343, Y(lz;)=0.7585,
Y(lz3) = 0.7330, and Y(lz,) =0.7411.

Step 4: the sorting order of the four alternatives is N, > f
N, > N; > N3, and then the best one is N,.

Sorting orders of the four alternatives regarding the
developed MAGDM approach using the LNZNWAM and
LNNWGM operators are shown in Figure 1. It is obvious
that the sorting orders of the alternatives and the best one in
terms of the LNZNWAM and LNNWGM operators are
identical.

6.2. Comparison with Related Methods. This part compares
the proposed MAGDM approach with the related LNN and
NZN decision-making approaches [12,20] to indicate the
suitability and efficiency of the proposed MAGDM
approach.

Journal of Mathematics

Step 1: by equation (17), we obtain the aggregated
matrix M = (Izjx) x4

<(66 4524> 86 4308) (81.4689’ 5. 2619) (82 2405 85 0000)>
<(66 2664 86 7858) (82.3237’ 6. 2646) (62 5821 84 4809)>

<(65 4179> 85 3220)’ (81.2746’ 5. 2619) (81 2142> 86 0174)>

<(86 6398> 57595)’ (81.2142’ 6.0174)’ (61‘9138’ 6.0360)>
(21)
<(85 7595> ¥4, 7483)’ (82.2405’ 65 0000) (61 6472> 86 OOOO)>
<(86 4308> 60000)’ (61.5692’ 60000) (61 5692> 60000 > .
<(86.7076> 53969) (
) (

8 )
> 62.3050’ 85 7014) (62 0423> 66119)>
<(85.0000’ 5.4179)> 61.9980’ 85 3199) (61 0000> ~6. 2646))

To conveniently compare the proposed MAGDM ap-
proach with the existing related MAGDM approach [12] for
the robot selection problem, we only use LNNs in M', M?,
and M’ without considering the linguistic reliability mea-
sures in LNZNs since the linguistic neutrosophic MAGDM
approach [12] cannot handle such an MAGDM problem
with the information of LNZNs. As a special case, the above
LNZN decision matrices of the three decision-makers are
reduced to the following LNN decision matrices:

[(06:01,05) (07,01,0,) (85,02, 0,) (J6,05,0,) ]
a1 | (67:01,81) (87,05,8;) (07,03,8) (86, 0,,65)
(06:02,05) (06,01,01) (9602, 01) (05,05, 05)
L (07,01,05) (07,01,03) (87,0,,8,) (J5,61,0;)
[(05,01,05) (0603, 0,) (86> 0,0,) (36,02, 0) ]
2 | (06:05,01) (86:05,05) (J6,01,03) (d7,01,05)
(05:05,05) (05,05,01) (95,02, 0,) (07,05,61)
L (06,01,05) (07,01,0;) (86:01,05) (05,03, 01)
[(05,01,01) (06,01,03) (05,05,0) (05,05,01) ]
3| €67:05,81) (85,05,83) (J5,05,01) (86,05,65)
(0,01,82) (058,85 (87,8,05) (8,8,05) |
L (83,01,03) (05,05,01) (06,05,0,) (35,05, 0y) ]
(22)

Thus, we utilize the existing MAGDM approach using
the LNNWAM and LNNWGM operators of equations (1)
and (2) and the score function of equation (3) [12] for this
MAGDM example in the setting of LNNGs.

First, by equation (1), we obtain the following aggregated
matrix:

<65‘4179’ 61 0000 61 6472> <66 4524> 61 4689> 82 2405> <65 3969 62 0000 61 6472> <65 75952 62 2405 81 6472>

M/ = <66.7254’ 81.7835’ 81 0000> <86.2664’ 62 3237> 82.5821) <6642664’ 81 8232 81.8983> <86.4308’ 61 5692 61 5692> ' (23)
<85‘2013’ 61 6472 62 0000> <85 4179> 61 2746> 61 2142> <66 1017> 81 6472> 81 9725> <56 7076> 62 3050 62 O423>
<65.9998’ 81 0000 82 2405> <86 6398> 81 2142> 81 9138> <66 4524> 81 7578> 62 3050> <85 0000> 61 9980 61 OOOO>
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Score value

LNZNWAM operator
FI1GURE 1: Sorting orders of the four alternatives regarding the developed MAGDM approach using the LNZNWAM and LNNWGM operators.

LNZNWGM operator

TaBLE 1: Decision results of different MAGDM methods.

MAGDM method Score value Sorting order The best one
Existing MAGDM method using equation (1) [12] 0.7676, 0.7899, 0.7695, 0.7871 N, > Ny, > N3 > N, N,
Existing MAGDM method using equation (2) [12] 0.7602, 0.7831, 0.7607, 0.7745 N, > Ny, > N3 > N, N,
Proposed MAGDM method using equation (18) 0.7452, 0.7681, 0.7450, 0.7535 N, > Ny > N; > N3 N,
Proposed MAGDM method using equation (19) 0.7343, 0.7585, 0.7330, 0.7411 N, > Ny > N; > N; N,

Then, by equations (1)-(4), the decision results are
shown in Table 1. For the convenient comparison, the de-
cision results corresponding to the proposed MAGDM
approach are also contained in Table 1.

In Table 1, there is the sorting difference between the
existing MAGDM method [12] and the proposed MAGDM
method; then, the best one is the same. However, this sorting
difference reflects that the new method utilizes the LNZN
information constructed by the truth, falsehood, and in-
determinacy linguistic Z-numbers, while the existing
method [12] only contains the LNN information without
containing their reliability measures. Moreover, LNZNs
imply much more useful information than LNNs and
strengthen the reliability of LNNs. Thus, different MAGDM
information and methods may affect the sorting order of
alternatives, which illustrates the efficiency and applicability
of the new MAGDM method in the LNZN environment.
Therefore, the new MAGDM method is superior to the
existing one [12].

Furthermore, the existing decision-making method in
the setting of NZNs [20] cannot carry out such a linguistic
decision-making issue with the LNZN information. On the
contrary, the new MAGDM approach with the LNZN in-
formation especially suits such an MAGDM issue with the
LNZN information. Then, in the MAGDM problem with
qualitative attributes, the new MAGDM approach shows its
main merit since it contains the LNN assessments related to
their reliability measures in the LNZN environment.

However, the original study reveals the following main
advantages:

(a) The proposed LNZN information can express more
useful information to strengthen the reliability

measure of LNNs and avoid the insufficiency of
missing reliability measures in the existing methods

(b) The developed MAGDM approach not only makes
the MAGDM process more reliable and reasonable
but also provides a new way for linguistic MAGDM
problems in the LNZN setting

(c) The proposed MAGDM approach can effectively
solve the MAGDM issue of selecting industrial ro-
bots with the evaluation information of LNZNs and
make the decision result more reliable

7. Conclusion

To make the LNN information more reliable, this study
proposed an LNZN notion in terms of the truth, falsehood,
and indeterminacy linguistic Z-numbers as a new linguistic
neutrosophic framework. Then, the proposed operational
relations and score and accuracy functions of LNZNs are to
realize reasonable operations and sorting rules of LNZNs in
the setting of LNZNs. The proposed LNZNWAM and
LNZNWGM operators provided useful information ag-
gregation tools in MAGDM problems with the LNZN in-
formation. Then, the established MAGDM approach in
terms of the proposed LNZNWAM and LNZNWGM op-
erators and score and accuracy functions can solve MAGDM
problems under the environment of LNZNs. Through the
application of the proposed MAGDM method in the in-
dustrial robot selection problem and the comparison of
existing decision-making methods, the decision results
demonstrated not only the suitability and efficiency of the
proposed MAGDM approach in the LNZN setting but also
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the superiority of the new MAGDM method over the
existing ones.

However, the limitations of this study lie in the lack of
flexible decision-making methods and quantitative algo-
rithms for reliability measures of LNNs. To overcome the
limitations, we shall further study new aggregation operators
with a changeable parameter, flexible MAGDM methods,
and some quantitative algorithms of the reliability measures.
Then, we shall use them in engineering areas such as en-
vironmental risk assessment and management, slope sta-
bility/risk assessment, and construction engineering
management in the LNZN environment.
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