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To make a fuzzy value more reliable, Zadeh presented the notion of Z-number, which reflects a fuzzy value related to its reliability
measure. Since linguistic expression conforms to human thinking habits, linguistic neutrosophic decision-making is one of the
key research topics in linguistic indeterminate and inconsistent setting. In order to ensure the reliability of multiattribute group
decision-making (MAGDM) problems in the linguistic environment of truth, falsehood, and indeterminacy, we require a new
linguistic neutrosophic framework that combines the decision-maker’s linguistic neutrosophic judgment with its reliability
measure. Inspired by the linguistic Z-numbers of the truth, falsehood, and indeterminacy, this article first proposes a linguistic
neutrosophic Z-number (LNZN) to make the truth, falsehood, and indeterminacy linguistic values more reliable. 'en, we define
the operational relations, score and accuracy functions, and sorting laws of LNZNs. Next, we establish the LNZN weighted
arithmetic mean (LNZNWAM) and LNZN weighted geometric mean (LNZNWGM) operators and indicate their properties.
Furthermore, anMAGDM approach is developed based on the two aggregation operators and the score and accuracy functions of
LNZNs in the LNZN setting. Lastly, an MAGDM example of industrial robot selection and comparison with existing related
methods are provided to verify the applicability and efficiency of the developed MAGDM method in the setting of LNZNs. In
general, the developed MAGDM approach not only makes the MAGDM information more reliable but also solves MAGDM
problems under the environment of LNZNs.

1. Introduction

Decision-making is a hotspot of current research problems.
It is very significant to establish reasonable information
representation and decision-making models. Linguistic
representation may be more suitable for human thinking
habits, especially reflecting its advantages in qualitative
assessment of complex objective things. In this case, lin-
guistic decision-making indicates its importance. 'us,
linguistic multiattribute (group) decision-making (MADM/
MAGDM) research has attracted the attention of many
researchers in the past few decades. Since Zadeh [1] first
introduced the concept of linguistic variables, various lin-
guistic MADM/MAGDM methods have been utilized to
solve various decision-making problems [2–5]. In terms of
a membership/truth linguistic variable and

a nonmembership/falsity linguistic variable, Chen et al. [6]
proposed linguistic intuitionistic fuzzy numbers (LIFNs)
and used them for MAGDM problems. 'en, Yager [7]
presented the ordinal LIFN aggregation operators, and
Zhang et al. [8] used LIFNs to indicate the preferred and
nonpreferred qualitative judgments of decision-makers in
linguistic MADM problems. Next, some LIFN aggregation
operators and their decision-making approaches [9–11] have
been proposed and applied in MADM issues with LIFN
information. Regarding the truth, falsehood, and in-
determinacy linguistic variables, Fang and Ye [12] defined
linguistic neutrosophic numbers (LNNs) and their opera-
tions; then, they presented the LNNweighted arithmetic and
geometric mean operators and their MAGDM approach to
solve MAGDM issues with LNN information. After that,
various aggregation operators of LNNs and their MAGDM
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methods [12–16] have been applied in MAGDM issues with
LNNs.

However, LIFN is a special case of LNN. LNN can de-
scribe indeterminacy and inconsistent linguistic information
as its highlighting advantage, while LIFN cannot do it. More
recently, according to the conceptual generalization of Z-
numbers [18], Ding et al. [19] presented the linguistic Z-
number QUALIFLEX (Qualitative Flexible Multiple Crite-
ria) method for MAGDM. Next, Du et al. and Ye proposed
neutrosophic Z-numbers (NZNs), their weighted arithmetic
and geometric mean operators [20], and their similarity
measures [21] and then applied them toMADMproblems in
the environment of NZNs. Yong et al. [22] presented
trapezoidal neutrosophic Z-numbers and their weighted
arithmetic and geometric mean operators for MADM issues
with trapezoidal NZNs. Although NZN and trapezoidal
NZN contain the information of the truth, falsehood, and
indeterminacy Z-numbers, they cannot represent LNN in-
formation. Furthermore, existing LNN lacks the reliability
measure of the truth, falsehood, and indeterminacy lin-
guistic values, which shows its flaw. To make up for this flaw,
we should introduce the reliability measure to the truth,
falsehood, and indeterminacy linguistic values in LNN,
propose a linguistic neutrosophic Z-number (LNZN) so as
to strengthen the reliability of LNN, and then present some
operations and sorting laws of LNZNs to solve MAGDM
issues with the information of LNZNs. 'erefore, this study
aims (a) to propose LNZNs and their operational relations,
(b) to define the score and accuracy functions and sorting
laws of LNZNs, (c) to establish LNZN weighted arithmetic
mean (LNZNWAM) and LNZN weighted geometric mean
(LNZNWGM) operators, (d) to develop an MAGDM ap-
proach by using the LNZNWAM and LNZNWGM opera-
tors and score and accuracy functions of LNZNs, and (e) to
apply the developed MAGDM approach to an MAGDM
problem of industrial robot selection in the environment of
LNZNs.

Generally, the critical contributions of this original study
are summarized as follows:

(a) 'e new notion of LNZN proposed in terms of
linguistic Z-numbers of the truth, falsehood, and
indeterminacy can make the linguistic values more
reliable

(b) 'e defined operational relations, score and accuracy
functions, and sorting laws of LNZNs and the
proposed LNZNWAM and LNZNWGM operators
provide the necessary mathematical tools for mod-
eling of MAGDM issues in the setting of LNZNs

(c) 'e proposed MAGDM approach can solve
MAGDM issues with LNZNs

(d) 'e proposed MAGDM method can efficiently
handle the MAGDM problem of industrial robot
selection in the LNZN setting and show its usability

'e rest of this study is composed of the following
structures: in Section 2, some basic concepts of LNNs are
reviewed as preliminaries of this study. Section 3 proposes
LNZNs and their operational relations, score and accuracy
functions, and sorting laws. Section 4 develops the
LNZNWAM and LNZNWGM operators and indicates their
properties. In Section 5, an MAGDM approach is developed
using the LNZNWAM and LNZNWGMoperators and score
and accuracy functions to carry out MAGDM issues in the
LNZN environment. Section 6 applies the developed
MAGDM approach to an MAGDM example of industrial
robot selection for a manufacturing company under the
environment of LNZNs and then presents a comparison
with existing related MAGDM methods to reflect the effi-
ciency of the developed approach. Lastly, conclusions and
future research are indicated in Section 7.

2. Preliminaries of LNNs

Set U� {δ0, δ1, . . ., δv} as a linguistic term set (LTS) with odd
cardinality v + 1. Fang and Ye [12] first defined the LNN
le�<δT, δI, δF> on U such that δT, δI, δF ∈U and T, I, F ∈
[0, v], where δT, δI, and δF express the truth, indeterminacy,
and falsehood linguistic variables, respectively.

Regarding two LNNs le1 � δT(1), δI(1), δF(1)􏽄 􏽅 and le2 �

δT(2), δI(2), δF(2)􏽄 􏽅 on U and any real number p> 0, the
following operational relations [12] are defined as follows:

(i) le1⊕ le2 � δT(1), δI(1), δF(1)􏽄 􏽅⊕ δT(2), δI(2), δF(2)􏽄 􏽅 �

δT(1)+T(2)−T(1)T(2)/v, δI(1)I(2)/v, δF(1)F(2)/v􏽄 􏽅

(ii) le1 ⊗ le2 �

δT(1), δI(1), δF(1)􏽄 􏽅⊗ δT(2), δI(2), δF(2)􏽄 􏽅 �

δT(1)T(2)/v, δI(1)+I(2)−I(1)I(2)/v, δF(1)+F(2)−F(1)F(2)/v􏽄 􏽅

(iii) p · le1 � p · δT(1), δI(1), δF(1)􏽄 􏽅 � δv−v(1− T(1)/v)p ,􏽄

δv(I(1)/v)p , δv(F(1)/v)p 〉

(iv) le
p
1 � δT(1), δI(1), δF(1)􏽄 􏽅

p
� δv(T(1)/v)p ,􏽄 δv−v(1− I

(1)/v)p, δv−v(1− F(1)/v)p 〉

Regarding a series of LNNs lek � <δT(k), δI(k), δF(k)> with
their weights pk (k� 1, 2, . . ., n) for pk ∈ [0, 1] and 􏽐

n
k�1

pk � 1, the LNN weighted arithmetic mean (LNNWAM)
and LNN weighted geometric mean (LNNWGM) operators
[12] are proposed as follows:

LNNWAM le1, le2, . . . , len( 􏼁 � 􏽘
n

k�1
pk · lek � δ

v−v 􏽑
n

k�1 (1− T(k)/v)pk , δ
v􏽑

n

k�1 (I(k)/v)pk, δ
v􏽑

n

k�1 (F(k)/v)pk􏽅,

􏼪 (1)

LNNWGM le1, le2, . . . , len( 􏼁 � 􏽙
n

k�1
le

pk

k � δ
v􏽑

n

k�1 (T(k)/v)pk, δ
v−v􏽑

n

k�1 (1− I(k)/v)pk, δ
v−v􏽑

n

k�1 (1− F(k)/v)pk􏽅.

􏼪 (2)
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'en, Fang and Ye [12] defined the score and accuracy
functions of lek � <δT(k), δI(k), δF(k)>:

D lek( 􏼁 �
(2v + T(k) − I(k) − F(k))

3lek( 􏼁
, forD lek( 􏼁 ∈ [0, 1],

(3)

E lek( 􏼁 �
(T(k) − F(k))

lek

, forE lek( 􏼁 ∈ [−1, 1]. (4)

Regarding two LNNs, le1 � δT(1), δI(1), δF(1)􏽄 􏽅 and
le2 � δT(2), δI(2), δF(2)􏽄 􏽅, their sorting laws [12] are defined
as follows:

(i) le1 ≻ le2 if D(le1)>D(le2)
(ii) le1 ≻ le2 if D(le1)�D(le2) and E(le1)> E(le2)
(iii) le1 � le2 if D(le1)�D(le2) and E(le1)� E(le2)

3. LNZNs

Tomake LNNmore reliable, this section proposes LNZNs in
terms of the truth, falsehood, and indeterminacy Z-numbers
and then defines the operational relations, score and ac-
curacy functions, and sorting laws of LNZNs.

Definition 1. Set U� {δ0, δ1, . . ., δv} as LTS with odd car-
dinality v+1.'en, LNZN onU is defined as lz � <(δRT, δMT),
(δRI, δMI), (δRF, δMF)> for δRT, δRI, δRF, δMT, δMI, δMF ∈U and
RT, RI, RF,MT,MI,MF ∈ [0, v], where (δRT, δMT) is the truth
linguistic Z-number that combines the truth linguistic term
value δRT with the linguistic reliability measure δMT for δRT
specified from the LTS U; (δRI, δMI) is the indeterminacy
linguistic Z-number that combines the indeterminacy lin-
guistic term value δRI with the linguistic reliability measure
δMI for δRI specified from the LTS U; (δRF, δMF) is the

falsehood linguistic Z-number that combines the falsity
linguistic term value δRF with the linguistic reliability
measure δMF for δRF specified from the LTS U.

Definition 2. Let two LNZNs be lzk � <(δRT(k), δMT(k)),
(δRI(k), δMI(k)), (δRF(k), δMF(k))> (k� 1, 2) on U and any real
number p> 0.'en, their operational relations are defined as
follows:

(i) lz1⊕lz2 � (δRT(1),δMT(1)),(δRI(1),δMI(1)),(δRF(1),δMF(1))􏽄 􏽅⊕ (δRT(2),δMT(2)),(δRI(2),δMI(2)),(δRF(2),δMF(2))􏽄 􏽅

� (δRT(1)+RT(2)−RT(1)RT(2)/v,δMT(1)+MT(2)−MT(1)MT(2)/v),(δRI(1)RI(2)/v,δMI(1)MI(2)/v),(δRF(1)RF(2)/v,δMF(1)MF(2)/v)􏽄 􏽅

(ii) lz1⊗ lz2 � (δRT(1),δMT(1)),(δRI(1),δMI(1)),(δRF(1),δMF(1))􏽄 􏽅⊗ (δRT(2),δMT(2)),(δRI(2),δMI(2)),(δRF(2),δMF(2))􏽄 􏽅

� (δRT(1)RT(2)/v,δMT(1)MT(2)/v),(δRI(1)+RI(2)−RI(1)RI(2)/v,δMI(1)+MI(2)−MI(1)MI(2)/v),(δRF(1)+RF(2)−RF(1)RF(2)/v,δMF(1)+MF(2)−MF(1)MF(2)/v)􏽄 􏽅

(iiii) p · lz1 � p (δRT(1),δMT(1)),(δRI(1),δMI(1)),(δRF(1),δMF(1))􏽄 􏽅

� (δv−v(1−RT(1)/v)p ,δv−v(1−MT(1)/v)p ),(δv(RI(1)/v)p ,δv(MI(1)/v)p ),(δv(RF(1)/v)p ,δv(MF(1)/v)p )􏽄 􏽅

(iv) lz
p
1 � (δRT(1), δMT(1)), (δRI(1), δMI(1)), (δRF(1), δMF(1))􏽄 􏽅

p

� (δv(RT(1)/v)p , δv(MT(1)/v)p ), (δv−v(1− RI(1)/v)p , δv−v(1− MI(1)/v)p ), (δv−v(1− RF(1)/v)p , δv−v(1− MF(1)/v)p )􏽄 􏽅

Clearly, the above operational results are still LNZNs.

Example 1. Set two LNZNs as lz1 � <(δ6, δ7), (δ2, δ6), (δ3, δ7)
> and lz2 � <(δ7, δ7), (δ2, δ5), (δ3, δ6)> on U� {δ0, δ1, . . ., δ8}
with v � 8 and p� 0.6. 'en, based on the above operational
relations, one obtains their operational results:

(i) lz1⊕lz2 � (δRT(1)+RT(2)−RT(1)RT(2)/v, δMT(1)+MT(2)−MT(1)MT(2)/v), (δRI(1)RI(2)/v, δMI(1)MI(2)/v), (δRF(1)RF(2)/v, δMF(1)MF(2)/v)􏽄 􏽅

� (δ6+7−6×7/8, δ7+7−7×7/8), (δ2×2/8, δ6×5/8), (δ3×3/8, δ7×6/8)􏼊 􏼋 � (δ7.75, δ7.875), (δ0.5, δ3.75), (δ1.125, δ5.25)􏼊 􏼋

(ii) lz1 ⊗ lz2 �
(δRT(1)RT(2)/v, δMT(1)MT(2)/v), (δRI(1)+RI(2)−RI(1)RI(2)/v, δMI(1)+MI(2)−MI(1)MI(2)/v),

(δRF(1)+RF(2)−RF(1)RF(2)/v, δMF(1)+MF(2)−MF(1)MF(2)/v)
􏼪 􏼫

� (δ6×7/8, δ7×7/8), (δ2+2−2×2/8, δ6+5−6×5/8), (δ3+3−3×3/8, δ7+6−7×6/8)􏼊 􏼋 � (δ5.25, δ6.125), (δ3.5, δ7.25), (δ4.875, δ7.75)􏼊 􏼋

(iiii)
p · lz1 � (δv−v(1− RT(1)/v)p , δv−v(1− MT(1)/v)p ), (δv(RI(1)/v)p , δv(MI(1)/v)p ), (δv(RF(1)/v)p , δv(MF(1)/v)p)􏽄 􏽅

� (δ8−8(1− 6/8)0.6 , δ8−8(1− 7/8)0.6), (δ8(2/8)0.6 , δ8(6/8)0.6 ), (δ8(3/8)0.6 , δ8(7/8)0.6 )􏽄 􏽅

� (δ4.5178, δ5.7026), (δ3.4822, δ6.7317), (δ4.4413, δ7.3841)􏼊 􏼋

(iv) lz
p
1 � (δv(RT(1)/v)p , δv(MT(1)/v)p ), (δv−v(1− RI(1)/v)p , δv−v(1− MI(1)/v)p ), (δv−v(1− RF(1)/v)p , δv−v(1− MF(1)/v)p )􏽄 􏽅

� (δ8(6/8)0.6 , δ8(7/8)0.6 ), (δ8−8(1− 2/8)0.6 , δ8−8(1− 6/8)p ), (δ8−8(1− 3/8)0.6 , δ8−8(1− 7/8)0.6 )􏽄 􏽅

� (δ6.7317, δ7.3841), (δ1.2683, δ4.5178), (δ1.9658, δ5.7026)􏼊 􏼋

To compare LNZNs, we can present the score and ac-
curacy functions and sorting laws of LNZNs.

Definition 3. Set LNZN as lz � <(δRT, δMT), (δRI, δMI), (δRF,
δMF)> on U. 'en, the score and accuracy functions of lz are
presented as follows:

Y(lz) �
2v

2
+ RT × MT − RI × MI − RF × MF􏼐 􏼑

3v
2

􏼐 􏼑
, forY(lz) ∈ [0, 1], (5)

Z(lz) �
(RT × MT − RF × MF)

v
2 , forZ(lz) ∈ [−1, 1]. (6)

Definition 4. Set two LNZNs as lzk � <(δRT(k), δMT(k)), (δRI(k),
δMI(k)), (δRF(k), δMF(k))> for k� 1, 2 on U. 'en, their sorting
laws are defined as follows:

(i) lz1 ≻ lz2 if Y(lz1)>Y(lz2)
(ii) lz1 ≻ lz2 if Y(lz1)�Y(lz2) and Z(lz1)>Z(lz2)
(iii) lz1 � lz2 If Y(lz1)�Y(lz2) and Z(lz1)�Z(lz2)

Example 2. Set three LNZNs as lz1 � <(δ6, δ6), (δ3, δ7), (δ3,
δ6)>, lz2 � <(δ6, δ6), (δ3, δ6), (δ3, δ7)>, and lz3 � <(δ7, δ6), (δ3,
δ7), (δ3, δ5)> on U� {δ0, δ1, . . ., δ8} with v � 8. 'en, by
equations (5) and (6), the values of their score and accuracy
functions are yielded as follows: Y(lz1) � (2× 82 + 6 × 6− 3 ×

7− 3 × 6)/192� 0.651, Y(lz2) � (2× 82 + 6 × 6− 3 × 6− 3 × 7)/
192� 0.651, and Y(lz3) � (2× 82 + 7 × 6− 3 × 7− 3 × 5)/

192� 0.6979; Z(lz1) � (6 × 6− 3 × 6)/64� 0.2813 and Z(lz2) �

(6 × 6− 3 × 7)/64� 0.2344.
According to the sorting laws in Definition 4, their

sorting order is lz3 ≻ lz1 ≻ lz2.

4. LNZNWAM and LNZNWGM Operators

4.1. LNZNWAM Operator

Definition 5. Set lzk � <(δRT(k), δMT(k)), (δRI(k), δMI(k)),
(δRF(k), δMF(k))> (k� 1, 2, . . ., n) as a series of LNZNs on U.
'en, the LNZNWAM operator can be defined as

LNZNWAM lz1, lz2, . . . , lzn( 􏼁 � 􏽘
n

k�1
pk · lzk, (7)
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where pk is the weight of lzk (k� 1, 2, . . ., n) for pk ∈ [0, 1] and
􏽐

n
k�1 pk � 1.
'us, the following theorem can be presented corre-

sponding to the operational relations in Definition 2 and
equation (7).

Theorem 1. Set lzk � <(δRT(k), δMT(k)), (δRI(k), δMI(k)), (δRF(k),
δMF(k))> (k� 1, 2, . . ., n) as a series of LNZNs on U. 3en, the
aggregation result yielded by equation (7) is also LNZN, which
is calculated by the following equation:

LNZNWAM lz1, lz2, . . . , lzn( 􏼁 � 􏽘
n

k�1
pk · lzk

� δ
v−v 􏽙

n

k�1
(1 − RT(k)/v)

pk

, δ
v−v 􏽙

n

k�1
(1 − MT(k)/v)

pk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,􏼪

· δ
v 􏽙

n

k�1
(RI(k)/v)

pk

, δ
v 􏽙

n

k�1
(MI(k)/v)

pk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, δ

v 􏽙

n

k�1
(RF(k)/v)

pk

, δ
v 􏽙

n

k�1
(MF(k)/v)

pk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
􏼫,

(8)

where pk is the weight of lzk (k� 1, 2, . . ., n) for pk ∈ [0, 1] and
􏽐

n
k�1 pk � 1.

In the following, 'eorem 1 can be verified by means of
mathematical induction.

Proof

(1) Set n� 2. By the operational relations in Definition 2,
there is the following result:

LNZNWAM lz1, lz2( 􏼁 � p1 · lz1⊕p2 · lz2

�

δv−v(1− RT(1)/v)p1+v−v(1− RT(2)/v)p2− v−v(1− RT(1)/q)p1( ) v−v(1− RT(2)/v)p2( )/v,

δv−v(1− MT(1)/v)p1+v−v(1− MT(2)/v)p2− v−v(1− MT(1)/v)p1( ) v−v(1− MT(2)/v)p2( )/v

⎛⎜⎝ ⎞⎟⎠,

δv(RI(1)/v)p1(RI(2)/v)p2 , δv(MI(1)/v)p1(MI(2)/v)p2􏼐 􏼑, δv(RF(1)/v)p1(RF(2)/v)p2 , δv(MF(1)/v)p1(MF(2)/v)p2􏼐 􏼑

􏼪 􏼫

�

δv−v(1− RT(1)/v)p1+v−v(1− RT(2)/v)p2− v−v(1− RT(1)/v)p1−v(1− RT(2)/v)p2+v(1− RT(1)/v)w1(1− RT(2)/v)p2( ),

δv−v(1− MT(1)/v)p1+v−v(1− MT(2)/v)p2− v−v(1− MT(1)/v)p1−v(1− MT(2)/v)p2+v(1− MT(1)/v)w1(1− MT(2)/v)p2( )

⎛⎜⎝ ⎞⎟⎠,

δv(RI(1)/v)p1(RI(2)/v)p2 , δv(MI(1)/v)p1(MI(2)/v)p2􏼐 􏼑, δv(RF(1)/v)p1(RF(2)/v)p2 , δv(MF(1)/v)p1(MF(2)/v)p2􏼐 􏼑

􏼪 􏼫

�
δv−v(1− RT(1)/v)p1(1− RT(2)/v)p2 , δv−v(1− MT(1)/v)p1(1− MT(2)/v)p2􏼐 􏼑, δv(RI(1)/v)p1(RI(2)/v)p2 , δv(MI(1)/v)p1(MI(2)/v)p2􏼐 􏼑,

δv(RF(1)/v)p1(RF(2)/v)p2 , δv(MF(1)/v)p1(MF(2)/v)p2􏼐 􏼑
􏼪 􏼫

�

δ
v−v 􏽙

2

k�1
(1 − RT(k)/v)

pk

, δ
v−v 􏽙

2

k�1
(1 − MT(k)/v)

pk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, δ

v 􏽙

2

k�1
(RI(k)/v)

pk

, δ
v 􏽙

2

k�1
(MI(k)/v)

pk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

δ
v 􏽙

2

k�1
(RF(k)/v)

pk

, δ
v 􏽙

2

k�1
(MF(k)/v)

pk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

􏼪 􏼫.

(9)
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(2) Set n�m. Equation (8) can keep the following result:

LNZNWAM lz1, lz2, . . . , lzm( 􏼁 � 􏽘
m

k�1
pk · lzk

� δ
v−v 􏽙

m

k�1
(1 − RT(k)/v)

pk

, δ
v−v 􏽙

m

k�1
(1 − MT(k)/v)

pk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,􏼪

· δ
v 􏽙

m

k�1
(RI(k)/v)

pk

, δ
v 􏽙

m

k�1
(MI(k)/v)

pk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, δ

v 􏽙

m

k�1
(RF(k)/v)

pk

, δ
v 􏽙

m

k�1
(MF(k)/v)

pk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
􏼫.

(10)

(3) Set n�m+ 1. By equations (9) and (10), the opera-
tional result is given as follows:

LNZNWAM lz1, lz2, . . . , lzm, lzm+1( 􏼁 � 􏽘
m

k�1
pk · lzk⊕pm+1 · lzm+1

�

δ
v−v 􏽙

m

k�1
(1 − RT(k)/v)

pk + v − v(1 − RT(m + 1)/v)
pm+1 − v − v 􏽙

m

k�1
(1 − RT(k)/v)

pk⎛⎝ ⎞⎠ v − v(1 − RT(m + 1)/v)
pm+1( 􏼁/v

,

δ
v−v 􏽙

m

k�1
(1 − MT(k)/v)

pk + v − v(1 − MT(m + 1)/v)
pm+1 − v − v 􏽙

m

k�1
(1 − MT(k)/v)

pk⎛⎝ ⎞⎠ v − v(1 − MT(m + 1)/v)
pm+1( 􏼁/v

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

δ
v 􏽙

m

k�1
(RI(k)/v)

pk (RI(m + 1)/v)
pm+1

, δ
v 􏽙

m

k�1
(MI(k)/v)

pk (MI(m + 1)/v)
pm+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, δ

v 􏽙

m

k�1
(RF(k)/v)

pk (RF(m + 1)/v)
pm+1

, δ
v 􏽙

m

k�1
(MF(k)/v)

pk (MF(m + 1)/v)
pm+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

􏼪 􏼫

�

δ
v−v 􏽙

m

k�1
(1 − RT(k)/v)

pk + v − v(1 − RT(m + 1)/v)
pm+1 − v − v 􏽙

m

k�1
(1 − RT(k)/v)

pk − v(1 − RT(m + 1)/v)
pm+1 + v 􏽙

m

k�1
(1 − RT(k)/v)

pk (1 − RT(m + 1)/v)
pm+1⎛⎝ ⎞⎠

,

δ
v−v 􏽙

m

k�1
(1 − MT(k)/v)

pk + v − v(1 − MT(m + 1)/v)
pm+1 − v − v 􏽙

m

k�1
(1 − MT(k)/v)

pk − v(1 − MT(m + 1)/v)
pm+1 + v 􏽙

m

k�1
(1 − MT(k)/v)

pk (1 − MT(m + 1)/v)
pm+1⎛⎝ ⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

δ
v 􏽙

m

k�1
(RI(k)/v)

pk (RI(m + 1)/v)
pm+1

, δ
v 􏽙

m

k�1
(MI(k)/v)

pk (RI(m + 1)/v)
pm+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, δ

v 􏽙

m

k�1
(RF(k)/v)

pk (RF(m + 1)/v)
pm+1

, δ
v 􏽙

m

k�1
(MF(k)/v)

pk (MF(m + 1)/v)
pm+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

􏼪 􏼫

�

δ
q−q 􏽙

m

k�1
(1 − RT(k)/q)

pk (1 − RT(m + 1)/q)
pm+1

, δ
q−q 􏽙

m

k�1
(1 − MT(k)/q)

pk (1 − MT(m + 1)/q)
pm+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

δ
v 􏽙

m

k�1
(RI(k)/v)

pk (RI(m + 1)/v)
pm+1

, δ
v 􏽙

m

k�1
(MI(k)/v)

pk (MI(m + 1)/v)
pm+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, δ

v 􏽙

m

k�1
(RF(k)/v)

pk (RF(m + 1)/v)
pm+1

, δ
v 􏽙

m

k�1
(MF(k)/v)

pk (MF(m + 1)/v)
pm+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

􏼪 􏼫

� δ
v−v􏽙

m+1

k�1
(1− RT(k)/v)pk

, δ
v−v􏽙

m+1

k�1
(1− MT(k)/v)pk

⎛⎝ ⎞⎠, δ
v􏽙

m+1

k�1
(RI(k)/v)pk

, δ
v􏽙

m+1

k�1
(MI(k)/v)pk

⎛⎝ ⎞⎠, δ
v􏽙

m+1

k�1
(RF(k)/v)pk

, δ
v􏽙

m+1

k�1
(MF(k)/v)pk

⎛⎝ ⎞⎠􏼪 􏼫.

(11)

Based on the above results, equation (8) holds for any n.
'us, the proof is completed.

'en, the LNZNWAM operator implies the following
properties:

(i) Idempotency: set lzk (k� 1, 2, . . ., n) as a series of
LNZNs on U. If lzk � lz for k� 1, 2, . . ., n, then
LNZNWAM(lz1, lz2, . . . , lzn) � lz.

(ii) Boundedness: set lzk (k� 1, 2, . . ., n) as a series of
LNZNs on U and then set the minimum and
maximum LNZNs as

lz
−

� min
k

δRT(k)􏼐 􏼑,min
k

δMT(k)􏼐 􏼑􏼒 􏼓, max
k

δRI(k)􏼐 􏼑,max
k

δMI(k)􏼐 􏼑􏼒 􏼓, max
k

δRF(k)􏼐 􏼑,max
k

δMF(k)􏼐 􏼑􏼒 􏼓􏼜 􏼝,

lz
+

� max
k

δRT(k)􏼐 􏼑,max
k

δMT(k)􏼐 􏼑􏼒 􏼓, min
k

δRI(k)􏼐 􏼑,min
k

δMI(k)􏼐 􏼑􏼒 􏼓, min
k

δRF(k)􏼐 􏼑,min
k

δMF(k)􏼐 􏼑􏼒 􏼓􏼜 􏼝,

(12)
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and then there is lz− ≤ LNZNWAM(lz1, lz2, . . . ,

lzn)≤ lz+.
(iii) Monotonicity: set lzk (k� 1, 2, . . ., n) as a series of

LNZNs on U. If lzk ≤ lz∗k for k� 1, 2, . . ., n, there is
LNZNWAM(lz1, lz2, . . . , lzn)≤ LNZNWAM(lz∗1 ,

lz∗2 , . . . , lz∗n ).
(iv) Commutativity: set the LNZN sequence (lz1′, lz2′,

. . . , lzn
′) as an arbitrary permutation of (lz1, lz2, . . .,

lzn). 'en, there is LNZNWAM(lz1′, lz2′, . . . , lzn
′)

� LNZNWAM(lz1, lz2, . . . , lzn). □

Proof

(i) Because lzk � lz for k� 1, 2, . . ., n, there is the fol-
lowing operational result:

LNZNWAM lz1, lz2, . . . , lzn( 􏼁 � 􏽘
n

k�1
pk · lzk

� δ
v−v 􏽙

n

k�1
(1 − RT(k)/v)

pk

, δ
v−v 􏽙

n

k�1
(1 − MT(k)/v)

pk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,􏼪

· δ
v 􏽙

n

k�1
(RI(k)/v)

pk

, δ
v 􏽙

n

k�1
(MI(k)/v)

pk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, δ

v 􏽙

n

k�1
(RF(k)/v)

pk

, δ
v 􏽙

n

k�1
(MF(k)/v)

pk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
􏼫

� δ
v−v(1− RT/v)

􏽘
n

k�1
pk

, δ
v−v(1− RT/v)

􏽘
n

k�1
pk

⎛⎝ ⎞⎠, δ
v(RI/v)

􏽘
n

k�1
pk

, δ
v(RI/v)

􏽘
n

k�1
pk

⎛⎝ ⎞⎠,􏼪

· δ
v(RF/v)

􏽘
n

k�1
pk

, δ
v(RF/v)

􏽘
n

k�1
pk

⎛⎝ ⎞⎠􏼫

� δv−v(1−RT/v), δv−v(1−MT/v)􏼐 􏼑, δv(RI/v), δv(MI/v)􏼐 􏼑, δv(RF/v), δv(MF/v)􏼐 􏼑􏽄 􏽅

� δRT, δMT( 􏼁, δRI, δMI( 􏼁, δRF, δMF( 􏼁􏼊 􏼋 � lz.

(13)

(ii) Since the minimum and maximum LNZNs are lz−

and lz+, there is lz−≤ lzj≤ lz+. 'us, there exists the
inequality 􏽐

n
k�1 pklz− ≤ 􏽐

n
k�1 pklzk ≤ 􏽐

n
k�1 pklz+.

Regarding property (i), there is the inequality
lz− ≤ 􏽐

n
k�1 pklzk ≤ lz+, namely, lz− ≤ LNZNWAM

(lz1, lz2, . . . , lzn)≤ lz+.
(iii) Because lzk ≤ lz∗k for k� 1, 2, . . ., n, there exists the

inequality 􏽐
n
k�1 pklzk ≤ 􏽐

n
k�1 pklz∗k , namely,

LNZNWAM(lz1, lz2, . . . , lzn)≤ LNZNWAM (lz∗1 ,

lz∗2 , . . . , lz∗n ).
(iv) 'e commutativity of the LNZNWAM operator is

straightforward.

Hence, the proof of these properties is finished.
Especially when pk � 1/n for k� 1, 2, . . ., n, the

LNZNWAM operator reduces into the LNZN arithmetic
mean operator. □

4.2. LNNWGM Operator

Definition 6. Set lzk � <(δRT(k), δMT(k)), (δRI(k), δMI(k)),
(δRF(k), δMF(k))> (k� 1, 2, . . ., n) as a series of LNZNs on U.
'en, we can define the LNZNWGM operator:

LNZNWGM lz1, lz2, . . . , lzn( 􏼁 � 􏽙
n

k�1
lz

pk

k , (14)

where pk is the weight of lzk (k� 1, 2, . . ., n) for pk ∈ [0, 1] and
􏽐

n
k�1 pk � 1.
Based on the operational relations in Definition 2 and

equation (14), we can give the following theorem.

Theorem 2. Set lzk � <(δRT(k), δMT(k)), (δRI(k), δMI(k)), (δRF(k),
δMF(k))> (k� 1, 2, . . ., n) as a series of LNZNs on U. 3en, the
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aggregation result yielded by equation (14) is also LNZN,
which is calculated by the aggregation equation:

LNZNWGM lz1, lz2, . . . , lzn( 􏼁 � 􏽙
n

k�1
lz

pk

k

� δ
v 􏽙

n

k�1
(RT(k)/v)

pk

, δ
v 􏽙

n

k�1
(MT(k)/v)

pk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,􏼪

· δ
v−v 􏽙

n

k�1
(1 − RI(k)/v)

pk

, δ
v−v 􏽙

n

k�1
(1 − MI(k)/v)

pk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

· δ
v−v 􏽙

n

k�1
(1 − RF(k)/v)

pk

, δ
v−v 􏽙

n

k�1
(1 − MF(k)/v)

pk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
􏼫,

(15)

where pk is the weight of lzk (k� 1, 2, . . ., n) for pk ∈ [0, 1] and
􏽐

n
k�1 pk � 1. Especially when pk � 1/n for k� 1, 2, . . ., n, the

LNZNWGM operator reduces into the geometric mean op-
erator of LNZNs.

By the similar proof way of 'eorem 1, one can verify
'eorem 2, which is not repeated here.

Similarly, the LNZNWGM operator also implies the
following properties:

(i) Idempotency: set lzk (k� 1, 2, . . ., n) as a series of
LNZNs on U. If lzk � lz (k� 1, 2, . . ., n), there exists
LNZNWGM(lz1, lz2, . . . , lzn) � lz.

(ii) Boundedness: set lzk (k� 1, 2, . . ., n) as a series of
LNZNs on U and set the minimum and maximum
LNZNs as

lz
−

� min
k

δRT(k)􏼐 􏼑,min
k

δMT(k)􏼐 􏼑􏼒 􏼓, max
k

δRI(k)􏼐 􏼑,max
k

δMI(k)􏼐 􏼑􏼒 􏼓, max
k

δRF(k)􏼐 􏼑,max
k

δMF(k)􏼐 􏼑􏼒 􏼓􏼜 􏼝,

lz
+

� max
k

δRT(k)􏼐 􏼑,max
k

δMT(k)􏼐 􏼑􏼒 􏼓, min
k

δRI(k)􏼐 􏼑,min
k

δMI(k)􏼐 􏼑􏼒 􏼓, min
k

δRF(k)􏼐 􏼑,min
k

δMF(k)􏼐 􏼑􏼒 􏼓􏼜 􏼝,

(16)

and then there exists the inequality lz− ≤
LNZNWGM(lz1, lz2, . . . , lzn)≤ lz+.

(iii) Monotonicity: set lzk (k� 1, 2, . . ., n) as a series of
LNZNs onU. If lzk ≤ lz∗k (k� 1, 2, . . ., n), there exists
the inequality LNZNWGM(lz1, lz2, . . . , lzn)≤
LNZNWGM(lz∗1 , lz∗2 , . . . , lz∗n ).

(iv) Commutativity: set the LNZN sequence (lz1′, lz2′,
. . . , lzn
′) as an arbitrary permutation of (lz1, lz2, . . .,

lzn). 'en, there is LNZNWGM(lz1′, lz2′, . . . , lzn
′)

� LNZNWGM(lz1, lz2, . . . , lzn).

By the similar proof of the properties of the LNZNWAM
operator, one can verify these properties, which are not
repeated here.

5. MAGDM Approach in terms of the
LNZNWAM and LNZNWGM Operators

'is section develops an MAGDM method by utilizing the
LNZNWAM and LNZNWGM operators and score and

accuracy functions to performMAGDM issues in the setting
of LNZNs.

Regarding an MAGDM problem, experts/decision-
makers preliminarily propose a set of alternatives N� {N1,
N2, . . ., Nm}, which needs to satisfy the requirements of n
attributes in a set of attributes H� {h1, h2, . . ., hn} with the
weight vector of the attributesP� (p1, p2, . . ., pn).'en, a groupof
decision-makers/expertsG� {G1,G2, . . .,Gs} is invited along with
their correspondingweight vectorD� (d1, d2, . . ., ds) to assess the
alternatives over the attributes by LNZNs from the predefined
LTS U� {δ0, δ1, . . ., δv} with odd cardinality v+1. In the as-
sessment process of each alternativeNj (j� 1, 2, . . .,m) over each
attribute hk (k� 1, 2, . . ., n), each decision-maker can provide the
truth, falsehood, and indeterminacy linguistic term values and
their corresponding linguistic reliability measure values from U,
which are constructed as LNZN. 'us, the LNZNs provided
by each decision-maker Gi (i� 1, 2, . . ., s) can be constructed as
each LNZN decision matrix Mi � (lzi

jk)m∗n, where lzi
jk �

(δRTi(jk), δMTi(jk)), (δRIi(jk), δMIi(jk)), (δRFi(jk), δMFi(jk))􏽄 􏽅 (i
� 1, 2, . . ., s; k� 1, 2, . . ., n; j� 1, 2, . . ., m) are LNZNs.
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'us, we can develop an MAGDM method by using the
LNZNWAM and LNZNWGM operators and score and
accuracy functions to perform the MAGDM issue with
LNZN information and introduce the decision steps below.

Step 1: obtain the aggregated matrixM � (lzjk)m×n, where
lzjk � (δRT(jk),δMT(jk)),(δRI(jk),δMI(jk)),􏽄 (δRF(jk),

δMF(jk))〉 (k�1, 2, . .., n; j�1, 2, . . ., m) is an aggregated
LNZN, by using the LNZNWAM operator:

lzjk � LNZNWAM lz
1
jk, lz

2
jk, . . . , lz

s
jk􏼐 􏼑 � 􏽘

s

i�1
di · lz

i
jk �

δ
v−v 􏽙

s

i�1
1 − RT

i
(jk)/v􏼐 􏼑

di

, δ
v−v 􏽙

s

i�1
1 − MT

i
(jk)/v􏼐 􏼑

di

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

δ
v 􏽙

s

i�1
RI

i
(jk)/v􏼐 􏼑

di

, δ
v 􏽙

s

i�1
MI

i
(jk)/v􏼐 􏼑

di

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

δ
v 􏽙

s

i�1
RF

i
(jk)/v􏼐 􏼑

di

, δ
v 􏽙

s

i�1
MF

i
(jk)/v􏼐 􏼑

di

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

􏼪 􏼫

(17)

Step 2: obtain the aggregated LNZN lzj for Nj (j� 1, 2,
. . ., m) by using the LNZNWAM or LNZNWGM
operator:

lzj � LNZNWAM lzj1, lzj2, . . . , lzjn􏼐 􏼑 � 􏽘
n

k�1
pk · lzjk �

δ
v−v 􏽙

n

k�1
(1 − RT(jk)/v)

pk

, δ
v−v 􏽙

n

k�1
(1 − MT(jk)/v)

pk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

δ
v 􏽙

n

k�1
(RI(jk)/v)

pk

, δ
v 􏽙

n

k�1
(MI(jk)/v)

pk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

δ
v 􏽙

n

k�1
(RF(jk)/v)

pk

, δ
v 􏽙

n

k�1
(MF(jk)/v)

pk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

􏼪 􏼫,

(18)

lzj � LNZNWGM lzj1, lzj2, . . . , lzjn􏼐 􏼑 � 􏽙
n

k�1
lz

pk

jk �

δ
v 􏽙

n

k�1
(RT(jk)/v)

pk

, δ
v 􏽙

n

k�1
(MT(jk)/v)

pk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

δ
v−v 􏽙

n

k�1
(1 − RI(jk)/v)

pk

, δ
v−v 􏽙

n

k�1
(1 − MI(jk)/v)

pk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

δ
v−v 􏽙

n

k�1
(1 − RF(jk)/v)

pk

, δ
v−v 􏽙

n

k�1
(1 − MF(jk)/v)

pk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

􏼪 􏼫, (19)
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Step 3: calculate the score values of Y(lzj) (the accuracy
values of Z(lzj) if necessary) (j� 1, 2, . . ., m) by equation
(5) (equation (6)).
Step 4: sort the alternatives based on the score (ac-
curacy) values and sorting laws of LNZNs and then
choose the best one.
Step 5: end.

6. MAGDM Example and Comparison

6.1. MAGDM Example of Industrial Robot Selection.
Because of the complexity, advanced features, and facilities
of industrial robots, selecting an industrial robot for a spe-
cific application is a multifaceted task. 'is requires de-
cision-makers to select the most suitable robot for a specific
application in terms of the various features, costs, and
benefits, which is an MAGDM issue. To illustrate the ap-
plicability and efficiency of the proposed MAGDM ap-
proach, this section provides an MAGDM application of
industrial robot selection in order to choose the most
suitable industrial robot for the flexible manufacturing
system of a manufacturing company.

A manufacturing company needs to select the most
suitable type of industrial robots from robot suppliers. Some
experts preliminarily choose four types of industrial robots,
which are denoted as a set of alternativesN� {N1,N2,N3,N4}
from robot suppliers. Meanwhile, they must satisfy four
indices (attributes): the operation dexterity (h1), the payload
capacity (h2), the programming versatility (readability, co-
ordination, and intelligent control capacity) (h3), and the
man-machine interface (h4). 'e weight vector of the four
attributes hk for k� 1, 2, 3, 4 is given by P � (0.27, 0.23, 0.26,
0.24) to indicate the importance of the attributes. A group of
three experts/decision-makers G� {G1, G2, G3} with the
weight vector D � (0.37, 0.35, 0.28) is requested to assess the
four alternatives over the four attributes by LNZNs from the
predefined LTS U� {δ0(extremely low), δ1(very low),
δ2(low), δ3(slightly high), δ4(medium), δ5(slightly high),
δ6(high), δ7(very high), δ8(extremely high)} with v � 8.
'erefore, the LNZNs specified by each decision-maker Gi
(i� 1, 2, 3) can form the following LNZN decision matrixMi

(i� 1, 2, 3):

M
1

�

δ6, δ7( 􏼁, δ1, δ6( 􏼁, δ2, δ6( 􏼁􏼊 􏼋 δ7, δ6( 􏼁, δ1, δ5( 􏼁, δ2, δ5( 􏼁􏼊 􏼋 δ5, δ6( 􏼁, δ2, δ6( 􏼁, δ2, δ7( 􏼁􏼊 􏼋 δ6, δ5( 􏼁, δ2, δ5( 􏼁, δ2, δ6( 􏼁􏼊 􏼋

δ7, δ6( 􏼁, δ1, δ5( 􏼁, δ1, δ6( 􏼁􏼊 􏼋 δ7, δ7( 􏼁, δ3, δ6( 􏼁, δ2, δ4( 􏼁􏼊 􏼋 δ7, δ6( 􏼁, δ3, δ6( 􏼁, δ2, δ5( 􏼁􏼊 􏼋 δ6, δ6( 􏼁, δ2, δ6( 􏼁, δ2, δ5( 􏼁􏼊 􏼋

δ6, δ6( 􏼁, δ2, δ6( 􏼁, δ2, δ6( 􏼁􏼊 􏼋 δ6, δ5( 􏼁, δ1, δ5( 􏼁, δ1, δ6( 􏼁􏼊 􏼋 δ6, δ7( 􏼁, δ2, δ4( 􏼁, δ1, δ5( 􏼁􏼊 􏼋 δ6, δ5( 􏼁, δ2, δ6( 􏼁, δ3, δ6( 􏼁􏼊 􏼋

δ7, δ7( 􏼁, δ1, δ6( 􏼁, δ2, δ5( 􏼁􏼊 􏼋 δ7, δ6( 􏼁, δ1, δ6( 􏼁, δ3, δ7( 􏼁􏼊 􏼋 δ7, δ5( 􏼁, δ2, δ5( 􏼁, δ2, δ6( 􏼁􏼊 􏼋 δ5, δ6( 􏼁, δ1, δ7( 􏼁, δ1, δ6( 􏼁􏼊 􏼋

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

M
2

�

δ5, δ6( 􏼁, δ1, δ6( 􏼁, δ2, δ6( 􏼁􏼊 􏼋 δ6, δ7( 􏼁, δ3, δ5( 􏼁, δ2, δ5( 􏼁􏼊 􏼋 δ6, δ6( 􏼁, δ2, δ6( 􏼁, δ2, δ7( 􏼁􏼊 􏼋 δ6, δ5( 􏼁, δ2, δ5( 􏼁, δ2, δ6( 􏼁􏼊 􏼋

δ6, δ5( 􏼁, δ3, δ5( 􏼁, δ1, δ7( 􏼁􏼊 􏼋 δ6, δ7( 􏼁, δ2, δ6( 􏼁, δ3, δ4( 􏼁􏼊 􏼋 δ6, δ6( 􏼁, δ1, δ6( 􏼁, δ3, δ5( 􏼁􏼊 􏼋 δ7, δ6( 􏼁, δ1, δ6( 􏼁, δ3, δ5( 􏼁􏼊 􏼋

δ5, δ5( 􏼁, δ2, δ6( 􏼁, δ2, δ6( 􏼁􏼊 􏼋 δ5, δ5( 􏼁, δ2, δ5( 􏼁, δ1, δ7( 􏼁􏼊 􏼋 δ5, δ7( 􏼁, δ2, δ5( 􏼁, δ4, δ5( 􏼁􏼊 􏼋 δ7, δ6( 􏼁, δ3, δ6( 􏼁, δ1, δ7( 􏼁􏼊 􏼋

δ6, δ6( 􏼁, δ1, δ7( 􏼁, δ2, δ5( 􏼁􏼊 􏼋 δ7, δ6( 􏼁, δ1, δ7( 􏼁, δ2, δ6( 􏼁􏼊 􏼋 δ6, δ5( 􏼁, δ1, δ7( 􏼁, δ3, δ6( 􏼁􏼊 􏼋 δ5, δ5( 􏼁, δ3, δ5( 􏼁, δ1, δ6( 􏼁􏼊 􏼋

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

M
3

�

δ5, δ5( 􏼁, δ1, δ6( 􏼁, δ1, δ6( 􏼁􏼊 􏼋 δ6, δ6( 􏼁, δ1, δ6( 􏼁, δ3, δ5( 􏼁􏼊 􏼋 δ5, δ6( 􏼁, δ2, δ5( 􏼁, δ1, δ7( 􏼁􏼊 􏼋 δ5, δ4( 􏼁, δ3, δ5( 􏼁, δ1, δ6( 􏼁􏼊 􏼋

δ7, δ6( 􏼁, δ2, δ5( 􏼁, δ1, δ7( 􏼁􏼊 􏼋 δ5, δ6( 􏼁, δ2, δ7( 􏼁, δ3, δ6( 􏼁􏼊 􏼋 δ5, δ5( 􏼁, δ2, δ6( 􏼁, δ1, δ6( 􏼁􏼊 􏼋 δ6, δ6( 􏼁, δ2, δ6( 􏼁, δ2, δ5( 􏼁􏼊 􏼋

δ4, δ5( 􏼁, δ1, δ6( 􏼁, δ2, δ6( 􏼁􏼊 􏼋 δ5, δ6( 􏼁, δ1, δ6( 􏼁, δ2, δ5( 􏼁􏼊 􏼋 δ7, δ6( 􏼁, δ1, δ7( 􏼁, δ2, δ5( 􏼁􏼊 􏼋 δ7, δ5( 􏼁, δ2, δ5( 􏼁, δ3, δ7( 􏼁􏼊 􏼋

δ3, δ6( 􏼁, δ1, δ6( 􏼁, δ3, δ5( 􏼁􏼊 􏼋 δ5, δ5( 􏼁, δ2, δ5( 􏼁, δ1, δ5( 􏼁􏼊 􏼋 δ6, δ6( 􏼁, δ3, δ6( 􏼁, δ2, δ6( 􏼁􏼊 􏼋 δ5, δ5( 􏼁, δ3, δ4( 􏼁, δ1, δ7( 􏼁􏼊 􏼋

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(20)
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'en, the developed MAGDM approach can be used in
this MAGDM problem and depicted by the following steps:

Step 1: by equation (17), we obtain the aggregated
matrix M � (lzjk)4×4:

M �

δ5.4179, δ6.2664( 􏼁, δ1.0000, δ6.0000( 􏼁, δ1.6472, δ6.0000( 􏼁􏼊 􏼋 δ6.4524, δ6.4308( 􏼁, δ1.4689, δ5.2619( 􏼁, δ2.2405, δ5.0000( 􏼁􏼊 􏼋

δ6.7254, δ5.6950( 􏼁, δ1.7835, δ5.0000( 􏼁, δ1.0000, δ6.6119( 􏼁􏼊 􏼋 δ6.2664, δ6.7858( 􏼁, δ2.3237, δ6.2646( 􏼁, δ2.5821, δ4.4809( 􏼁􏼊 􏼋

δ5.2013, δ5.4179( 􏼁, δ1.6472, δ6.0000( 􏼁, δ2.0000, δ6.0000( 􏼁􏼊 􏼋 δ5.4179, δ5.3220( 􏼁, δ1.2746, δ5.2619( 􏼁, δ1.2142, δ6.0174( 􏼁􏼊 􏼋

δ5.9998, δ6.4524( 􏼁, δ1.0000, δ6.3326( 􏼁, δ2.2405, δ5.0000( 􏼁􏼊 􏼋 δ6.6398, δ5.7595( 􏼁, δ1.2142, δ6.0174( 􏼁, δ1.9138, δ6.0360( 􏼁􏼊 􏼋

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

·

δ5.3969, δ6.0000( 􏼁, δ2.0000, δ5.7014( 􏼁, δ1.6472, δ7.0000( 􏼁􏼊 􏼋 δ5.7595, δ4.7483( 􏼁, δ2.2405, δ5.0000( 􏼁, δ1.6472, δ6.0000( 􏼁􏼊 􏼋

δ6.2664, δ5.7595( 􏼁, δ1.8232, δ6.0000( 􏼁, δ1.8983, δ5.2619( 􏼁􏼊 􏼋 δ6.4308, δ6.0000( 􏼁, δ1.5692, δ6.0000( 􏼁, δ1.5692, δ6.0000( 􏼁􏼊 􏼋

δ6.1017, δ6.7858( 􏼁, δ1.6472, δ5.0586( 􏼁, δ1.9725, δ5.0000( 􏼁􏼊 􏼋 δ6.7076, δ5.3969( 􏼁, δ2.3050, δ5.7014( 􏼁, δ2.0423, δ6.6119( 􏼁􏼊 􏼋

δ6.4524, δ5.3220( 􏼁, δ1.7578, δ5.9195( 􏼁, δ2.3050, δ6.0000( 􏼁􏼊 􏼋 δ5.0000, δ5.4179( 􏼁, δ1.9980, δ5.3199( 􏼁, δ1.0000, δ6.2646( 􏼁􏼊 􏼋

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(21)

Step 2: by equation (18), we obtain the aggregated
LNZNs of lzj for Nj (j� 1, 2, . . ., m): lz1 � <(δ5.7769,
s5.9550), (δ1.5877, s5.4988), (δ1.7679, s5.9889)>, lz2 �

<(δ6.4423, s6.0917), (δ1.8486, s5.7688), (δ1.6372,
s5.5662)>, lz3 � <(δ5.9368, s5.8558), (δ1.6832, s5.5011),
(δ1.7857, s5.8611)>, and lz4 � <(δ6.1127, s5.8027),
(δ1.4296, s5.8980), (δ1.7936, s5.7792)>, or by equation
(19), we obtain the aggregated LNZNs of lzj forNj (j� 1,
2, . . ., m): lz1 � <(δ5.7177, s5.8316), (δ1.6841, s5.5431),
(δ1.7888, s6.1666)>, lz2 � <(δ6.4270, s6.0216), (δ1.8726,
s5.8403), (δ1.7604, s5.7607)>, lz3 � <(δ5.8174, s5.7156),
(δ1.7300, s5.5426), (δ1.8309, s5.9682)>, and lz4 �

<(δ5.9907, s5.7334), (δ1.4983, s5.9404), (δ1.9052,
s5.8523)>.
Step 3: by equation (5), we obtain the score values:
Y(lz1)� 0.7452, Y(lz2)� 0.7681, Y(lz3)� 0.7450, and
Y(lz4)� 0.7535, or Y(lz1)� 0.7343, Y(lz2)� 0.7585,
Y(lz3)� 0.7330, and Y(lz4)� 0.7411.
Step 4: the sorting order of the four alternatives isN2 ≻ f
N4 ≻ N1 ≻ N3, and then the best one is N2.

Sorting orders of the four alternatives regarding the
developed MAGDM approach using the LNZNWAM and
LNNWGM operators are shown in Figure 1. It is obvious
that the sorting orders of the alternatives and the best one in
terms of the LNZNWAM and LNNWGM operators are
identical.

6.2. Comparison with Related Methods. 'is part compares
the proposed MAGDM approach with the related LNN and
NZN decision-making approaches [12,20] to indicate the
suitability and efficiency of the proposed MAGDM
approach.

To conveniently compare the proposed MAGDM ap-
proach with the existing related MAGDM approach [12] for
the robot selection problem, we only use LNNs in M1, M2,
and M3 without considering the linguistic reliability mea-
sures in LNZNs since the linguistic neutrosophic MAGDM
approach [12] cannot handle such an MAGDM problem
with the information of LNZNs. As a special case, the above
LNZN decision matrices of the three decision-makers are
reduced to the following LNN decision matrices:

M′
1

�

δ6, δ1, δ2􏼊 􏼋 δ7, δ1, δ2􏼊 􏼋 δ5, δ2, δ2􏼊 􏼋 δ6, δ2, δ2􏼊 􏼋

δ7, δ1, δ1􏼊 􏼋 δ7, δ3, δ2􏼊 􏼋 δ7, δ3, δ2􏼊 􏼋 δ6, δ2, δ2􏼊 􏼋

δ6, δ2, δ2􏼊 􏼋 δ6, δ1, δ1􏼊 􏼋 δ6, δ2, δ1􏼊 􏼋 δ6, δ2, δ3􏼊 􏼋

δ7, δ1, δ2􏼊 􏼋 δ7, δ1, δ3􏼊 􏼋 δ7, δ2, δ2􏼊 􏼋 δ5, δ1, δ1􏼊 􏼋

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

M′
2

�

δ5, δ1, δ2􏼊 􏼋 δ6, δ3, δ2􏼊 􏼋 δ6, δ2, δ2􏼊 􏼋 δ6, δ2, δ2􏼊 􏼋

δ6, δ3, δ1􏼊 􏼋 δ6, δ2, δ3􏼊 􏼋 δ6, δ1, δ3􏼊 􏼋 δ7, δ1, δ3􏼊 􏼋

δ5, δ2, δ2􏼊 􏼋 δ5, δ2, δ1􏼊 􏼋 δ5, δ2, δ4􏼊 􏼋 δ7, δ3, δ1􏼊 􏼋

δ6, δ1, δ2􏼊 􏼋 δ7, δ1, δ2􏼊 􏼋 δ6, δ1, δ3􏼊 􏼋 δ5, δ3, δ1􏼊 􏼋

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

M′
3

�

δ5, δ1, δ1􏼊 􏼋 δ6, δ1, δ3􏼊 􏼋 δ5, δ2, δ1􏼊 􏼋 δ5, δ3, δ1􏼊 􏼋

δ7, δ2, δ1􏼊 􏼋 δ5, δ2, δ3􏼊 􏼋 δ5, δ2, δ1􏼊 􏼋 δ6, δ2, δ2􏼊 􏼋

δ4, δ1, δ2􏼊 􏼋 δ5, δ1, δ2􏼊 􏼋 δ7, δ1, δ2􏼊 􏼋 δ7, δ2, δ3􏼊 􏼋

δ3, δ1, δ3􏼊 􏼋 δ5, δ2, δ1􏼊 􏼋 δ6, δ3, δ2􏼊 􏼋 δ5, δ3, δ1􏼊 􏼋

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(22)

'us, we utilize the existing MAGDM approach using
the LNNWAM and LNNWGM operators of equations (1)
and (2) and the score function of equation (3) [12] for this
MAGDM example in the setting of LNNs.

First, by equation (1), we obtain the following aggregated
matrix:

M′ �

δ5.4179, δ1.0000, δ1.6472􏼊 􏼋 δ6.4524, δ1.4689, δ2.2405􏼊 􏼋 δ5.3969, δ2.0000, δ1.6472􏼊 􏼋 δ5.7595, δ2.2405, δ1.6472􏼊 􏼋

δ6.7254, δ1.7835, δ1.0000􏼊 􏼋 δ6.2664, δ2.3237, δ2.5821􏼊 􏼋 δ6.2664, δ1.8232, δ1.8983􏼊 􏼋 δ6.4308, δ1.5692, δ1.5692􏼊 􏼋

δ5.2013, δ1.6472, δ2.0000􏼊 􏼋 δ5.4179, δ1.2746, δ1.2142􏼊 􏼋 δ6.1017, δ1.6472, δ1.9725􏼊 􏼋 δ6.7076, δ2.3050, δ2.0423􏼊 􏼋

δ5.9998, δ1.0000, δ2.2405􏼊 􏼋 δ6.6398, δ1.2142, δ1.9138􏼊 􏼋 δ6.4524, δ1.7578, δ2.3050􏼊 􏼋 δ5.0000, δ1.9980, δ1.0000􏼊 􏼋

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)
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'en, by equations (1)–(4), the decision results are
shown in Table 1. For the convenient comparison, the de-
cision results corresponding to the proposed MAGDM
approach are also contained in Table 1.

In Table 1, there is the sorting difference between the
existing MAGDM method [12] and the proposed MAGDM
method; then, the best one is the same. However, this sorting
difference reflects that the new method utilizes the LNZN
information constructed by the truth, falsehood, and in-
determinacy linguistic Z-numbers, while the existing
method [12] only contains the LNN information without
containing their reliability measures. Moreover, LNZNs
imply much more useful information than LNNs and
strengthen the reliability of LNNs. 'us, different MAGDM
information and methods may affect the sorting order of
alternatives, which illustrates the efficiency and applicability
of the new MAGDM method in the LNZN environment.
'erefore, the new MAGDM method is superior to the
existing one [12].

Furthermore, the existing decision-making method in
the setting of NZNs [20] cannot carry out such a linguistic
decision-making issue with the LNZN information. On the
contrary, the new MAGDM approach with the LNZN in-
formation especially suits such an MAGDM issue with the
LNZN information. 'en, in the MAGDM problem with
qualitative attributes, the new MAGDM approach shows its
main merit since it contains the LNN assessments related to
their reliability measures in the LNZN environment.

However, the original study reveals the following main
advantages:

(a) 'e proposed LNZN information can express more
useful information to strengthen the reliability

measure of LNNs and avoid the insufficiency of
missing reliability measures in the existing methods

(b) 'e developed MAGDM approach not only makes
the MAGDM process more reliable and reasonable
but also provides a new way for linguistic MAGDM
problems in the LNZN setting

(c) 'e proposed MAGDM approach can effectively
solve the MAGDM issue of selecting industrial ro-
bots with the evaluation information of LNZNs and
make the decision result more reliable

7. Conclusion

To make the LNN information more reliable, this study
proposed an LNZN notion in terms of the truth, falsehood,
and indeterminacy linguistic Z-numbers as a new linguistic
neutrosophic framework. 'en, the proposed operational
relations and score and accuracy functions of LNZNs are to
realize reasonable operations and sorting rules of LNZNs in
the setting of LNZNs. 'e proposed LNZNWAM and
LNZNWGM operators provided useful information ag-
gregation tools in MAGDM problems with the LNZN in-
formation. 'en, the established MAGDM approach in
terms of the proposed LNZNWAM and LNZNWGM op-
erators and score and accuracy functions can solveMAGDM
problems under the environment of LNZNs. 'rough the
application of the proposed MAGDM method in the in-
dustrial robot selection problem and the comparison of
existing decision-making methods, the decision results
demonstrated not only the suitability and efficiency of the
proposed MAGDM approach in the LNZN setting but also
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Figure 1: Sorting orders of the four alternatives regarding the developedMAGDMapproach using the LNZNWAMand LNNWGMoperators.

Table 1: Decision results of different MAGDM methods.

MAGDM method Score value Sorting order 'e best one
Existing MAGDM method using equation (1) [12] 0.7676, 0.7899, 0.7695, 0.7871 N2 ≻ N4 ≻ N3 ≻ N1 N2
Existing MAGDM method using equation (2) [12] 0.7602, 0.7831, 0.7607, 0.7745 N2 ≻ N4 ≻ N3 ≻ N1 N2
Proposed MAGDM method using equation (18) 0.7452, 0.7681, 0.7450, 0.7535 N2 ≻ N4 ≻ N1 ≻ N3 N2
Proposed MAGDM method using equation (19) 0.7343, 0.7585, 0.7330, 0.7411 N2 ≻ N4 ≻ N1 ≻ N3 N2

Journal of Mathematics 11



the superiority of the new MAGDM method over the
existing ones.

However, the limitations of this study lie in the lack of
flexible decision-making methods and quantitative algo-
rithms for reliability measures of LNNs. To overcome the
limitations, we shall further study new aggregation operators
with a changeable parameter, flexible MAGDM methods,
and some quantitative algorithms of the reliability measures.
'en, we shall use them in engineering areas such as en-
vironmental risk assessment and management, slope sta-
bility/risk assessment, and construction engineering
management in the LNZN environment.
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