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In this research paper, we investigate the existence, uniqueness, and Ulam–Hyers stability of hybrid sequential fractional dif-
ferential equations with multiple fractional derivatives of ψ-Caputo with different orders. Using an advantageous generalization of
Krasnoselskii’s fixed point theorem, we establish results of at least one solution, whereas the uniqueness of solution is derived via
Banach’s fixed point theorem. Besides, the Ulam–Hyers stability for the proposed problem is investigated by applying the
techniques of nonlinear functional analysis. In the end, we provide an example to illustrate the applicability of our results.

1. Introduction

Over the last couple of years, the concept of fractional
differential equations (FDEs) has been validated as being an
effective and powerful gadget to model complex and real
world phenomena due to their wide range of applications in
several fields of sciences and engineering; see [1–5] and the
references therein. Recently, FDEs gained the attention of
mathematicians and researchers working in different dis-
ciplines of science and technology, which resulted in plenty
of research papers that have been carried out on FDEs. *at
made a valuable contribution ranging from the qualitative
theory of the solutions of FDEs, such as existence,
uniqueness, stability, and controllability to the numerical
analysis. Speaking in this context, the stability analysis of
functional and differential equations is important in many
applications, such as optimization and numerical analysis,
where computing the exact solution is rather hard. *ere are
various kinds of stability; one of those types has recently
received considerable attention from many mathematicians,

so-called Ulam–Hyers (U-H) stability. *e source of U-H
stability goes back to 1940 by Ulam [6], next by Hyers [7]. A
variety of works have been done by many authors in regard
of the U-H stability of FDEs; for example, the authors in [8]
studied the existence and stability results for implicit FDE.
Some recent developments in Ulam’s type stability are
discussed by Belluot et al. [9]. Ibrahim, in [10], obtained the
generalized U-H stability for FDEs. Some approximate
analytical methods for solving FDEs can be found in [11–14];
also, computational analyses of some fractional dynamical
and biological models were investigated recently, see
[15, 16].

On the contrary, quadratic perturbation of nonlinear
differentials, also known as the hybrid differential equations,
had rapid progress over the last years; this is due to its
importance, which lies in the fact that they include per-
turbations that facilitate the study of such equations by using
the perturbation techniques. *ese equations are also con-
sidered as a particular case in dynamic systems. *e starting
point for this field is when Dhage and Lakshemikantham
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[17] formulated a hybrid differential equation, where they
investigated the existence and uniqueness of the solutions to
the following hybrid equation:

d
dθ
ϰ(θ)

g(θ, ϰ(θ)
  � f(θ, ϰ(θ)), a.e. θ ∈ θ0, θ0 + [ , θ0 ∈ R, [> 0,

ϰ θ0(  � ϰ0, ϰ0 ∈ R.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

*eir results were based on the fixed point theorem
(FPT) for the product of two operators in Banach algebra.

In 2011, Zhao et al. [18] extended Dhage’s work [17] to
fractional order and studied the existence of solutions to the
following Riemann–Liouville (RL)-type hybrid FDEs:

D
p ϰ(θ)

h(θ, ϰ(θ))
  � f(θ, ϰ(θ)), a.e. θ ∈ [0, [], 0<p≤ 1,

ϰ(0) � 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

After several years, Sitho et al. [19] derived a new ex-
istence result for the following hybrid sequential integro-
differential equations:

D
p D

qϰ(θ) − 
n
i�1I

ηi gi(θ, ϰ(θ))

h(θ, ϰ(θ))
  � f θ, ϰ(θ), I

cϰ(θ)( , θ ∈ [0, [], 0<p, q≤ 1,

ϰ(0) � 0,

D
qϰ(0) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

In [20], Baitiche et al. studied the existence of solutions
for the following hybrid sequential FDEs:

cD
p+1

+ λcD
p

 
ϰ(θ)

h(θ, ϰ(θ))
  � f(θ, ϰ(θ)), a.e. θ ∈ [0, 1], 0<p≤ 2,

ϰ(0) � ϰ(η) � ϰ(1) � 0, 0< η< 1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

*ey generalized Darbo’s FPT for the product of two
operators associated with measures of noncompactness.

Some existence results for ψ-Caputo-type hybrid FDEs
are obtained in [21, 22]. For recent analysis techniques in

FDEs involving generalized Caputo FD, we refer to
[23, 24]. Just recently, Boutiara et al. [25] discussed some
qualitative analyses to the following fractional hybrid
system:
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D
pi,ψ
ϰi(θ) − 

n
k�1I

ηik
,ψ

gik
(θ, ϰ(θ))

hi(θ, ϰ(θ))
  � fi θ, ϰ1(θ), ϰ2(θ)( , θ ∈ [a, b], 0<pi ≤ 1, ηi > 0,

ϰi(a) � 0, i � 1, 2.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

*e above findings motivated us to study the existence,
uniqueness, and U-H stability of solutions for the following

ψ-Caputo hybrid fractional sequential integro-differential
equation (for short, ψ-Caputo HFSIDE):

L
p
ψ

cD
q;ψϰ(θ) − 

m
i�1I

ηi;ψgi(θ, ϰ(θ))

h(θ, ϰ(θ))
  � f θ, ϰ(θ), δI

c;ψϰ(θ)( , θ ∈ I � [0, [], (6)

endowed with the hybrid fractional integral boundary
conditions:

ϰ(0) � 0,
c
D

q;ψϰ(0) � 0,

cDq;ψϰ(θ) − 
m
i�1I

ηi;ψgi(θ, ϰ(θ))

h(θ, ϰ(θ))
 

θ�[

� ρ
cDq;ψϰ(θ) − 

m
i�1I

ηi;ψgi(θ, ϰ(θ))

h(θ, ϰ(θ))
 

θ�ξ
, 0< ρ, ξ <[,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

with

L
p
ψ �

c
D

p;ψ
+ λc

D
p− 1;ψ

, (8)

where 1<p≤ 2, 0< q≤ 1, cDp;ψ and cDq;ψ denote the
ψ-Caputo FD of order p, q, respectively, and Iηi;ψ and Ic;ψ are
the ψ-RL fractional integral of order ηi > 0, (i � 1, . . . , m)

and c> 0, respectively, h ∈ C(I × R,R∖0), f ∈ C

(I × R2,R), gi ∈ C(I × R,R) with gi(0, 0) � 0, and λ is
appropriate positive real constants.

*emodernity of our proposed problem in contrast with
past problems is that, in this work, we consider a kind of
general case of boundary value problems in a setup of a
ψ-Caputo HFSIDE delineated by (6) and (7). To be sure, the
advantage of this work is that the applied FD has the freedom
of choice of the kernel ψ which makes it conceivable to bring
together and cover most of the preceding results on hybrid
FDEs.

*e research paper is organized as follows. Section 2
presents some basic mathematical pieces of knowledge re-
quired throughout the paper. *e main results for ψ-Caputo
HFSIDE (6), (7) are proved in Section 3. In Section 4, we give
an illustrative numerical example, and Section 5 is related to
a brief conclusion.

2. Preliminaries

Let E � C(I, R) and E∗ � C(I,R∖ 0{ }) be Banach spaces of
continuous real-valued functions defined on I. Clearly, E is
a Banach algebra with the norm

‖ϰ‖ � sup
θ∈I

|ϰ(θ)|, (9)

and multiplication

(ϰϰ)(θ) � ϰ(θ)ϰ(θ), ∀θ ∈ I. (10)

Let an increasing function ψ: I⟶ R satisfy ψ′(θ) ≠ 0,
for all θ ∈ I. For effortlessness, we set Ψr(θ, s) ≔ ψ′(s)

(ψ(θ) − ψ(s))r and Ψr
0(θ) � (ψ(θ) − ψ(0))r.

Definition 1 (see [3]). ;e ψ -RL fractional integral of order
p(> 0) of an integrable function ϰ: [a,∞)⟶ R is defined
by

I
p;ψϰ(θ) �

1
Γ(p)


θ

a
Ψp− 1

(θ, s)ϰ(s)ds, a< θ. (11)

Definition 2 (see [26]). ;e ψ -Caputo FD of order p(n −

1<p< n ∈ N) of a function ϰ ∈ Cn[0,∞) is defined by

c
D

p;ψϰ(θ) �
1
Γ(p − n)


θ

a
Ψp− n− 1

(θ, s)D
n
ψϰ(s)ds, a< θ,

(12)

where n � [p] + 1 and Dn
ψ � ((1/ψ′(θ))(d/dθ))n.

In case, if 1<p≤ 2, we have

c
D

p;ψϰ(θ) �
1
Γ(p − 2)


θ

a
Ψp− 3

(θ, s)D
2
ψϰ(s)ds, a< θ.

(13)

As a special case, if ψ(θ) � θ, then the above definitions
reduce to the well-known classical fractional definitions; for
more details, see [1,3].
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Lemma 1 (see [26]). Let p> 0 . ;e following holds:

(i) If ϰ ∈ E , then
c
D

p;ψ
I

p;ψϰ(θ) � ϰ(θ), θ ∈ I. (14)

(ii) If ϰ ∈ En , n − 1<p< n , then

I
p;ψc

D
p;ψϰ(θ) � ϰ(θ) − 

n−1

k�0
ckΨ

k
0(θ), θ ∈ I, (15)

where ck � (Dk
ψϰ(0)/k!).

Concerning the applied FPTs, we will suffice with in-
dication to [27, 28].

3. Main Results

Lemma 2. Let 1<p≤ 2 and 0< q≤ 1 . For any functions
F ∈ E , H ∈ E∗, andGi ∈ EwithGi(0) � 0,i � 1, . . . , 2, the
following linear fractional BVP,

L
p
ψ

cD
q;ψϰ(θ) − 

m
i�1I

ηi;ψGi(θ)

H(θ)
  � F(θ), θ ∈ I, (16)

supplemented with the conditions,

ϰ(0) � 0,

c
D

q;ψϰ(0) � 0,

cDq;ψϰ(θ) − 
m
i�1I

ηi;ψGi(θ)

H(θ)
 

θ�[

� ρ
cDq;ψϰ(θ) − 

m
i�1I

ηi;ψGi(θ)

H(θ)
 

θ�ξ
, 0< ρ, ξ <[,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

has a unique solution, that is,

ϰ(θ) � I
q;ψ

H(s) 
s

0
I

p− 1;ψ
F(τ)ψ′(τ)e

− λ Ψ0(s)−Ψ0(τ)( )dτ (θ)

+ 
[

0
I

p− 1;ψ
F(τ)ψ′(τ)e

− λ Ψ0([)−Ψ0(τ)( )dτ − ρ
ξ

0
I

p− 1;ψ
F(τ)ψ′(τ)e

− λ Ψ0(ξ)−Ψ0(τ)( )dτ 

×
1
Δ

I
q;ψ

H(s) 1 − e
− λΨ0(s)

  (θ) + 
m

i�1
I
ηi+q;ψ

Gi(θ),

(18)

where Δ � (1 + ρe− λΨ0(ξ) − e− λΨ0([) − ρ)≠ 0, λ ∈ R+.

proof. Applying the ψ-RL fractional integral of order p − 1
to both sides of (16) and using Lemma 1, we obtain

c
D

1;ψ
cD

q;ψϰ(θ) − 
m
i�1I

ηi;ψGi(θ)

H(θ)
 

+ λ
cD

q;ψϰ(θ) − 
m
i�1I

ηi;ψGi(θ)

H(θ)
 

� I
p− 1;ψ

F(θ) + c0, c0 ∈ R.

(19)

By multiplying ψ′(θ)eλΨ0(θ) to both sides of (16), we find
that

e
λΨ0(θ) d

dθ

cD
q;ψϰ(θ) − 

m
i�1I

ηi;ψGi(θ)

H(θ)
 

+ λψ′(θ)e
λΨ0(θ)

cD
q;ψϰ(θ) − 

m
i�1I

ηi;ψGi(θ)

H(θ)
 

� ψ′(θ)e
λΨ0(θ)

I
p− 1;ψ

F(θ) + c0ψ′(θ)e
λΨ0(θ)

, c0 ∈ R.

(20)

On the contrary, we have

d
dθ

cD
q;ψϰ(θ) − 

m
i�1I

ηi;ψGi(θ)

H(θ)
.e
λΨ0(θ)

 

� e
λΨ0(θ) d

dθ

cD
q;ψϰ(θ) − 

m
i�1I

ηi;ψGi(θ)

H(θ)
 

+ λψ′(θ)e
λΨ0(θ)

cD
q;ψϰ(θ) − 

m
i�1I

ηi;ψGi(θ)

H(θ)
 .

(21)
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From (20) and (21), we find that

d
dθ

cD
q;ψϰ(θ) − 

m
i�1I

ηi;ψGi(θ)

H(θ)
.e
λΨ0(θ)

 

� I
p− 1;ψ

F(θ)ψ′(θ)e
λΨ0(θ)

+ c0ψ′(θ)e
λΨ0(θ)

.

(22)

Integrating from 0 to θ and using the fact that Gi(0) � 0,
i � 1, . . . , m, and from the condition cDq;ψϰ(0) � 0 in (17),
we have
cD

q;ψϰ(θ) − 
m
i�1I

ηi;ψGi(θ)

H(θ)
.e
λΨ0(θ)

� 
θ

0
I

p− 1;ψ
F(τ)ψ′(τ)e

λΨ0(τ)dτ +
c0

λ
e

− λΨ0(θ)− 1
  + c1,

(23)

where c1 ∈ R; by multiplying e− λΨ0(θ) to both sides, we
obtain

cD
q;ψϰ(θ) − 

m
i�1I

ηi;ψGi(θ)

H(θ)

� 
θ

0
I

p− 1;ψ
F(τ)ψ′(τ)e

− λ Ψ0(θ)−Ψ0(τ)( )dτ

+
c0

λ 1 − e
− λΨ0(θ)

  + c1e
− λΨ0(θ)

.

(24)

Next, applying ψ-RL fractional integral of order q to both
sides of (24) and using Lemma 1, we obtain

ϰ(θ) � I
q;ψ

H(s) 
s

0
I

p− 1;ψ
F(τ)ψ′(τ)e

− λ Ψ0(s)−Ψ0(τ)( )dτ +
c0

λ
1 − e

− λΨ0(s)
  + c1e

− λΨ0(s)
  (θ)

+ 
m

i�1
I
ηi+q;ψ

Gi(s)(θ) + c2,

(25)

where c2 ∈ R with the help of conditions cDq;ψϰ(0) � 0,
ϰ(0) � 0, and Gi(0) � 0, i � 1, . . . , m; we find c1 � c2 � 0.
*en, we apply the third condition of (17) in (25), and we
obtain


[

0
I

p− 1;ψ
F(τ)ψ′(τ)e

− λ Ψ0([)−Ψ0(τ)( )dτ +
c0

λ
1 − e

− λΨ0([)
 

� ρ
ξ

0
I

p− 1;ψ
F(τ)ψ′(τ)e

− λ Ψ0(ξ)−Ψ0(τ)( )dτ +
c0

λ
1 − e

− λΨ0(ξ)
 .

(26)

Some computations give us

c0 �
λ
Δ


[

0
I

p− 1;ψ
F(τ)ψ′(τ)e

− λ Ψ0([)−Ψ0(τ)( )dτ

− ρ
ξ

0
I

p− 1;ψ
F(τ)ψ′(τ)e

− λ Ψ0(ξ)−Ψ0(τ)( )dτ).

(27)

Inserting c0, c1, and c2 in (25), leads to solution (18).
Conversely, by Lemma 1 and by taking cDq;ψ on both

sides of (25), we obtain

cD
q;ψϰ(θ) − 

m
i�1I

ηi;ψGi(θ)

H(θ)
� 

θ

0
I

p− 1;ψ
F(τ)ψ′(τ)e

− λ Ψ0(θ)−Ψ0(τ)( )dτ

+ 
[

0
I

p− 1;ψ
F(τ)ψ′(τ)e

− λ Ψ0([)−Ψ0(τ)( )dτ − ρ
ξ

0
I

p− 1;ψ
F(τ)ψ′(τ)e

− λ Ψ0(ξ)−Ψ0(τ)( )dτ 

1 − e
− λΨ0(θ)

Δ
.

(28)

Next, operating cDp;ψ + λcDp− 1;ψ on both sides of the
above equation, with the help of Lemma 1, we obtain
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c
D

p;ψ
+ λc

D
p−1;ψ

 
cD

q;ψϰ(θ) − 
m
i�1I

ηi;ψGi(θ)

H(θ)
 

�
c
D

p;ψ
+ λc

D
p−1;ψ

  
θ

0
I

p− 1;ψ
F(τ)ψ′(τ)e

−λ Ψ0(θ)−Ψ0(τ)( )dτ + 
[

0
I

p− 1;ψ
F τ( )ψ′ τ( ) 

× e
−λ Ψ0([)−Ψ0(τ)( )dτ − ρ

ξ

0
I

p− 1;ψ
F(τ)ψ′(τ)e

− λ Ψ0(ξ)−Ψ0(τ)( )dτ
1 − e

− λΨ0(θ)

Δ


�
c
D

p;ψ
+ λc

D
p− 1;ψ

  
θ

0
I

p− 1;ψ
F(τ)ψ′(τ)e

− λ Ψ0(θ)−Ψ0(τ)( )dτ −
c0

λ

�
c
D

p− 1;ψ 1
ψ′(θ)

d
dθ

+ λ  
θ

0
I

p− 1;ψ
F(τ)ψ′(τ)e

− λ Ψ0(θ)−Ψ0(τ)( )dτ

�
c
D

p− 1;ψ
I

p− 1;ψ
F(θ)

� F(θ).

(29)

Now, it remains to review the boundary conditions (17)
of our problem (16). Substituting θ � 0 in (18) with the fact
that gi(0) � 0, i � 1, . . . , m, leads to u(0) � 0. Next, we apply
cDq;ψ on (18); then, we substitute θ � 0; it follows that
cDq;ψϰ(0) � 0. Substituting θ � [ and θ � ξ, we find that the
two resulting equations are equal, and from it, we get that

cDq;ψϰ(θ) − 
m
i�1I

ηi;ψGi(θ)

H(θ)
 

θ�[

� ρ
cDq;ψϰ(θ) − 

m
i�1I

ηi;ψGi(θ)

H(θ)
 

θ�ξ
.

(30)

*is means that ϰ(θ) satisfies (16) and (17). *erefore,
ϰ(θ) is solution of problem (16) and (17). □

Lemma 3. For F, H ∈ E ,we have

(1) 
θ

0
(Ψq−1

(θ, s)/Γ(q))H(s) 
s

0

τ

0
(Ψp−2

(τ, σ)/Γ (p −

1))F(σ)dσψ′(τ)e
− λ

(Ψ0(s) − Ψ0(τ))dτds ≤ (Ψp+q−1
0

([)/λΓ(p + q)Γ(q))(1 − e
− λΨ0(θ)

)‖H‖‖F‖

(2) | 
[

0 
τ
0(Ψ

p−2 (θ, σ)/Γ(p − 1))F(σ)dσψ′(τ)

e− λ(Ψ0([)−Ψ0(τ))dτ|≤ (Ψp−1
0 ([)/λΓ(p))

(1 − e− λΨ0([))‖F‖

(3) | 
ξ
0 

τ
0(ψ′

p− 2
(θ, σ)/Γ(p − 1))F(σ)dσψ′(τ)

e− λ(Ψ0(ξ)−Ψ0(τ))dτ|≤ (Ψp−1
0 (ξ)/λΓ(p))

(1 − e− λΨ0(ξ))‖F‖

proof. To prove property (1), we have


τ

0

Ψp− 2
(θ, σ)

Γ(p − 1)
dσ �
Ψp−1

0 (τ)

Γ(p)
,


s

0

Ψp−1
0 (τ)

Γ(p)
ψ′(τ)e

− λ Ψ0(s)−Ψ0(τ)( )dτ

≤
Ψp−1

0 (s)

λΓ(p)


s

0
ψ′(τ)e

− λ Ψ0(s)−Ψ0(τ)( )dτ

�
Ψp−1

0 (s)

λΓ(p)
1 − e

− λΨ0(s)
 .

(31)

From the above integrals and left side of (1), we obtain


θ

0

Ψq− 1
(θ, s)

Γ(q)
H(s) 

s

0

τ

0

Ψp− 2
(θ, σ)

Γ(p − 1)
F(σ)dσψ′(τ)e

− λ Ψ0(s)−Ψ0(τ)( )dτds





≤ ‖H‖‖F‖ 
θ

0

Ψq− 1
(θ, s)

Γ(q)

Ψp−1
0 (s)

λΓ(p)
1 − e

− λΨ0(s)
 ds
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≤ ‖H‖‖F‖
1 − e

− λΨ0([)
 

λΓ(p)

θ

0

Ψq− 1
(θ, s)

Γ(q)
Ψp−1

0 (s)ds

≤
Ψp+q−1

0 ([)

λΓ(p + q)
1 − e

− λΨ0([)
 ‖H‖‖F‖. (32)

*e proofs of properties (2) and (3) are similar to proof
of (1). □

Now, we consider the following assumptions:

(H1) h ∈ C(I × R,R∖0) and f ∈ C(I × R2,R), and
there exist positive functions L(θ) and M(θ), such that

h(θ, ϰ) − h θ, ϰ∗( 


≤L(θ) ϰ − ϰ∗


,

f θ, ϰ1, ϰ2(  − f θ, ϰ∗1 , ϰ∗2( 


≤M(θ) ϰ1 − ϰ∗1


 + ϰ2 − ϰ∗2


 ,

(33)

for θ ∈ I and ϰ1, ϰ2, ϰ∗1 , ϰ∗2 ∈ R.
(H2) *ere exist functions φi, χ, ϑ ∈ E such that

gi(θ, ϰ)


 ≤φi(θ), for each θ, ϰ ∈ I × R,

|h(θ, ϰ)| ≤ χ(θ), for each θ, ϰ ∈ I × R,

|f(θ, ϰ, ϰ)|≤ ϑ(θ), for each θ, ϰ, ϰ ∈ I × R × R.

(34)

(H3) *ere exist 0<Λ and Υ< 1, such that

1 − e
− λΨ0([)

λ
(Λ‖χ‖‖M‖ + Υ‖L‖‖ϑ‖)< 1, (35)

where

Λ �
Ψp+q−1

0 ([)

Γ(p + q)
+
δΓ(c − 1)Ψc+p+q−2

0 ([)

Γ(c + p + q − 1)
+
Ψq

0([)

ΔΓ(q + 1)

× 1 − e
− λΨ0([)


Ψp−1

0 ([)

Γ(p)
+
δΓ(c − 1)Ψc+p−2

0 ([)

Γ(c + p − 1)
  

+ ρ 1 − e
− λΨ0(ξ)

 
Ψp−1

0 (ξ)

Γ(p)
+
δΓ(c − 1)Ψc+p−2

0 (ξ)

Γ(c + p − 1)
 ,

Υ �
Ψp+q−1

0 ([)

Γ(p + q)
+
Ψq

0([)

ΔΓ(q + 1)Γ(p − 1)
1 − e

− λΨ0([)
 Ψp−2

0 ([)

+ ρ 1 − e
− λΨ0(ξ)

 Ψp−2
0 (ξ).

(36)

3.1. Existence of Solutions. In this section, we prove the
existence of a solution for problems (6) and (7) by applying
Dhage FPT [27].

Theorem 1. Suppose (H1)–(H3) hold; then, problems (6) and
(7) have at least one solution inE.

proof. First, we set supθ∈I|L(θ)| � ‖L‖, supθ∈I|M(θ)|

� ‖M‖, supθ∈I|χ(θ)| � ‖χ‖, supθ∈I|ϑ(θ)| � ‖ϑ‖, and
supθ∈I|φi(θ)| � ‖φ‖, i � 1, 2, . . . , m.

Now, we define Br ⊂ E as

Br � ϰ ∈ E: ‖ϰ‖≤ r{ }. (37)

Define two operators C: E⟶ E and D: E⟶ E as

Cϰ(θ) �
1
Γ(p − 1)


θ

0
ψ′(s)(ψ(θ) − ψ(s))

p− 2

· f s, ϰ(s), δI
c;ψϰ(s)( ds, θ ∈ I,

Dϰ(θ) � h(θ, ϰ(θ)), θ ∈ I.

(38)

*en, using assumptions (H1)-(H2), we have, for
ϰ, ϰ∈ Br and each θ ∈ I,
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|Cϰ(θ) − Cϰ(θ)|

≤
1

ΓS(p − 1)

θ

0
Ψp− 2

(θ, s) f s, ϰ(s), δI
c;ψϰ(s)(  − f s, ϰ(s), δI

c;ψϰ(s)( 


ds

≤
1
Γ(p − 1)


θ

0
Ψp− 2

(θ, s)M(s) |ϰ(s) − ϰ(s)| +
δ
Γ(c)


s

0
Ψc− 1

(τ, s)|ϰ(τ) − ϰ(τ)|dτ ds

≤ ‖M‖‖ϰ(·) − ϰ(·)‖
1
Γ(p − 1)


θ

0
Ψp− 2

(θ, s) 1 +
δ
Γ(c + 1)

Ψc
0(s) ds

≤
1
Γ(p)
Ψp−1

0 (θ) +
δΓ(c − 1)

Γ(c + p − 1)
Ψc+p−2

0 (θ) ‖M‖‖ϰ(·) − ϰ(·)‖,

|Cϰ(θ)|≤
Ψp−2

0 (θ)

Γ(p − 1)
‖ϑ‖.

(39)

Also,

|Dϰ(θ) − Dϰ(θ)|≤ ‖L‖‖ϰ(·) − ϰ(·)‖, |Dϰ(θ)|≤ ‖χ‖. (40)

Now, we also consider two operators A: E⟶ E and
B: Br⟶ E defined by

Aϰ(θ) � I
q;ψ

Dϰ(s) 
s

0
Cϰ(τ)ψ′(τ)e

− λ Ψ0(s)−Ψ0(τ)( )dτ (θ)

+
1
Δ

I
q;ψ

Dϰ(s) 1 − e
− λΨ0(s)

  (θ)

× 
[

0
Cϰ(τ)ψ′(τ)e

− λ Ψ0([)−Ψ0(τ)( )dτ − ρ
ξ

0
Cϰ(τ)ψ′(τ)e

− λ Ψ0(ξ)−Ψ0(τ)( )dτ ,

Bϰ(θ) � 
m

i�1
I
ηi+q;ψ

gi(s, ϰ(s))(θ).

(41)

We need to prove that A and B satisfy all assumptions of
Dhage’s theorem [27]. *is can be proven in the forth-
coming steps:

Step 1: A is a contraction map. Indeed, let ϰ(θ), ϰ(θ)

∈ Br. *en,

|Aϰ(θ) − Aϰ(θ)|

≤ I
q;ψ

|Dϰ(s)| 
s

0
|Cϰ(τ) − Cϰ(τ)|ψ′(τ)e

−λ Ψ0(s)−Ψ0(τ)( )dτ (θ)

+ I
q;ψ

|Dϰ(s) − Dϰ(s)|%
s

0
|Cϰ(τ)|ψ′(τ)e

−λ Ψ0(s)−Ψ0(τ)( )dτ (θ)

+
1
Δ

I
q;ψ

‖Dϰ(s)‖ %1 − e
−λΨ0(s)

  (θ) 
[

0
|%Cϰ(τ) − Cϰ(τ)|ψ′(τ)

× e
−λ Ψ0([)−Ψ0(τ)( )dτ + ρ

ξ

0
|Cϰ(τ) − Cϰ(τ)|%ψ′(τ)e

− λ Ψ0(ξ)−Ψ0(τ)( )dτ%
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+
1
Δ

I
q;ψ

|Dϰ(s) − D �%ϰ(s)| 1 − e
−λΨ0(s)

  (θ)


[

0
|Cϰ(τ)|ψ′(τ) × e

− λ Ψ0([)−Ψ0(τ)( )dτ − ρ
ξ

0
|Cϰ(τ)|ψ′(τ)e

− λ Ψ0(ξ)−Ψ0(τ)( )dτ . (42)

Using Lemma 3 and hypotheses (H1)-(H2), we obtain

|Aϰ(θ) − Aϰ(θ)|

≤
1 − e

−λΨ0([)

λ
‖χ‖‖M‖

Ψp+q−1
0 ([)

Γ(p + q)
+
δΓ(c − 1)Ψc+p+q−2

0 ([)

Γ(c + p + q − 1)


+
Ψq

0([)

ΔΓ(q + 1)
1 − e

− λΨ0([)
 

Ψp−1
0 ([)

Γ(p)
+
δΓ(c − 1)Ψc+p−2

0 ([)

Γ(c + p − 1)
 

+ ρ 1 − e
− λΨ0(ξ)

 
Ψp−1

0 (ξ)

Γ(p)
+
δΓ(c − 1)Ψc+p−2

0 (ξ)

Γ(c + p − 1)
 

+ ‖L‖‖ϑ‖
Ψp+q−1

0 ([)

Γ(p + q)
+
Ψq

0([)

ΔΓ(q + 1)Γ(p − 1)


× 1 − e
−λΨ0([)

 Ψp−2
0 ([) + ρ 1 − e

− λΨ0(ξ)
 

×Ψp−2
0 ξ( )‖ϰ(·) − ϰ(·)‖.

(43)

Moreover,

‖Aϰ(θ) − Aϰ(θ)‖ ≤
1 − e

− λΨ0([)

λ
(Λ‖χ‖‖M‖ + Υ‖L‖‖ϑ‖)‖ϰ − ϰ‖.

(44)

Hence, by (50), A is a contraction map.

Step 2 : B is compact and continuous on Br. Firstly, we
prove that B is continuous on Br.

Let ϰn(θ) be a sequence such that ϰn(θ)⟶ Br in Br. It
follows from Lebesgue dominant convergence theorem that,
for all θ ∈ I,

Bϰn(θ) � lim
n⟶∞



m

i�1

1%
Γ ηi + q( 


θ

a
ψ′(s)(ψ(θ) − ψ(s))

ηi+q−1
gi s, ϰn(s)( ds

� 
m

i�1

1
Γ ηi + q( 


θ

a
Ψηi+q−1

(θ, s) lim
n⟶∞

g%i s, ϰn(s)( ds

� 
m

i�1

1
Γ ηi + q( 


θ

a
Ψηi+q−1

(θ, s)gi(s, ϰ(s))ds.

(45)
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Hence, lim n⟶∞Bϰn(θ) � Bϰ(θ). *us, B is a contin-
uous on Br. Besides, we prove that B is uniformly bounded
on Br. Indeed, for any ϰ ∈ Br, we have

‖Bϰ(θ)‖ ≤ sup
θ∈I



m

i�1

1
Γ ηi + q( 


θ

a
Ψηi+q− 1

(θ, s) gi(s, ϰ(s))


ds
⎧⎨

⎩

⎫⎬

⎭

≤ 

m

i�1

Ψηi+q
0 ([)

Γ ηi + q + 1( 
φi

����
���� ≔ Φ.

(46)

*erefore, Bϰ(θ) ≤Φ, for all θ ∈ I, which implies that B

is uniformly bounded on Br. Now, we show that B is
equicontinuous. Let θ1, θ2 ∈ I with θ1 > θ2. *en, for any
ϰ(θ) ∈ Br, we have

Bϰ θ1(  − Bϰ θ2( 
����

����

≤ sup
θ∈I



m

i�1

1
Γ ηi + q( 


θ2

0
Ψηi+q− 1 θ1, s(  − Ψηi+q− 1 θ2, s(  gi(s, ϰ(s))ds





⎧⎨

⎩

+ 
m

i�1

1
Γ ηi + q( 


θ1

θ2
Ψηi+q− 1 θ1, s( gi(s, ϰ(s))ds





⎫⎬

⎭

≤ 
m

i�1

φi

����
����

Γ ηi + q + 1( 
2 ψ θ1(  − ψ θ2( ( 

ηi+q
+ Ψηi+q

0 θ2(  − Ψηi+q
0 θ1( 


 

≤ 
m

i�1

2 φi

����
����

Γ ηi + q + 1( 
ψ θ1(  − ψ θ2( ( 

ηi+q
.

(47)

As θ2⟶ θ1, ‖Bϰ(θ1) − Bϰ(θ2)‖⟶ 0. *is means that
B is equicontinuous. *us, Arzelá–Ascoli theorem shows
that B is a compact operator on Br.

Step 3 : we prove that ϰ � Aϰ + Bϰ, for all
ϰ∈ Br⇒ϰ ∈ Br. For any ϰ∈ Br, we have

‖ϰ(θ)‖ � ‖Aϰ(θ) + Bϰ(θ)‖

≤ ‖Aϰ(θ)‖ +‖Bϰ(θ)‖

≤ sup
θ∈I

|I
q;ψ

Dϰ(s) 
s

0
Cϰ(τ)ψ′(τ)e

− λ Ψ0(s)−Ψ0(τ)( )dτ (θ)

+ 
[

0
Cϰ(τ)ψ′(τ)e

− λ Ψ0([)−Ψ0(τ)( )dτ − ρ
ξ

0
Cϰ(τ)ψ′(τ)e

− λ Ψ0(ξ)−Ψ0(τ)( )dτ 

+
1
Δ

I
q;ψ

Dϰ(s) 1 − e
− λΨ0(s)

  (θ)| + 
m

i�1
I
ηi+q;ψ

gi(s, ϰ(s))(θ)





⎫⎬

⎭

≤
1 − e

− λΨ0([)
 

λ
Ψp+q−1

0 ([)

Γ(q)Γ(p + q)
+
Ψq

0([)

Γ(q + 1)Δ


×
Ψp−1

0 ([)

Γ(p)
1 − e

− λΨ0([)
  − ρ

Ψp−1
0 (ξ)

Γ(p)
1 − e

− λΨ0(ξ)
  

× ‖ϑ‖‖χ‖ + 
m

i�1

Ψηi+q
0 ([)

Γ ηi + q + 1( 
φi

����
����

≤ r,

(48)
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which implies ‖ϰ‖≤ r, so ϰ ∈ Br. Hence, all assumptions of
Dhage’s theorem [27] are satisfied. So, the equation ϰ(θ) �

Aϰ(θ) + Bϰ(θ) has at least one solution in Br. So, there exists
a solution of problems (6) and (7) in I � [0, []. □

3.2. Uniqueness of Solutions. Here, we prove the uniqueness
theorem of (6) and (7) relying on Banach’s FPT [28].

Theorem 2. Suppose that (H1)-(H2) and the following hy-
pothesis hold:

(H4) gi ∈ C(I × R,R), and there exist positive
functionKi(θ), such that

gi(θ, ϰ) − gi(θ, ϰ)


≤Ki(θ)|ϰ − ϰ|. (49)

If

Ξ ≔
1 − e

− λΨ0([)

λ
(Λ‖χ‖‖M‖ + Υ‖L‖‖ϑ‖)

+ 
m

i�1

Ki

����
����

Γ ηi + q + 1( 
Ψηi+q

0 ([)< 1,

(50)

then problems (6) and (7) have a unique solution.

proof. We set the operator G: E⟶ E as

Gϰ(θ) � Aϰ(θ) + Bϰ(θ). (51)

Consider BR � ϰ ∈ E: ‖ϰ‖≤R{ }, and we set
supθ∈I|Ki(θ)| � ‖K‖, i � 1, 2, . . . , m. First, we show that
G(BR) ∈ BR. As in the previous proof (Step 3) of *eorem 1,
we can obtain the following.

For ϰ ∈ BR and θ ∈ I,

‖Gϰ‖≤
1 − e

− λΨ0([)
 

λ
Ψp+q−1

0 ([)

Γ(q)Γ(p + q)
+
Ψq

0([)

Γ(q + 1)Δ
Ψp−1

0 ([)

Γ(p)
1 − e

− λΨ0([)
 

− ρ
Ψp−1

0 (ξ)

Γ(p)
1 − e

− λΨ0(ξ)
 ‖ϑ‖‖χ‖ + 

m

i�1

Ψηi+q
0 ([)

Γ ηi + q + 1( 
φi

����
����

≤R.

(52)

*is shows that G(BR)⊆BR. Next, we prove that G is a
contraction. For ϰ, ϰ∈ BR,

‖Gϰ(θ) − Gϰ(θ)‖ ≤ ‖Aϰ(θ) − Aϰ(θ)‖ +‖Bϰ(θ) − Bϰ(θ)‖, (53)

‖Bϰ(θ) − Bϰ(θ)‖

≤ sup
θ∈I



m

i�1

1
Γ ηi + q( 


θ

0
Ψηi+q− 1

(θ, s) gi(s, ϰ(s)) − gi(s, ϰ(s))


ds
⎧⎨

⎩

⎫⎬

⎭

≤ 
m

i�1

Ki

����
����

Γ ηi + q + 1( 
Ψηi+q

0 ([)‖ϰ − ϰ‖.

(54)

From (44), (50), and (54), we obtain

‖Gϰ(θ) − Gϰ(θ)‖≤
1 − e

− λΨ0([)

λ
(Λ‖χ‖‖M‖ + Υ‖L‖‖ϑ‖)

+ 
m

i�1

Ki

����
����

Γ ηi + q + 1( 
Ψηi+q

0 ([)⎞⎠‖ϰ − ϰ‖.

(55)

As Ξ< 1, G is contractive map. Consequently, by
Banach’s FPT [28], we conclude that G has a unique fixed
point, which is a solution of (6) and (7). □

3.3. Stability Analysis. In this portion, we discuss the U-H
and generalized U-H stabilities of the solution of the pro-
posed problem. We adopt the following definitions from
[29].

Let ε> 0. Consider the subsequent inequality:

L
p
ψ

cD
q;ψϰ(θ) − 

m
i�1I

ηi;ψgi(θ, ϰ(θ))

h(θ, ϰ(θ))
 



− f θ, ϰ(θ), δI
c;ψϰ(θ)( 

≤ ε, θ ∈ I.

(56)
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Definition 3. Problems (6) and (7) is said to be U-H stable if
there existsCf > 0s.t for eachε> 0, and for each solutionw ∈ Eof
(56), there exists a solutionϰ ∈ Eof (6) and (7) with

|w(θ) − ϰ(θ)|≤Cfε, θ ∈ I. (57)

Definition 4. Problems (6) and (7) are said to be generalized
U-H stable if there existsΘ ∈ C(R+,R+)withΘ(0) � 0s.t; for
each solutionw ∈ Eof (56), there exists a solutionϰ ∈ Eof (6),
(7) with

|w(θ) − ϰ(θ)|≤Θ(ε), θ ∈ I. (58)

Remark 1. A function w ∈ E satisfies problems (6) and (7) if
there exists aϕ ∈ E(which depends onw) such that

(i) |ϕ(θ)|≤ ε, θ ∈ I.
(ii) Forθ ∈ I,

L
p
ψ

cD
q;ψ

w(θ) − 
m
i�1I

ηi;ψgi(θ, w(θ))

h(θ, w(θ))
 

� f θ, w(θ), δI
c;ψ

w(θ)(  + ϕ(θ).

(59)

Theorem 3. Let (H1) and (H3) are fulfilled. ;en, problems
(6) and (7) are U-H and generalized U-H stable

proof. Let w ∈ E be a solution of inequality (56), for each
ε> 0. *en, from Remark 1 and Lemma 2, we have

w(θ) � I
q;ψ

h(s, w(s)) 
s

0
I

p− 1;ψ
f θ, w(θ), δI

c;ψ
w(θ)(  + ϕ(θ)( (τ)ψ′(τ)e

− λ Ψ0(s)−Ψ0(τ)( )dτ (θ)

+ 
[

0
I

p− 1;ψ
f θ, w(θ), δI

c;ψ
w(θ)(  + ϕ(θ)( (τ)ψ′(τ)e

− λ Ψ0([)−Ψ0(τ)( )dτ

− ρ
ξ

0
I

p− 1;ψ
f θ, w θ( ), δI

c;ψ
w(θ)(  + ϕ(θ)( (τ)ψ′(τ)e

− λ Ψ0(ξ)−Ψ0(τ)( )dτ

×
1
Δ

I
q;ψ

h(s, w(s)) 1 − e
− λΨ0(s)

  (θ) + 

m

i�1
I
ηi+q;ψ

gi(s, w(s))(θ).

(60)

*en, by Remark 1, Lemma 2, and (H1)-(H3), we obtain

|w(θ) − Gw(θ)| � |I
q;ψ

h(s, w(s)) 
s

0
I

p− 1;ψϕ(τ)ψ′(τ)e
− λ Ψ0(s)−Ψ0(τ)( )dτ (θ)

+ 
[

0
I

p− 1;ψϕ(τ)ψ′(τ)e
− λ Ψ0([)−Ψ0(τ)( )dτ

− ρ
ξ

0
I

p− 1;ψϕ(τ)ψ′(τ)e
− λ Ψ0(ξ)−Ψ0(τ)( )dτ

×
1
Δ

I
q;ψ

h(s, w(s)) 1 − e
− λΨ0(s)

  (θ)|

≤ ε‖χ‖Ω,

(61)

where

Ω � 1 − e
− λΨ0(ξ)

 
Ψp+q−1

0 ([)

λΓ(p + q)Γ(q)
+
Ψp−1

0 ([)

λΓ(p)
1 − e

− λΨ0([)
 

+ ρ
Ψp−1

0 (ξ)

λΓ(p)
1 − e

− λΨ0(ξ)
 

Ψq
0([)

ΔΓ(q + 1)
,

(62)
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which is satisfied inequality (56); then, for each θ ∈ I, we
have

|w(θ) − ϰ(θ)|

� |w(θ) − I
q;ψ

h(s, ϰ(s)) 
s

0
I

p− 1;ψ
f τ, ϰ(τ), δI

c;ψϰ(τ)( ψ′(τ)e
− λ Ψ0(s)−Ψ0(τ)( )dτ (θ)

+ 
[

0
I

p− 1;ψ
f τ, ϰ(τ), δI

c;ψϰ(τ)( ψ′(τ)e
− λ Ψ0([)−Ψ0(τ)( )dτ

− ρ
ξ

0
I

p− 1;ψ
f τ, ϰ(τ), δI

c;ψϰ(τ)( ψ′(τ)e
− λ Ψ0(ξ)−Ψ0(τ)( )dτ

×
1
Δ

I
q;ψ

h(s, ϰ(s)) 1 − e
− λΨ0(s)

  (θ) + 
m

i�1
I
ηi+q;ψ

gi(s, ϰ(s))(θ)|

≤ |w(θ) − Gw(θ)| +|Gw(θ) − Gϰ(θ)|

≤Ω‖χ‖ε +
1 − e

− λΨ0([)

λ
(Λ‖χ‖‖M‖ + Υ‖L‖‖ϑ‖)

+ 
m

i�1

Ki

����
����

Γ ηi + q + 1( 
Ψηi+q

0 ([)‖w(θ) − ϰ(θ)‖.

(63)

*en,

‖w(θ) − ϰ(θ)‖ �
Ω‖χ‖

1 − Ξ1
ε, (64)

where

Ξ1 � (Λ‖χ‖‖M‖ + Υ‖L‖‖ϑ‖) + 
m

i�1

Ki

����
����

Γ ηi + q + 1( 
Ψηi+q

0 ([).

(65)

By setting Cf � (Ω‖χ‖/1 − Ξ1), we obtain

|w(θ) − ϰ(θ)|≤Cfε. (66)

*erefore, BVP (6) and (7) is U-H stable.
Similarly, forΘ ∈ C(R+,R+) such thatΘ(ε) � Cf ε along

with Θ(0) � 0, the solution of problems (6) and (7) is
generalized U-H stable. □

4. Example

Consider the following ψ-Caputo HFSIDE:

cD
(3/2);θ

+ 3cD
(1/2);θ

 
cD

(4/5);θϰ(θ) − 
4
i�1I

ηi;ψgi(θ, ϰ(θ))

h(θ, ϰ(θ))
  � f θ, ϰ(θ),

1
2
I

(5/2);θϰ(θ) , θ ∈ [0, 1],

ϰ(0) � 0,

C
D

(4/5);θϰ(0) � 0,

cD(4/5);θϰ(θ) − 
4
i�1I

ηi;ψgi(θ, ϰ(θ))

h(θ, ϰ(θ))
 

θ�1
�

7
13

cD(4/5);θϰ(θ) − 
4
i�1I

ηi;ψgi(θ, ϰ(θ))

h(θ, ϰ(θ))
 

θ�(5/6)

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(67)
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where



4

i�1
I
ηi;θgi(θ, ϰ(θ))(s)

� I
(1/4);θ 1

18
s

�����

s
2

+ 1


+ sin s + cos ϰ(s)  (θ) + I
(9/5);θ sin ϰ(s)

4π
������
36 + s

2
 (θ)

+ I
(4/3);θ sin2ϰ(s)

12(s + 1)
2 (θ) + I

(5/2);θ 1

3π
������
64 + s

3


|ϰ(s)|

2 + |ϰ(s)|
 (θ),

h(θ, ϰ(θ)) �
e

− θ sin ϰ(θ)

θ + 30
+

1
60

θ2 + 1 ,

f θ, ϰ(θ),
1
2
I

(5/2);θϰ(θ)  �
1

�����
θ + 81

√
|ϰ(θ)|

1 + |ϰ(θ)|
+ arctan

1
2
I

(5/2);θϰ(θ)  .

(68)

Here p � (3/2), q � (4/5), m � 4, η1 � (7/4), η2 � (4/3),

η3 � (2/3), η4 � (5/6), δ � (1/2), c � (5/2), ρ � (7/13),

ξ � (5/6), and g1 � (1/18)(θ
�����
θ2 + 1


+sin θ+ cosϰ(θ)),

g2 � (sin x(θ)/4π
������
36 + θ2


), g3 � (sin2 x(θ)/12(θ + 1)2),

and g4 � (1/3π
������
64 + θ3


) (|x(θ)|/2 + |x(θ)|).

*e hypothesis (H1), (H2), and (H4) are satisfied with
the following positives functions: L(θ) � (e

− θ/θ + 3), χ (θ)

� (e
− θ/θ + 3)+ (θ2 + 1/6), M(θ) � ϑ(θ) � (3/2

�����
θ + 81

√
),

K1(θ) � (1/18),φ1(θ) � (1/18) (θ
�����
θ2 + 1


+ 2), K2(θ) �

φ2(θ) � (1/4π
������

36 + θ2


), K3(θ) � φ3(θ) � (1/12(θ + 1)2),
and K4(θ) � φ4(θ) � (1/3π

������
64 + θ3


), which gives the

norms, ‖L‖ � (1/3), ‖χ‖ � (1/2), ‖M‖ � ‖ϑ‖ � (1/6), ‖K1‖ �

(1/18), ‖φ1‖ � (
�
2

√
+ 2/18), ‖K2‖ � ‖φ2‖ � (1/24π), ‖K3‖ �

‖φ3‖ � (1/12), and ‖K4‖ � ‖φ4‖ � (1/24π).
With the given data, we find that

Δ≃0.45595101,

Λ≃5.3500159,

Υ≃2.8388423,

(69)

and hypothesis (H3) is satisfied by

1 − e
− λ

λ
(Λ‖χ‖‖M‖ + Υ‖L‖‖ϑ‖)

+ 
m

i�1

Ki

����
����

Γ ηi + q + 1( 
≃0.3153266651< 1.

(70)

In the view of *eorem 2, problem (67) has a unique
solution. In addition, *eorem 3 ensures that (6) and (7) are
U-H and generalized U-H stable. As shown in *eorem 3,
for every ϵ> 0, if w ∈ R satisfies

L
p
ψ

cD
q;ψ

w(θ) − 
m
i�1I

ηi;ψgi(θ, w(θ))

h(θ, w(θ))
 



−f θ, w(θ), δI
c;ψ

w(θ)( 
≤ ε, θ ∈ [0, 1],

(71)

then there exists a unique solution ϰ ∈ R such that

|w(θ) − ϰ(θ)|≤Cfε, θ ∈ [0, 1], (72)

where

Cf≃0.81< 1. (73)

Hence, problem (67) is U-H and generalized U-H stable.

5. Conclusion

In this study, we have successfully investigated the existence,
uniqueness, and two kinds of stability in the sense of Ulam of
the solutions for a new class ψ-Caputo-type hybrid FDEs
with hybrid conditions. *e existence of solutions is pro-
vided by using a generalization of Krasnoselskii’s FPTdue to
Dhage [27], whereas the uniqueness result is achieved by
Banach’s FPT. After that, we have studied the concept of U-L
and generalized U-L stabilities of (6) and (7). Also, we have
presented an illustrative example to support our main results
from a numerical point of view.

In future works, many results can be established when
one takes a more generalized operator. Precisely, it will be of
interest to study the current problem in this work for the
fractional operator with variable order [30] and ψ-Hilfer
fractional operator [31].
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cubicâ€“quintic,” Information Sciences Letters, vol. 9,
pp. 83–93, 2020.

[16] A. H. Abdel-Aty, M. M. A. Khater, D. Baleanu, S. M. Abo-
Dahab, J. Bouslimi, and M. Omri, “Oblique explicit wave
solutions of the fractional biological population (BP) and
equal width (EW) models,” Advances in Difference Equations,
vol. 2020, no. 1, 552 pages, 2020.

[17] B. C. Dhage and V. Lakshmikantham, “Basic results on hybrid
differential equations,” Nonlinear Analysis: Hybrid Systems,
vol. 4, no. 3, pp. 414–424, 2010.

[18] Y. Zhao, S. Sun, Z. Han, and Q. Li, “*eory of fractional
hybrid differential equations,” Computers & Mathematics
with Applications, vol. 62, no. 3, pp. 1312–1324, 2011.

[19] S. Ntouyas, S.. Laoprasittichok, and J. Tariboon, “Hybrid
fractional integro-differential inclusions, bound,” Dis-
cussiones Mathematicae, Differential Inclusions, Control and
Optimization, vol. 35, pp. 151–164, 2015.

[20] Z. Baitiche, K. Guerbati, M. Benchohra, and J. Henderson,
“Boundary value problems for hybrid caputo sequential
fractional differential equations,” Communication Applied
Nonlinear Analysis, vol. 27, no. 4, pp. 1–16, 2020.

[21] N. Adjimi, A. Boutiara, M. S. Abdo, and M. Benbachir, “Exis-
tence results for nonlinear neutral generalized Caputo fractional
differential equations,” Journal of Pseudo-Differential Operators
and Applications, vol. 12, no. 2, pp. 1–17, 2021.

[22] A. Boutiara, M. S. Abdo, and M. Benbachir, “Existence results
for ψ-caputo fractional neutral functional integro-differential
equations with finite delay,” Turkish Journal of Mathematics,
vol. 44, no. 6, pp. 2380–2401, 2020.

[23] C. Derbazi, Z. Baitiche, Z. Baitiche, M. S. Abdo, and
T. Abdeljawad, “Qualitative analysis of fractional relaxation
equation and coupled system with Ψ-caputo fractional de-
rivative in banach spaces,” AIMS Mathematics, vol. 6, no. 3,
pp. 2486–2509, 2021.

[24] R. Almeida, A. B. Malinowska, and M. T. T. Monteiro,
“Fractional differential equations with a caputo derivative
with respect to a kernel function and their applications,”
Mathematical Methods in the Applied Sciences, vol. 41, no. 1,
pp. 336–352, 2018.

[25] A. Boutiara, S. Etemad, A. Hussain, and S. Rezapour, “*e
generalized U-H and U-H stability and existence analysis of a
coupled hybrid system of integro-differential IVPs involving
φ-Caputo fractional operators,” Advances in Difference
Equations, vol. 2021, no. 1, 95 pages, 2021.

[26] R. Almeida, “A caputo fractional derivative of a function with
respect to another function,” Communications in Nonlinear
Science and Numerical Simulation, vol. 44, pp. 460–481, 2017.

[27] B. C. Dhage, “A nonlinear alternative with applications to
nonlinear perturbed differential equations,” Nonlinear Study,
vol. 13, no. 4, pp. 343–354, 2006.

[28] D. R. Smart, Fixed Point ;eorems, Cambridge Tracts in
Mathematics, Vol. 66, Cambridge University Press, , Cam-
bridge, MA, USA, 1974.

[29] I. A. Rus, “Ulam stability of ordinary differential equations in
a Banach spaces,” Carpathian Journal of Mathematics, vol. 26,
pp. 103–107, 2010.

[30] X. J. Yang and J. A. T. Machado, “A new fractional operator of
variable order: application in the description of anomalous
diffusion,” Physica A: Statistical Mechanics and its Applica-
tions, vol. 481, pp. 276–283, 2017.

[31] J. V. D. C. Sousa and E. C. de Oliveira, “Two new fractional
derivatives of variable order with non-singular kernel and
fractional differential equation,” Computational and Applied
Mathematics, vol. 37, no. 4, pp. 5375–5394, 2018.

Journal of Mathematics 15


