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In this paper, new explicit wave solutions via liquid-gas bubbles are obtained for the fractional Kudryashov-Sinelshchikov (KS)
equation under thermodynamic assumptions. A new fractional de�nition is applied to get these solutions that are utilized to
represent the phenomenon of pressure waves under thermodynamic conditions. Two analytical techniques are used to explore the
model which is sinh-Gorden equation expansion and Riccati-Bernoulli Sub-ODE methods. ese approaches provide complex
hyperbolic, hyperbolic, complex trigonometric, and trigonometric solutions for the fractional KS equation, particularly singular,
combined singular, dark, bright, combined dark-bright, and other soliton solutions. Furthermore, acquired results are illustrated
by 3D graphs for suitable parametric values that highlight the physical importance and dynamical behaviors of the equation. It is
also demonstrated that the purposed approaches are powerful strategies for developing exact traveling wave solutions for a wide
range of problems found in mathematical sciences.

1. Introduction

In recent years, exact solutions to nonlinear partial di�er-
ential equations (NLPDEs) have received the attention of
many researchers and they have used a variety of ap-
proaches. Some of them are listed below. Wazwaz used the
tanh approach to develop periodic soliton solutions to the
Dodd-Bullough-Mikhailov and Tzitzeica-Dodd-Bullough
equations. Sun et al. used the Hirota bilinear approach to
�nd the M-lump solutions B-Kadomtsev-Petviashvili
equation. Durur et al. applied the KdV6 subequation ap-
proach. Hosseini et al. used the linear superposition tech-
nique to investigate soliton solutions of the Hirota-Satsuma-
Ito problem. Raza et al. used the Painleve method to solve a

nonlinear Kudryashov problem. e modi�ed simple
equation approach was used by Akbulut et al. to solve the
�fth-order KdV equation. Ma et al. used the �rst integral
approach to extract dark and bright solitons from the
Hirota-Maccari system. Kumar developed the generalized
exponential rational function approach to discover traveling
waves, kink waves, rational function, lump-type solitons,
multi-solitons, hyperbolic function, and trigonometric so-
lutions. Using the simplest equation approach, Inc et al.
discovered accurate analytic solutions for the (2 + 1)-di-
mensional Ito problem [1–10].

Many natural phenomena are determined fromNLPDEs
of integer order. ese models are used in numerous dis-
ciplines of research such as bio-sciences, engineering, and
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economics [11–13]. However, these integer-order models
are insufficient without the nonlocal property. To overcome
this problem, fractional nonlinear partial differential
equations (FNPDEs) are introduced. Studying these models
reveals the unique aspects while employing computational
and numerical approaches. Fractional operators are
employed to transform fractional expressions to nonlinear
ordinary differential equations (NLODEs) of integer order
such as Laplacian, Caputo-Fabrizio, Yang-Abdel-Aty-Cat-
tani, Weyl, and Riesz derivatives are used to see the memory
effects in a number of physical disciplines [14–18].

One of the most significant research fields in ocean
engineering and geo physics is the solitons theory. Several
soliton solutions have been determined in the last two de-
cades utilizing numerical and analytical techniques. Re-
searchers are looking for new and general solitons from
various NLPDEs, such as the generalized Burgers, Broer-
Kaup-Kupershmidt, modified Kawahara, Dullin-Gottwald-
Holm, modified Zakharov-Kuznetsov, fractional wazwaz-
benjamin-bona-mahony, Camassa-Holm, (3 + 1)-dimen-
sional extended Jimbo-Miva equation, and nonlinear
Schrödinger dynamical models. Furthermore, they have
recently proposed and implemented integration strategies to
analyze NLPDEs to find the soliton solutions [19–27].

In recent decades, utilizing fractional derivatives to in-
vestigate soliton solutions has become a fascinating research
topic. As a subcategory of classical calculus, fractional cal-
culus (FC) has been shown to be a convenient field in the
study of a wide range of nonlinear processes. Fractional
differential equations (FDEs) are the best methods of
identifying nonlinear systems. FC can also be used to de-
velop physical models that are based on both the time
moment and the time history [28]. *e fractional-order
strategies can be applied to those models which have more
degrees of freedom. Furthermore, integer-order equations
have several limitations that are resolved by FDEs. A frac-
tional operator acts as a classical derivative when it ap-
proaches unity while the standard calculus includes the
function composition, chain rule, linearity, quotient, and
product rules. Solitary wave solutions to FDEs have been
investigated by many researchers.

A classical nonlinear media can be thought of as a
combination of liquid and gas bubbles of the same size. *e
study of pressure wave propagation in a liquid with gas
bubbles is a challenging subject in mathematics and physics.
In such mixes, there exist solitary and periodic waves that
can be explained using nonlinear partial differential equa-
tions. In 2010, Kudryashov and Sinelshchikov developed a
more generic nonlinear partial differential equation which is
Kudryashov-Sinelshchikov model to explain pressure waves
in a combination of liquid and gas bubbles by taking into
account liquid viscosity and heat transport [29, 30]. Finding
accurate solutions to nonlinear evolution equations origi-
nating in mathematical physics has been more significant in
the study of nonlinear physical events in recent decades.
Many mathematicians and physicists are interested in
traveling wave solutions, which are important solutions to
nonlinear evolution equations. Finding novel solutions is
important because they can give additional information for

understanding physical processes, whether they are exact or
numerical approximation solutions.

In this work, the Atangana-Baleanu (AB) fractional
derivative is used to locate solitary wave solutions of NLPDE,
namely, the fractional Kudryashov-Sinelshikov (FKS)
model. We will use the extended sinh-Gordon equation
expansion method (EShGEEM) and the Riccati-Bernoulli
(R-B) Sub-ODE method to find some new complex hy-
perbolic and complex trigonometric function solutions,
particularly dark, bright, combined dark-bright, singular,
combined singular soliton, and other soliton solutions from
the FKS model [31–34]. *is paper is organized as follows:
the mathematical analysis of the considered model is pre-
sented in Section 2. *en, description of utilized techniques,
namely, the EShGEE and the R-B sub-ODE techniques is
given in Section 3. *e extraction of soliton solutions for the
proposed model is given in Section 4. Section 5 gives
graphical illustrations of the obtained results. Finally, Sec-
tion 6 gives the conclusion of the complete work.

2. Governing Model

*e nonlinear fractional Kudryashov-Sinelshikov (FKS)
equation [35] is expressed as

D
ξ
xΘt + λ1ΘΘx + Θxxx + α1 ΘΘxx( x − μ1ΘxΘxx − β1Θxx

− σ1 ΘΘx( x � 0,

(1)

where the dynamical behavior of nonlinear wave processes
in a liquid containing gas bubbles is described by the
function Θ � Θ(x, t) and λ1, α1, μ1, β1, and σ1 are constants
with ξ ∈ [0, 1]. *is equation was presented by Kudryashov
and Sinelshchikov to describe the wave dynamics in liquids.
*is equation is also named as Korteweg-de Vries (KdV) and
KdV-Burger models under assumptions given as follows:

(i) For μ1 � α1 � σ1 � β1 � 0, equation (1) matches
the well-known KdV equation

(ii) For α1 � μ1 � σ1 � 0, equation (1) matches the
well-known KdV Burgers equation

(iii) For λ1 � α1 � 1, β1 � σ1 � 0, equation (1) matches
the generalized KdV equation

2.1. ABR Fractional Derivative. *e ABR fractional
operator is given by

(ABR)D
ξ
b+S(t) �

B(ξ)

1 − ξ
d
dt


t

b
S(ξ)Gξ

− ξ(t − ξ)
ξ

1 − ξ
⎛⎝ ⎞⎠dx,

(2)

where the defining formula for the Mittage-Leffler function
Gξ is given as follows:

Gξ
− ξ(t − ξ)

ξ

1 − ξ
⎛⎝ ⎞⎠ � 

∞

m�0

(− ξ/(1 − ξ))
m

(t − ξ)
ξm

Γ(ξm + 1)
, (3)
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where the normalization function is B(ξ),
B(0) � 1 � B(1), and B(ξ) � (1 − ξ + (ξ/(Γ(ξ)))) for
ξ ∈ (0, 1). *us,

(ABR)D
ξ
b+S(x) �

B(ξ)

1 − ξ


∞

m�0

− ξ
1 − ξ

 

ξ

(RL)I
ξm
b+ (Sx).

(4)

As a result,

Θ(x, t) � Θ(Ψ),

Ψ � x +
w(1 − ξt)t

− ξm

(B)(ξ) 
∞
m�0 (− ξ/1 − ξ)

mΓ(1 − ξm)
,

(5)

where w is an unknown constant. *is transformation turns
equation (1) to an ODE. Once acquired ODE is integrated
using constant of integration to be zero, the result is

wΘ +
λ1
2
Θ2 + Θ′′ − α1ΘΘ′′ −

μ1
2
Θ′2 − β1Θ′ − σ1ΘΘ′ � 0.

(6)

Balancing the higher-order nonlinear term Θ2 and
dispersive term Θ′′, that is, 2M � M + 2, gives M � 2 of the
above equation.

3. Description of Applied Methods

In this section, we will explain the methodologies extended
sinh-Gordon equation expansion and Riccati-Bernoulli Sub-
ODE to find soliton solution of the governing model.

3.1. >e Algorithm of the EShGEEM. Consider the following
NLPDE:

F1 Θ,Θx,Θy,Θz,D
ξ
tΘ,Θxx,Θyy,Θzz,Θxy,D

2ξ
t Θ, . . .  � 0,

(7)

where F1 is the polynomial in Θ with its partial derivatives.
By applying the transformation given by equation (5),
equation (7) is turned into ODE.

G1 Θ,Θ′,Θ′′,Θ′′′, . . .( , (8)

where prime shows derivative with respect to Ψ. *e
methodology of EShGEEM to find the solution of ODE is
given as follows.

Consider the following sinh-Gordon equation:

Θxt � c1 sin h(Θ), (9)

where c1 is the speed and Θ is the amplitude of traveling
wave. Using the transformation Θ(x, t) � Θ(Ψ), given in
equation (5), reduces the above equation to the following
ODE:

Θ′′ �
c1

w
sin h(Θ). (10)

Multiplying Θ′ on both sides of the above equation and
integrating it once give

Θ
2

 
′

 

2

�
c1

w
sin h

2 Θ
2

  + q, (11)

where q is the constant of integration. By inserting (Θ/2) �

v(ξ) and (c1/w) � p in the above equation, we obtain

v′ �
�������������

q + p sin h
2
(v)



. (12)

*e above equation has the following sets of solutions for
different parametric values of q and p.

Case 1. When q � 0 and p � 0, equation (12) takes the form
as

v′ � sin h(v). (13)

When equation (13) is simplified, it gives the following
results:

sin h(v) � ±sec h(Ψ),

cos h(v) � − tan h(Ψ),
(14)

and

sin h(v) � ± csc h(Ψ),

cos h(v) � − cot h(Ψ).
(15)

Case 2. When q � 1 and p � 1, equation (12) becomes

v′ � cos h(v), (16)

and when equation (13) is simplified, we get the following
results:

sin h(v) � tan(Ψ),

cos h(v) � ±sec(Ψ),
(17)

and

sin h(v) � − cot(Ψ),

cos h(v) � ±csc(Ψ).
(18)

Now, to find the solution of equation (6), we use the
following expressions:

Θ(v) � 
M

i�1
cos h

i− 1
(v) Ei sin h(v)+Pi cos h(v)  + P0. (19)

It is considered that the solution Θ(v) of the above
equation as well as equations (13)–(15) can be expressed as
follows:

Θ(Ψ)�
M

i�1
(− tan h(Ψ))

i− 1 ± ιEisech(Ψ) − Pi tan h(Ψ) +P0,

(20)

and
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Θ(Ψ)�
M

i�1
(− cot h(Ψ))

i− 1 ±Eicsch(Ψ) − Picot h(Ψ) +P0.

(21)

Similarly, it is supposed that the solution Θ(Ψ) of
equation (6) along with equations (13)–(15) can be expressed
as follows:

Θ(Ψ) � 
M

i�1
(±sec(Ψ))

i− 1
Ei tan(Ψ)±Pisec(Ψ)  + P0, (22)

and

Θ(Ψ) � 
M

i�1
(±csc(Ψ))

i− 1
− Ei cot(Ψ) ± Picsc(Ψ)  + P0.

(23)

Calculate the value of M using the homogeneous bal-
ancing rule which is done by balancing the higher order
nonlinear and dispersive term. *en, substituting this value
in equations (13) and (19) yields a system of equations. By
equating the coefficients of sin hj(v)cos hk(v) to zero and
solving the obtained system, we get the values of Pi, Ei, and
w. *en, put these values in equations (20) and (21) to obtain
equation (1) solutions (for example, Case 1). Similarly, we
can apply the same steps in Case 2 to obtain the solutions.

3.2. >e Fundamental Aspects of the R-B Sub-ODE Method.
*is section describes the R-B sub-ODE methodology.

Step 1. Consider the NLPDE along with the transformation
equation and ODE given in equations (5), (7), and (8),
respectively.

Step 2. We assume that equation (8) has the solution of the
form given as follows:

Θ′ � a1Θ
2− m

+ b1Θ + c1Θ
m

, (24)

where a1, b1, c1, and m are unknowns. From equation (24),
we get

Θ′′ � a1b1(3 − m)Θ2− m
+ a

2
1(2 − m)Θ3− 2m

+ mc
2
1Θ

2m− 1

+ b1c1(m + 1)Θm
+ 2a1c1 + b

2
1 Θ,

Θ′′′ � a1b1(3 − m)(2 − m)Θ1− m
+ a

2
1(3 − 2m)(2 − m)Θ2− 2m

 

_
a1Θ

2− m
+ b1Θ + c1Θ

m
 

+ m(2m − 1)c
2
1Θ

2m− 2
+ b1c1m(m + 1)Θm− 1

+ 2a1c1 + b
2
1 

a1Θ
2− m

+ b1Θ + c1Θ
m

 .

(25)

Remark 1. Equation (24) is known as the R-B equation. At
a1 ≠ 0, c1 � 0, and m not equal to zero, it is referred as
Bernoulli equation. At a1c1 ≠ 0 and m � 0, this model is
regarded as Riccati equation.

*e solutions for R-B equation (24) are explained as
follows.

Case 3. When m � 1, the solution is

Θ(Ψ) � Ω exp a1+b1+c1( )Ψ. (26)

Case 4. When m≠ 1, b1 � 0, and c1 � 0, the solution is

Θ(Ψ) � a1(m − 1)(Ψ +Ω)( 
1/(m− 1)

. (27)

Case 5. When m≠ 1, b1 ≠ 0, and c1 � 0, the solution is

Θ(Ψ) �
a1

b1
+Ω exp b1(m− 1)( )Ψ 

1/(m− 1)

. (28)

Case 6. When m≠ 1, a1 ≠ 0, and b21 − 4a1c1 < 0, the solution
is

Θ(Ψ) �
− b1

2a1
+

����������

− b21 + 4a1c1



2a1

⎛⎜⎜⎝

· tan
(1 − m)

����������

− b21 + 4a1c1



(Ω + Ψ)

2
⎛⎜⎜⎝ ⎞⎟⎟⎠⎞⎟⎟⎠

1/(m− 1)

,

(29)

and

Θ(Ψ) �
− b1

2a1
−

����������

− b21 + 4a1c1



2a1

⎛⎜⎜⎝

· cot
(1 − m)

����������

− b21 + 4a1c1



(Ω + Ψ)

2
⎛⎜⎜⎝ ⎞⎟⎟⎠⎞⎟⎟⎠

1/(m− 1)

.

(30)

Case 7. When m≠ 1, a1 ≠ 0, and b21 − 4a1c1 > 0, the solution
is

Θ(Ψ) �
− b1
2a1

−

���������

b21 − 4a1c1



2a1

⎛⎜⎜⎝

· coth
(1 − m)

���������

b21 − 4a1c1



(Ω + Ψ)

2
⎛⎜⎜⎝ ⎞⎟⎟⎠⎞⎟⎟⎠

1/(m− 1)

(31)

and
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Θ(Ψ) �
− b1

2a1
+

���������

b21 − 4a1c1



2a1

⎛⎜⎜⎝

· tanh
(1 − m)

���������

b21 − 4a1c1



(Ω + Ψ)

2
⎛⎜⎜⎝ ⎞⎟⎟⎠⎞⎟⎟⎠

1/(m− 1)

.

(32)

Case 8. When m≠ 1, a1 ≠ 0, and b21 − 4a1c1 � 0, the solution
is

Θ(Ψ) �
− b1

2a1
+

1
a1(m − 1)(Ω + Ψ)

 

1/(m− 1)

. (33)

Here, Ω is a constant.

Step 3. *e algebraic equations of Θ are obtained by
inserting the derivatives in equation (8). m can be calculated
using the symmetry of the right-hand elements in equation
(24) and setting the greatest power exponents of Θ to
equivalence in equation (8). When the coefficients ofΘj(j �

1, 2, 3, . . .) are compared, algebraic equations of a1, b1, c1,
and w are obtained. By solving these equations and inserting
m, a1, b1, c1, w, and Ψ into equations (26)–(33), the traveling
wave solutions of equation (6) are obtained.

4. Soliton Solutions of Fractional KS Equation

*is section will analyze the EShGEE and R-B sub-ODE
models. *e algorithms for the proposed techniques are
explained in the following subsections. As a consequence, we
will obtain certain solutions, namely, dark, bright, combined
dark-bright, singular, combined singular, and other soliton
solutions.

4.1. Applying First Method. In this part, a novel form of
EShGEEM is used to find innovative soliton solutions of the
given model.

4.1.1. Case 1: v′ � sin h(v). With the help of equations
(19)–(21), the solution of equation (6) has the form as
follows:

Θ(Ψ) � ± ιE1sec h(Ψ) − P1 tan h(Ψ) + P0 ∓ ιE2sec h(Ψ)

tan h(Ψ) + P2 tan h
2
(Ψ),

(34)

and

Θ(Ψ) � ±E1csc h(Ψ) − P1 cot h(Ψ) + P0 ∓E2 cot h(Ψ).

· csc h(Ψ) + P2 cot h
2
(Ψ),

(35)

and so

Θ(v) � E1 sin h(v) + P1 cos h(v) + P0 + E2 cos h(v)sin h(v)

+P2 cos h
2
(Ψ),

(36)

where either E1 or E2 and P1 or P2 can be zero but both
cannot be zero at the same time. By putting equation (36)
into (6), we get nonlinear algebraic system that yields the
solution sets shown as follows:

Set 1-1:

β1 � ±(w + 1), μ1 � − 4α1, σ1 � ±
α1w + λ1

w
,

E1 �
±w
λ1

, E2 � 0, P0 �
− w

λ1
,

P1 �
±w
λ1

, P2 � 0.

(37)

*e new solitary wave solutions for the FKS equation
are obtained by inserting the aforementioned values
into equations (34) and (35) which are given as follows:

Θ1− 1− 1(Ψ) �
− w

λ1
±
ιw sec h(Ψ)

λ1
∓

w tan h(Ψ)

λ1
, (38)

and

Θ1− 1− 2(Ψ) �
− w

λ1
±

w csc h(Ψ)

λ1
∓

w cot h(Ψ)

λ1
. (39)

Set 1-2:

β1 � 0, λ1 � ±
12w

2

E2(3w − 1)
, μ1 � ∓

18w(w − 1)

E2(3w − 1)
,

σ1 � 0, E1 � 0, P0 � ±
(3w + 1)E2

6w
,

P1 � 0, P2 � ∓E2, α1 � ±
6w(w − 1)

E2(3w − 1)
.

(40)

By putting equations (34) and (35) into (6), we get
nonlinear algebraic system that yields the solution sets
shown as follows:

Θ1− 2− 1(Ψ) � ±
(3w +1)

6w
− ι sec h(Ψ)tanh(Ψ)∓ tan h

2
(Ψ),

(41)

and

Θ1− 2− 2(Ψ) � ±
(3w + 1)

6w
∓ cot h(Ψ)csc h(Ψ)∓ cot h

2
(Ψ).

(42)

Set 1–3:
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β1 � ±(w + 1), λ1 �
− 2w

P0
, μ1 � −

w + 6
2P0

,

σ1 � ±
w + 6
6P0

, E1 � ±
P0

2
, P1 � ±

P0

2
,

P2 � −
P0

2
, α1 � ±

6 + w

6P0
 .

(43)

By putting equations (34) and (35) into (6), we get
nonlinear algebraic system that yields the solution sets
shown as follows:

Θ1− 3− 1(Ψ) �1 ±
ι sec h(Ψ)

2
±
ι sec h(Ψ)tan h(Ψ)

2

∓
tan h(Ψ)

2
−
tan h

2
(Ψ)

2
,

(44)

and

Θ1− 3− 2(Ψ) � ±
(3w + 1)

6w
∓ cot h(Ψ)csc h(Ψ)∓ cot h

2
(Ψ).

(45)

Set 1–4:

β1 � ±(w + 1), λ1 �
− w

E2(w − 1)
,

μ1 �
3

E2(w − 1)(w − 2)
, σ1 � ∓

1
(w − 2)E2

,

E1 � ∓E2(w − 1), P1 � ∓E2(w − 1), P2 � − E2,

α1 �
− 1

E2(w − 1)(w − 2)
.

(46)

By inserting equations (34) and (35) into (6), we get
nonlinear algebraic system that yields the solution sets
shown as follows:

Θ1− 4− 1(Ψ) � (w − 2) ± ι(w − 1)sec h(Ψ)

∓ι sec h (Ψ)tan h(Ψ) − (1 − w)tan h(Ψ)

+ tan h
2
(Ψ),

(47)

and
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Figure 1: Plots of equations (38) and (39) for m � 2, ξ � 0.3, λ1 � 0.5, and w � 3. (a) Θ111, (b) Θ112, (c) Θ111, Θ112.
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Θ1− 4− 2(Ψ) � (w − 2) ±(w − 1)csc h(Ψ)

∓ csc h(Ψ)cot h(Ψ) − (1 − w)cot h(Ψ)

+ cot h
2
(Ψ).

(48)

Set 1–5:

β1 � ±(w + 1), λ1 �
w

E2(w − 1)
,

μ1 �
− 3

E2(w − 1)(w − 2)
, σ1 � ∓

1
(w − 2)E2

,

E1 � ∓E2(w − 1), P1 � ∓E2(w − 1), P2 � − E2,

α1 �
1

E2(w − 1)(w − 2)
.

(49)

By using equations (34) and (35) into (6), we get non-
linear algebraic system that yields the solution sets shown as
follows:

Θ1− 5− 1(Ψ) � (− w + 2) ± ι(w − 1)sec h(Ψ)∓ι sec h(Ψ)tan h(Ψ)

− (− 1 + w)tan h(Ψ) − tan h
2
(Ψ),

(50)

and

Θ1− 5− 2(Ψ) � − (w − 2)∓ (w − 1)csc h(Ψ)∓ csc h(Ψ)cot h(Ψ)

∓(− 1 + w)cot h(Ψ) − cot h
2
(Ψ).

(51)

4.1.2. Case 2: v′ � cos h(v). With the help of equations (19),
(22), and (23), the solution of equation (6) has the form as
follows:

Θ(Ψ) � E1 tan(Ψ) ± P1sec(Ψ) + P0 ± E2sec(Ψ)tan(Ψ)

± P2sec
2
(Ψ),

(52)

and

Θ(Ψ) � − E1 cot(Ψ) ± P1csc(Ψ) + P0 ∓ E2 cot(Ψ)csc(Ψ)

± P2csc
2
(Ψ),

(53)
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Figure 2: Plots of equations (41) and (42) for m � 2, ξ � 0.3, λ1 � 0.5, and w � 3. (a) Θ121, (b) Θ122, (c) Θ121, Θ122.
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and so

Θ(v) � E1 sinh(v) + P1 cosh(v) + P0 + E2 cosh(v)sinh(v)

+ P2 cos h
2
(Ψ),

(54)

where either E1 or E2 and P1 or P2 may be zero but both
cannot be zero at the same time. By substituting equation
(54) into (6), we arrive at a nonlinear algebraic system which
gives following solution sets.
Set 2-1:

β1 � 0, μ1 �
18w(w +1)

P2(3w +1)
, σ1 � 0, E1 � 0, E2 � P2,

P0 �
1
6
, P1 � 0.

(55)

By plugging the above values in equations (52) and (53),
we obtain the new solitary wave solutions for the fractional
KS equation as

Θ2− 1− 1(Ψ) �
− (3w + 1)

6w
∓ ι sec(Ψ)tan(Ψ) ± sec2(Ψ), (56)

and

Θ2− 1− 2(Ψ) �
− (3w + 1)

6w
± csc(Ψ)cot(Ψ) ± csc2(Ψ). (57)

Set 2-2:

β1 � ι(w − 1), λ1 � ∓
ιw
P1

, μ1 � ∓
3ι

P1(w + 2)
,

σ1 � ∓
w + 1

(w + 2)P1
, E1 � ±P1, P0 � − ιP1,

P2 � ∓
ιP1

w + 1
, E2 �

ιP1

w + 1
, α1 � ±

1
P1(w + 2)

.

(58)

By plugging the above values in equations (52) and
(53), we get new solitary wave solutions for the frac-
tional KS model as

Θ2− 2− 1(Ψ) � ∓ι∓ι tan(Ψ) ±
sec(Ψ)tan(Ψ)

w + 1

± sec(Ψ)∓
ι sec2(Ψ)

w + 1
,

(59)

and
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Figure 3: Plots of equation (44) and (45) for m � 2, ξ � 0.3, λ1 � 0.5, and w � 0.3. (a) Θ131, (b) Θ132, (c) Θ131, Θ132.
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Θ2− 2− 2(Ψ) � ∓ι∓ι cot(Ψ) ±
csc(Ψ)cot(Ψ)

w + 1
± csc(Ψ)

∓
ι csc2(Ψ)

w + 1
.

(60)

Set 2-3:

β1 � ±(− w + 1), λ1 �
− w

P0
, μ1 � −

w − 6
4P0

,

σ1 � ±
ι(w − 6)

12P0
, E1 � ± ιP0, P1 � ιP0,

P2 � P0, α1 �
6 − w

12P0
.

(61)

By plugging the above values in equations (52) and
(53), we obtain following new solitary wave solutions
for the fractional KS model:

Θ2− 3− 1(Ψ) � 1 ± sec(Ψ)tan(Ψ) ± ι tan(Ψ) ± ι sec(Ψ)

± sec2(Ψ),

(62)

and

Θ2− 3− 2(Ψ) � 1∓ csc(Ψ)cot(Ψ)∓ ι cot(Ψ) ± ι csc(Ψ)

± csc2(Ψ).

(63)

Set 2–4:

β1 �
− ι(w − 4)

2
, λ1 �

− w

2P2
, μ1 �

w − 24
32P2

,

σ1 �
ι(w − 24)

48P2
, E2 � 0,

E1 � − 2ιP2, P1 � 0, P0 � 2P2, α1 �
− (w − 24)

96P2
.

(64)

By plugging the above values in equations (52) and
(53), we obtain the new solitary wave solutions for the
fractional KS model as

Θ2− 4− 1(Ψ) � 2 + 2ι tan(Ψ) ± sec2(Ψ), (65)

and
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Figure 4: Plots of equations (56) and (57) for m � 2, ξ � 0.3, λ1 � 0.5, and w � 0.3. (a) Θ211, (b) Θ212, (c) Θ211, Θ212.
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Θ2− 4− 2(Ψ) � 2 − 2ι cot(Ψ) ± csc2(Ψ). (66)

Set 2–5:

β1 �
− ι(w − 4)

2
, λ1 �

− 2w

P2(w + 4)
,

μ1 �
24

P2(w + 4)(w + 8)
, σ1 �

− 4ι
P2(w + 8)

, E2 � 0,

E1 �
ι(w + 4)P2

2
, P1 � 0, P0 �

P2(w + 4)

2
,

α1 �
8

(w + 4)(w + 8)P2
.

(67)

By plugging the above values in equations (52) and (53),
we get the following new solitary wave solutions for the
fractional KS equation:

Θ2− 5− 1(Ψ) �
(w + 4)

2
+
ι tan(Ψ)(w + 4)

2
± sec2(Ψ), (68)

and

Θ2− 5− 2(Ψ) �
(w + 4)

2
−
ι cot(Ψ)(w + 4)

2
± csc2(Ψ). (69)

Remark 2. To the best of our knowledge, certain solutions
have not yet been documented in the literature by other
researchers [35–37]. All answers are verified by re-entering
them into the given model using maple software and proved
to be accurate and new.

4.2. Application of R-B Sub-ODEMethod. *is part explains
the solutions using R-B sub-ODE method. For this purpose,
consider the ODE given in equation (6) and assume the
solution in the following form:

Θ′ � a1Θ
2− m

+ b1Θ + c1Θ
m

. (70)

Substituting the above equation in equation (6) gives the
system of equations as follows:
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Figure 5: Plots of equations (59) and (60) for m � 2, ξ � 0.3, λ1 � 0.5, and w � 0.3. (a) Θ221, (b) Θ222, (c) Θ221, Θ222.
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− 2α1a
2
1 −

1
2
μ1a

2
1�0,

− 3a1α1b1 − a1b1μ1+2a
2
1 − a1σ1�0,

λ1
2

+3a1b1 − α1 2a1c1+b
2
1 −

1
2
μ1 2a1c1+b

2
1 − β1a1 − σ1b1�0,

− α1b1c1 − b1c1μ1+2a1c1+b
2
1 − b1β1 − c1σ1+w�0,

b1c1 −
1
2
μ1c

2
1 − β1c1�0.

(71)

Solving the system gives the solution set as follows. Set

a1 �
2λ1σ1

− μ1w+4λ1( 
, α1 �−

1
4
μ1, b1 �

4σ1w
− μ1w+4λ1( 

, c1 �0,

β1 �
μ21w

2
− 8λ1μ1w+16σ21w+16λ21 

4σ1 − μ1w+4λ1( 
.

(72)

Now, we will look at the cases of solutions.

(1) When m≠ 1, b1 ≠ 0, and c1 � 0, the solution of
equation (6) using equation (28) is

Θ1(Ψ) �
− λ1
2w

+Ω exp
− 4wΨσ1

− μ1w + 4λ1
 . (73)

(2) When m≠ 1, a1 ≠ 0, and b21 − 4a1c1 > 0, the solution
of equation (6) using equations (31) and (32) is

Θ2(Ψ) �
− w

λ1
−

1
4λ1σ1

������������

16σ21w
2

− μ1w+4λ1( 
2




· tanh
1
2

������������

16σ21w
2

− μ1w+4λ1( 
2




(Ψ+Ω)
⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠ − μ1w+4λ1( ,

(74)

and

Θ3(Ψ) �
− w

λ1
−

1
4λ1σ1

�������������

16σ21w
2

− μ1w + 4λ1( 
2




· cot h
1
2

�������������

16σ21w
2

− μ1w + 4λ1( 
2




(Ψ +Ω)
⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠ − μ1w + 4λ1( ,

(75)
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Figure 6: Plots of equations (65) and (66) for m � 2, ξ � 0.3, λ1 � 0.3, and w � 0.3. (a) Θ241, (b) Θ242, (c) Θ241, Θ242.
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where λ1, Ψ, Ω, σ1, and μ1 are the arbitrary constants.

5. Graphical Representations

In this part, we show graphical representations of a few of the
determined solutions. It is worth noting that explicit and
consistent solutions are obtained by employing two distinct
reliable approaches. From the first scheme, Figures 1–3
represent the graphs of solution sets 1, 2, and 3 of Case 1
and Figures 4–6 represent the graphs of solution sets 1, 2,
and 4 of Case 2 using appropriate parameters values.
Similarly, Figures 7–9 represent the graphs of sets 1 and 2 of
the second method for suitable parametric values.

5.1. Results andDiscussion. Graphs are the important tool to
visualize data. In this part, we will discuss graphical visu-
alization of obtained results. Results are obtained in form of
trigonometric and hyperbolic functions. *e absolute 3D
and line graphs of positive functions are plotted of FKS

model using EShGEE technique. In Case 1 and Case 2,
singular soliton and solitary wave solutions are obtained by
taking suitable parametric values m � 2, ξ � 0.3, λ1 � 0.5,
and w � 3 shown in Figures (1)–(6). If negative term values
are plotted, the shape of graph is reversed. By employing R-B
technique, exponential, trigonometric and hyperbolic so-
lutions are obtained. *eir graphs are shown in
Figures (7)–(9) which are solitary and singular solitons by
taking these parametric m � 0, ξ � 0.2, λ1 � 0.25, Ω1 � 0.3,
σ1 � 0.3, μ1 � 0.3, and w � 2 values. Under thermodynamic
assumptions, obtained solutions have many applications in
the liquids containing gas bubbles.

6. Conclusion

*is study successfully employed the extended sinh-Gorden
equation expansion and Riccati-Bernoulli sub-ODE tech-
niques with a novel fractional operator to the nonlinear
fractional Kudryashov-Sinelshchikov equation that occurs
in nonlinear wave processes in a liquid containing gas
bubbles. *e methodologies adopted gave rise to new hy-
perbolic, complex hyperbolic, trigonometric, and complex
trigonometric solutions for the model, namely, dark, bril-
liant, combined dark-bright, singular, combined singular,
and other solitary wave solutions. Furthermore, the 3D
graphics for suitable parametric values have been displayed
that highlight the physical importance and dynamical be-
haviors of the governed model. *erefore, the results ob-
tained illustrate that the implemented approaches are highly
efficient and resilient for solving many nonlinear problems
in mathematical physics.
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