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(is study examines chained options that are connected in the sense that another barrier option becomes active continuously after
the underlying asset price crosses a primary barrier.(ese barrier options have several advantages. First, they preserve the merit of
regular barrier options, but demand far lower option premiums, which appeal to option traders. Second, they reduce the higher
risk of loss of double barrier options, making option strategies more profitable in certain cases. (ird, they have closed-form
pricing formulas, unlike double-barrier options, and, thus, avoid the complexity of option pricing. (erefore, they help to enlarge
the range of trader’s choice according to a variety of demand of buyers. (e values of chained options are compared to those of
similar single- and double-barrier options.(is study extends the chained option with two barriers to a generalized chained option
with n-barriers. In addition, this paper proves the closed formulas of generalized chained options with n-barriers using
mathematical induction.

1. Introduction

(e rapid spread of the novel coronavirus (COVID-19) has
dramatically impacted financial markets worldwide. It has
created an unprecedented level of risk, causing investors to
suffer significant losses in a very short period of time [1]. In a
market facing sudden crisis, financial derivatives, such as
barrier options, can be considered to reduce the risk of
volatility and save money.

Barrier options are a widely used class of path-dependent
financial derivatives because they are flexible and less ex-
pensive than vanilla options. Merton [2], Rubinstein and
Reiner [3], and Rich [4] provided a mathematical framework
and derived closed-form pricing formulas for various types
of single-barrier options. (ese studies assume that the
underlying asset price is monitored with respect to a single
constant barrier for the entire life of the option. Owing to
their popularity in the market, more complicated structures
of barrier options have been studied. Kunitomo and Ikeda
[5], Geman and Yor [6], and Pelsser [7] provided double-
barrier options with two barriers.

Additional modifications of the barrier options include
window barrier (partial barrier) options. In the case of a
window barrier option, the trigger is valid only within a
certain period. Heynen and Kat [8] studied partial barrier
options, where the underlying price was monitored during
only part of the option’s lifetime. By solving the Black-
–Scholes partial differential eqnarray under the appropriate
boundary conditions, Hui [9] priced front-end and rear-end
double barrier options, featuring early-ending and forward-
starting monitoring, respectively. Guillaume [10] provided
expressions of standard and partial window double-barrier
option values as the infinite sums of three-dimensional and
seven-dimensional normal distribution functions.

All the papers described above are concerned with
barrier options, where the monitoring of the barrier starts at
a predetermined date. (ere is another class of barrier
options with two barriers. (e option is a chained option in
which another barrier option is activated when a primary
barrier is hit. (is option has become popular in over-the-
counter equity and foreign exchange derivative markets. Jun
and Ku [11, 12] derived closed-form valuation formulas for
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chained barrier options of various types. Furthermore, Jun
[13] explored the continuity correction approach for the
approximate pricing of discretely monitored chained
options.

An international pattern of exotic derivatives, whose
value is determined by the price or volatility of the un-
derlying asset, appeared to have helped to transmit the fi-
nancial crisis of 2008 from the United States and European
Union to many different emerging market economies. (e
direct cost of these derivatives losses on nonfinancial firms is
approximately $530 billion, based on the sum of national
estimates [14]. (e complexity of pricing exotic derivatives
may put investors at risk if they cannot independently
evaluate the risks and price the derivatives.

In this study, the features of the chained option provide
several desirable properties. (e chained options can pro-
vide an initial protection period during which the option
cannot be knocked out so that it reduces the risk of loss when
a trader chooses to buy a double barrier option and is still
cheaper than a single barrier option. In addition, chained
options are the least expensive in certain cases among similar
single and double barrier options.

In Section 2, the values of chained options are compared
to those of similar single- and double-barrier options, and
graphs are shown to illustrate that chained options are less
expensive and more effective in various circumstances.
Section 3 gives the valuation formula of the generalized
chained option, which is an extended version of the chained
option with two barriers. Finally, conclusions are presented
in Section 4.

2. Comparison of Chained Options with Other
Barrier Options

(e valuation formulas for chained barrier options of var-
ious types are given in [11] for the constant barrier cases and
[12] for general curved barriers. In chained options, a regular
barrier option is activated when a primary barrier is hit. For
example, a down-and-in chained call (DICu) is a down-and-
in call option activated when the underlying asset price hits
an upper barrier level. (is option gives the option holder
the payoff of a call if the price of the underlying asset rises
above an upper barrier and then falls below a lower barrier
before expiry, and it pays off zero otherwise. An up-and-in
doubly chained call (UICu d) is an up-and-in call option
which is activated at a time when the asset price crosses two
different barrier levels (an up barrier followed by a down
barrier).

Chained options differ from double-barrier options in
the sense that the other barrier does not exist until one
barrier is hit according to their predetermined order. In
other words, crossing a barrier leads to the creation or
cancelation of a barrier option rather than a call or put.

Let r be the risk-free interest rate and σ be a constant.
Assume that the price of the underlying asset S follows a
geometric Brownian motion:

St � S0e
μt+σWt , (1)

where μ � r − (σ2/2) and Wt is a standard Brownian motion
under a filtered probability space (Ω,F, (Ft), P). Here, P is
the risk-neutral probability measure.

Let us denote with τu and τd the first time that the
underlying asset price St at time t hits the up barrier U and
down barrier D, respectively, and with τu d the first time after
τu that the underlying asset price touches the down barrier
D:

τu ≔ min t: St � U, U> S0􏼈 􏼉,

τd ≔ min t: St � D, D< S0􏼈 􏼉,

τu d ≔ min t> τu: St � D􏼈 􏼉.

(2)

Let
Xt � (1/σ) ln(St/S0), k � (1/σ) ln(K/S0), u �

(1/σ) ln(U/S0) and d � (1/σ) ln(D/S0). (e minimum and
maximum for Xt are

m
b
a � inf

t∈[a,b]
Xt( 􏼁,

M
b
a � sup

t∈[a,b]

Xt( 􏼁,
(3)

and are denoted by EP the expectation operator under the
P-measure.

(e chained options (DOCu,DICu) and double-barrier
options (UIDOC,UIDIC) can be defined as follows:

DOCu � e
− rT

E
P

ST − K( 􏼁
+1

mT
τu
> d,τu ≤T􏽮 􏽯

􏼢 􏼣,

DICu � e
− rT

E
P

ST − K( 􏼁
+1

mT
τu
≤ d,τu ≤T􏽮 􏽯

,􏼢 􏼣

UIDOC � e
− rT

E
P

ST − K( 􏼁
+1 τu ≤T< τd{ }􏼔 􏼕,

UIDIC � e
− rT

E
P

ST − K( 􏼁
+1 τu ≤T,τd ≤T{ }􏼔 􏼕,

(4)

where 1 is an indicator function, K is the strike price, and T

is the maturity of the options.
(e down-and-out chained call option (DOCu) is

similar to a double-barrier option with upper “in” and lower
“out” barriers (UIDOC) in the sense that they pay off a call if
the up barrier is touched and the down barrier is not before
expiry. However, they differ in the case of τd < τu <T< τu d;
the payoff of UIDOC is zero because the down barrier has
been touched, while DOCu pays off a call (ST − K)+. In
addition, the down-and-in call option DICu and up-and-in
and down-and-in double-barrier option UIDIC are similar,
but have different payoffs when τd < τu <T< τu d. Because
DICu ignores the movement of the underlying asset price
before reaching the up barrier, even if the down barrier has
been hit before τu, it pays off 0 unless the down barrier is
breached again after τu.

If one expects the underlying stock to rally strongly, an
up-and-in call option can result in a higher profitability than
the vanilla call option, and it is cheaper. If the trader wants to
maximize their profits, they may bet on a double barrier
option with an upper knock-in and a lower knock-out
barrier (UIDOC) at an even cheaper price. However, the
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trader faces a higher risk of loss if the underlying asset moves
downward and crosses the lower barrier at any time. What if
the trader holds a down-and-out chained option (DOCu)?
In this case, a lower knock-out barrier does not appear until
the upper barrier is touched. Once the underlying asset price
reaches the upper-barrier level, the probability of hitting the
down barrier afterward is much smaller than before. (e
chained option has a much lower risk of loss than a double-
barrier option (UIDOC) and is still cheaper than an up-and-
in call option (UIC), which results in higher profits.

Figure 1 shows the graphs of the option values UIC,
UIDOC, and DOCu at time t(< τu) and t(τd < τu < t< τu d).
(e parameter values in the left figure are
U � 105, D � 90, K � 100, r � 0.05, σ � 0.3, and T � 1. (e
closer the current asset price is to the up barrier, the greater
the likelihood of the option being knocked in and thus the
higher the option values.

(e parameter values that we used in the right figure are
U � 110, D � 95, K � 100, r � 0.05, σ � 0.3, and T � 1.
Once the down barrier was breached, the UIDOC was 0. If
the underlying asset price then rises to the up barrier, UIC
equals the vanilla call price, while DOCu is equivalent to the
regular down-and-out call price. From Figure 1, it is ob-
served that the chained down-and-out call option DOCu is
always in between UIC and UIDOC. Furthermore, when the
volatility is higher, DOCu is farther from the UIC because
the likelihood of the option being knocked out is greater.

As the down barrier decreases, the values of the three
options become close. However, if the down barrier ap-
proaches the initial spot S0, the difference between DOCu

and UIDOC becomes larger. Because they pay off a call
option, barrier criteria are satisfied, and the values naturally

increase as the strike price K increases. When S0 approaches
the up barrier, the value UIDOC approaches DOCu.

Next, we consider chained options with knock-in bar-
riers. A down-and-in chained call option (DICu) is a down-
and-in call option activated at a time when the underlying
asset price hits an upper-barrier level. DICu demands a far
lower premium than both the single up-and-in call option
(UIC) and double touch knock-in option (UIDIC). Figure 2
shows that DICu is lower than UIC and UIDIC at different
times. (e parameter values are
U � 110, D � 90, K � 100, r � 0.05, σ � 0.3, and T � 1.
UIDIC is the same as UIC if the current spot price is below
the down barrier 90 and decreases as the asset price St

increases otherwise. When τd < τu < t< τu d, both UIC and
UIDIC are equal to the vanilla call price. However, DICu is
the same as the vanilla call option if St is below the down
barrier, while it is equal to the regular down-and-in barrier
option price otherwise.

3. PricingFormulas forGeneralChainedOption

(e chained option pricing formula with only two barriers is
provided in the work of Jun and Ku [11]. In this section, the
valuation formula of the chained option with n(≥ 2)-bar-
riers is described.

Consider European options expiring at T with strike
price K, up barriers Ui(i � 1, . . . , n)(n≥ 2), and down
barriers Di(i � 1, . . . , n)(n≥ 2). (ese options are chained
options, where a barrier option is given when the underlying
asset price hits up and down barriers in the following four
orders:

A1: U1D1 · · · Un− 1Dn− 1Un Di <Ui, Di <Ui+1(i � 1, . . . , n − 1)􏼂 􏼃,

A2: D1U1 · · · DnUn Di <Ui(i � 1, . . . , n), Ui >Di+1(i � 1, . . . , n − 1)􏼂 􏼃,

A3: U1D1 · · · UnDn Di <Ui(i � 1, . . . , n), Di <Ui+1(i � 1, . . . , n − 1)􏼂 􏼃,

A4: D1U1 · · · Dn− 1Un− 1Dn Di <Ui, Ui >Di+1(i � 1, . . . , n − 1)􏼂 􏼃.

(5)

(e following theorem presents the valuation formula of
the general chained option, where the down-and-in call
option is given when the underlying asset price hits the
barriers in the order A1 or A2 with down barrier D(<Un).

Theorem 1. 3e valuation formula for the down-and-in call
option commencing at a time the underlying asset hits the
barriers in the order A1 or A2 and across the last up barrier Un

when the strike price K is greater than the down barrier D is
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Figure 2: Comparison of UIC,UIDIC,DICu when (a) t< τu and (b) τd < τu < t< τu d.
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Figure 1: Comparison of UIC,DOCu,UIDOC when (a) t< τu and when (b) τd < τu < t< τu d.
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where

z1 �
1

σ
��
T

√ ln
D

2
S0

U
2
nK

􏽙

n− 1

i�1

Di

Ui

􏼠 􏼡

2
⎛⎝ ⎞⎠ +

􏽥μ
σ

��
T

√
,

􏽥μ � r +
σ2

2
, z2 �

1
σ

��
T

√ ln
D

2

KS0
􏽙

n

i�1

Di

Ui

􏼠 􏼡

2
⎛⎝ ⎞⎠ +

􏽥μ
σ

��
T

√
,

(7)

and N(·) is the cumulative standard normal distribution
function.

Proof. Mathematical induction can be used to prove the
closed formula of chained option DICU1D1 ···Un− 1Dn− 1Un

.
When n � 1 in (I), then

DICU1
� S0

D

U1
􏼠 􏼡

2􏽥μ/σ2

N z1( 􏼁 − e
− rT

K
D

U1
􏼠 􏼡

2􏽥μ/σ2

· N z1 − σ
��
T

√
􏼐 􏼑

(8)

where

z1 �
1

σ
��
T

√ ln
D

2
S0

U
2
1K

􏼠 􏼡 +
􏽥μ
σ

��
T

√
, 􏽥μ � r +

σ2

2
(9)

(is formula is the same as(eorem 2.1 in [11].(us, (I)
holds for n � 1.

Suppose formula (I) holds for n � k:

DICU1D1 ···Uk− 1Dk− 1Uk
� S0

D

Uk

􏽙

k− 1

i�1

Di

Ui

⎛⎝ ⎞⎠

2􏽥μ/σ2

N z1( 􏼁 − e
− rT

K
D

Uk

􏽙

k− 1

i�1

Di

Ui

⎛⎝ ⎞⎠

2􏽥μ/σ2

N z1 − σ
��
T

√
􏼐 􏼑, (10)

where

z1 �
1

σ
��
T

√ ln
D

2
S0

U
2
nK

􏽙

k− 1

i�1

Di

Ui

􏼠 􏼡

2
⎞⎠ +

􏽥μ
σ

��
T

√
, 􏽥μ � r +

σ2

2
.⎛⎝ (11)

(en, we show that (I) holds for n � k + 1.
Under the risk-neutral probability P, the chained option

is

DICU1D1 ··· UkDkUk+1
� e

− rT
E

P
ST − K( 􏼁

+1
mT

τ2k+1
<d,τ1<τ2<···<τ2k+1≤T,Sτ1�U1 ,Sτ2�D1 ,...,Sτ2k+1

�Uk+1􏽮 􏽯
􏼢 􏼣

� e
− rT

E
P

ST − K( 􏼁1
mT

τ2k+1
<d,ST>K,τ1<τ2<···<τ2k+1≤T,Sτ1�U1 ,Sτ2�D1 ,...,Sτ2k+1

�Uk+1􏽮 􏽯
􏼢 􏼣,

(12)

where mT
τ2k+1

� inf t∈[τ2k+1 ,T](St). Let us define a new measure
􏽥P such that

d􏽥P

dP
� e

− (1/2)σ2T+σWT . (13)

(en, we have

DICU1D1 ···UkDkUk+1

� S0
􏽥P m

T
τ2k+1
< d, ST >K, τ1 < τ2 < · · · < τ2k+1 ≤T,􏼐 Sτ1 � U1, Sτ2 � D1, . . . , Sτ2k+1

� Uk+1􏼑

− e
− rT

KP m
T
τ2k+1
< d, ST >K, τ1 < τ2 < · · · < τ2k+1 ≤T,􏼐 Sτ1 � U1, Sτ2 � D1, . . . , Sτ2k+1

� Uk+1􏼑.

(14)
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We calculate the required probability only under the
P-measure. Note that

P m
T
τ2k+1
< d, ST >K, τ1 < τ2 < · · · < τ2k+1 ≤T,􏼐 Sτ1 � U1, Sτ2 � D1, . . . , Sτ2k+1

� Uk+1􏼑

� P m
T
τ2k+1
< d, XT > k, τ1 < τ2 < · · · < τ2k+1 ≤T,􏼐 Xτ1 � u1, Xτ2 � d1, . . . , Xτ2k+1

� uk+1􏼑,
(15)

where Xt � Wt + (μ/σ)t is a standard Brownian motion
under the equivalent probability measure Q, defined by

dQ

dP
� exp −

μ
σ

WT −
1
2

μ
σ

)
2
T􏼒 􏼕.􏼔 (16)

(en,

P m
T
τ2k+1
< d, XT > k, τ1 < τ2 < · · · < τ2k+1 ≤T,􏼐 Xτ1 � u1, Xτ2 � d1, . . . , Xτ2k+1

� uk+1􏼑

� E
Q dP

dQ
1

mT
τ2k+1
<d,XT>k,τ1<τ2<···<τ2k+1≤T,Xτ1�u1 ,Xτ2�d1 ,...,Xτ2k+1

�uk+1􏽮 􏽯
􏼢 􏼣

� E
Q

e
(μ/σ)XT− (1/2) μ2/σ2( )T1

mT
τ2k+1
<d,XT>k,τ1<τ2<···<τ2k+1≤T,Xτ1�u1 ,Xτ2�d1 ,...,Xτ2k+1

�uk+1􏽮 􏽯
􏼢 􏼣.

(17)

Let us introduce a process 􏽥Xt, t ∈ [0, T], defined by the
formula

􏽥Xt �
Xt, t≤ τ2k( 􏼁,

2dk − Xt, t> τ2k( 􏼁.
􏼨 (18)

By virtue of the reflection principle, process 􏽥Xt follows a
standard Brownian motion under Q, and

E
Q

e
(μ/σ)XT− (1/2) μ2/σ2( )T1B1

􏼔 􏼕

� E
Q

e
(μ/σ) 2dk− 􏽥XT( 􏼁− (1/2) μ2/σ2( )T1B2

􏼔 􏼕

(19)

where

B1 � m
T
τ2k+1
<d, XT > k, τ1 < τ2 < · · · < τ2k+1 ≤T, Xτ1 � u1, Xτ2 � d1, . . . , Xτ2k+1

� uk+1􏽯,􏽮

B2 � 􏽥M
T

τ2k+1
≥ 2dk − d, 􏽥XT < 2dk − k, τ1 < τ2 < · · · < τ2k+1 ≤T, Xτ1 � u1,􏼚 Xτ2 � d1, . . . , Xτ2k− 1

� uk− 1, Xτ2k+1
� 2dk − uk+1􏽯.

(20)

Here, 􏽥M
T

τ2k+1
� supt∈[τ2k+1 ,T](

􏽥Xt). We apply the reflection
principle again. Let us introduce a process 􏽢Xt, t ∈ [0, T]

defined by the formula

􏽢Xt �
􏽥Xt, t≤ τ2k+1( 􏼁,

2 2dk − uk+1( 􏼁 − 􏽥Xt, t> τ2k+1( 􏼁.

⎧⎨

⎩ (21)

(en, the process 􏽢Xt also follows a standard Brownian
motion under Q, and

E
Q

e
(μ/σ) 2dk− 􏽥XT( 􏼁− (1/2) μ2/σ2( )T1B2

􏼔 􏼕

� E
Q

e
(μ/σ) − 2dk+2uk+1+􏽢XT( 􏼁− (1/2) μ2/σ2( )T1B3

􏼔 􏼕

(22)

where

B3 � 􏽢m
T
τ2k+1
≤ 2dk − 2uk+1 + d, 􏽢XT > 2dk − 2uk+1 + k, τ1 < τ2 < · · · < τ2k+1 ≤T, Xτ1 � u1, Xτ2 � d1, . . . , Xτ2k− 1

� uk− 1􏽯,􏽮 (23)

and 􏽢mT
τ2k+1

� inf t∈[τ2k+1 ,T]( 􏽢Xt).
Since uk+1 > dk, 2dk − 2uk+1 + d � d − 2(uk+1 − dk)< d,

and

􏽢m
T
τ2k+1
≤ 2dk − 2uk+1 + d, τ2k+1 ≤T􏽮 􏽯

� 􏽢m
T
τ2k− 1
≤ 2dk − 2uk+1 + d􏽮 􏽯

(24)
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thus,

E
Q

e
(μ/σ) − 2dk+2uk+1+􏽢XT( 􏼁− (1/2) μ2/σ2( )T1B3

􏼔 􏼕

� e
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E
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(25)

where

B4 � 􏽢m
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τ2k− 1
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(en,

P m
T
τ2k+1
< d, XT > k, τ1 < τ2 < · · · < τ2k+1 ≤T, Xτ1 � u1, Xτ2 � d1, . . . , Xτ2k+1

� uk+1􏼑􏼐

�
Uk+1

Dk

􏼠 􏼡

2􏽥μ/σ2

P m
T
τ2k− 1
≤ 2dk − 2uk+1 + d, XT > 2dk − 2uk+1 + k,􏼐 τ1 < τ2 < · · · < τ2k− 1 ≤T, Xτ1 � u1, Xτ2 � d1, . . . , Xτ2k− 1

� uk− 1􏼑.

(27)

By combining the chained option formula for n � k, we
complete the proof of (I). (e proof of (II) is similar to the
proof process of (I).

(e following theorem presents the valuation formula of
the general chained option, where the up-and-in call option
is given when the underlying asset price hits the barriers in
the order A3 or A4 with down barrier U(>Dn). □

Theorem 2. 3e valuation formula for the up-and-in call
option commencing at a time the underlying asset hits the
barriers in the order A3 or A4 and across the last up-barrier
Dn when the strike price K is lower than the up barrier
U(>Dn) is
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(28)
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Remark 1. Suppose that n � 1, U1 � U, and D1 � D in
(eorem 2 (I). (en, UICU1D1

is equal to UICu d in(eorem
3.1 of [11].

(e following theorem presents the valuation formula of
the general chained option, where the down-and-in put
option is given when the underlying asset price hits the
barriers in the order A1 or A2 with down barrier D(<Un).

Theorem 3. 3e valuation formula for the down-and-in put
option commencing at a time the underlying asset hits the
barriers in the order A1 or A2 and across the last up barrier Un

when the strike price K is greater than the down barrier
D(<Un) is
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(30)

where

8 Journal of Mathematics



z9 �
1

σ
��
T

√ ln
DS0

U
2
n

􏽙

n− 1

i�1

Di

Ui

􏼠 􏼡

2
⎛⎝ ⎞⎠ −

􏽥μ
σ

��
T

√
,

z10 �
1

σ
��
T

√ ln
DS0

U
2
n

􏽙

n− 1

i�1

Di

Ui

􏼠 􏼡

2
⎛⎝ ⎞⎠ +

􏽥μ
σ

��
T

√
,

z11 �
1

σ
��
T

√ ln
D

S0
􏽙

n

i�1

Di

Ui

􏼠 􏼡

2
⎛⎝ ⎞⎠ −

􏽥μ
σ

��
T

√
,

z12 �
1

σ
��
T

√ ln
D

S0
􏽙

n

i�1

Di

Ui

􏼠 􏼡

2
⎛⎝ ⎞⎠ +

􏽥μ
σ

��
T

√
.

(31)

3e following theorem presents the valuation formula of
the general chained option, where the up-and-in put option is
given when the underlying asset price hits the barriers in the
order A3 or A4 with down barrier U(>Dn).

Theorem 4. 3e valuation formula for the up-and-in put
option commencing at a time the underlying asset hits the
barriers in the order A3 or A4 and across the last down barrier
Dn when the strike price K is lower than the up barrier
U(>Dn) is

(I)UIPU1D1 ···UnDn
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3e closed formulas of the generalized chained option of
the knock-out type can be obtained as follows. 3e down-and-
out option can be represented by the difference between the

up-and-in option and the down-and-in option. 3e up-and-
out option can be expressed as the difference between the
down-and-in option and the up-and-in option:

(1)DOCU1D1 ···Un− 1Dn− 1Un
� UICU1D1 ···Un− 1Dn− 1

U � Un( 􏼁 − DICU1D1 ···Un− 1Dn− 1Un
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� UICD1U1 ···Un− 1Dn

U � Un( 􏼁 − DICD1U1 ···DnUn
,
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,
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,
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,
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,
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D � Dn( 􏼁 − UIPU1D1 ···UnDn
,
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D � Dn( 􏼁 − UIPD1U1 ···Dn− 1Un− 1Dn
.

(33)

Remark 2. (e generalized chained option of the knock-out
type is obtained from the knock-in and knock-out properties
of the chained option. (e property is that the sum of the
knock-in chained option and knock-out chained option is
equal to the opposite side knock-in chained option of the
previous step.

4. Conclusion

(is paper reviews chained options and compares chained
options with similar single- and double-barrier options. A
chained option is viewed as a barrier option that is chained
together, each with a payoff contingent on a specified barrier.
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When the underlying asset price hits a primary barrier, a
secondary barrier option is given to the primary barrier
option holder. If the asset price hits another barrier, a third
barrier option is given, and so on. (is paper proves the
closed formulas of generalized chained options with
n-barriers using mathematical induction. (ese formulas
include valuations of down-and-in call options when the
underlying asset price hits the barriers in the order A1 or A2
and the up-and-in call option commencing at a time the
underlying asset hits the barriers in the order A3 or A4.
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