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Sets of mutually orthogonal Latin squares prescribe the order in which to apply diferent treatments in designing an experiment to
permit efective statistical analysis of results, they encode the incidence structure of fnite geometries, they encapsulate the structure of
fnite groups and more general algebraic objects known as quasigroups, and they produce optimal density error-correcting codes.
Tis paper gives some new results on mutually orthogonal graph squares. Mutually orthogonal graph squares generalize orthogonal
Latin squares interestingly. Mutually orthogonal graph squares are an area of combinatorial design theory that has many applications
in optical communications, wireless communications, cryptography, storage system design, algorithm design and analysis, and
communication protocols, to mention just a few areas. In this paper, novel product techniques of mutually orthogonal graph squares
are considered. Proposed product techniques are the half-starters’ vectors Cartesian product, half-starters’ function product, and
tensor product of graphs. It is shown that by taking mutually orthogonal subgraphs of complete bipartite graphs, one can obtain
enough mutually orthogonal subgraphs in some larger complete bipartite graphs. Also, we try to fnd the minimum number of
mutually orthogonal subgraphs for certain graphs based on the proposed product techniques. As a direct application to the proposed
diferent product techniques, mutually orthogonal graph squares for disjoint unions of stars are constructed. All the constructed
results in this paper can be used to generate new graph-orthogonal arrays and new authentication codes.

1. Introduction

Graphs are discrete structures consisting of vertices and
edges that connect these vertices. Several problems in al-
most every conceivable discipline can be solved using graph
models. Certain problems in physics, chemistry, computer
technology, psychology, communication science, linguis-
tics, engineering, sociology, and genetics can be formulated
as problems in graph theory. For instance, graphs are used
to represent the competition of diferent species in an
environment, to represent who infuences whom in an
organization, and to represent the outcomes of round-
robin tournaments. Also, graphs are used to model re-
lationships between people, collaborations between re-
searchers, telephone calls between telephone numbers, and
links between websites, to mention just a few areas. Many

branches of mathematics, such as probability, topology, matrix
theory, and group theory, have strong connections with graph
theory. For standard terminology and notations concerning
graph theory, see [1]. Decompositions of complete bipartite
graphs have several applications in the design of experiments,
graph code generation, and authentication codes [2, 3]. Table 1
shows the nomenclature used in the paper.

In this paper, we are concernedwith an area of combinatorial
theory that deals with mutually orthogonal F squares where F is
a subgraph of Kn,n. Mutually orthogonal Latin squares (MOLS)
are a special case of mutually orthogonal graph squares (MOGS).
MOGS are interesting but not attainable for general graphs.
Combinatorial design theory has many applications in optical
communications, wireless communications, cryptography, stor-
age system design, algorithm design and analysis, and com-
munication protocols, to mention just a few areas.
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Defnition 1 (see [4]). Let F be a subgraph of Kn,n with size n.

A square matrix M of order n is an F− square if every element
inZn � 0, 1, . . . , n − 1{ } is found exactly n times inM, and the
graphs Fk with E(Fk) � (a0, b1): M(a0, b1) � k: k ∈ Zn} are
isomorphic to F. Te elements of Zn × 0{ } are used for la-
beling the rows of M, and the elements of Zn × 1{ } are used
for labeling the columns ofM. An edge decomposition ofKn,n

by a graph F can be represented by an F− square.

Defnition 2 (see [4]). Suppose M1 is an F− square of order n

with entries from a set C, and M2 is an F− square of order n

with entries from a set D. Ten, the two squares M1 and M2
are orthogonal if, for every x ∈ C and for every y ∈ D, there
exists exactly one cell (a0, b1) such that M1(a0, b1) � x and
M2(a0, b1) � y. A set of λF− squares of order n, say
M1, . . . , Mλ, are called pairwise orthogonal (mutually or-
thogonal) F− squares (MOGS) if Mp and Mq are orthogonal
for all 1≤p< q≤ λ. Here, we consider C � D � Zn �

0, 1, . . . , n − 1{ }.

Theorem 1. For the bipartite graph F having n edges,
N(n, F) denotes the maximum number k in a largest possible
set of MOGS of Kn,n by F. For every bipartite graph F with
n≥ 2 edges, we have N(n, F)≤ n.

Great eforts have been made to get the solution to several
problems concerned with the MOLS since Euler frst asked
about MOLS to solve the thirty-six ofcer’s problem. Famous
theorems concerning the MOLS were introduced by Bose,
Shrikhande, and Parker [5, 6]. Also, Wilson in [7] handled
celebrated theorems concerned with the MOLS. Many eforts
have been concentrated on refning and fnding novel ap-
plications for these approaches. Te authors of [8] proposed
an integrated frefy algorithm based on MOLS, named FA-
MOLS, to address the quadratic assignment problem. Liu [9]
introduced the packing of Latin squares by BCL algebras. Te
authors in [10] focused on the existence of orthogonal large
sets of partitioned incomplete Latin squares. A large set of
disjoint incomplete Latin squares was introduced in [11]. A
strategy for producing group-based Sudoku-pair Latin
squares was investigated in [12]. Te Latin squares were
constructed based on the circulant matrix by the authors of
[13]. Authentication codes based on orthogonal arrays and

Latin squares were proposed in [14]. For a good survey of
MOLS, see [15] and the references therein. El-Shanawany [16]
proposed the conjecture, N(p, Pp+1) � p, where Pp+1 is
a path with p + 1 vertices and p is a prime number. Sam-
pathkumar et al. [17] solved this conjecture. El-Shanawany
[18] found N(p,Pp+1(F)). El-Shanawany [19] computed
N(n, F) � r≥ 3 where F is disjoint copies of some subgraphs
of Kn,n. El-Shanawany and El-Mesady [4] introduced the
Kronecker product of MOGS and applied this technique to
get a new mutually orthogonal disjoint union of some
complete bipartite graph squares. MOGS for disjoint unions
of paths were developed in [20]. MOGS for certain graphs
were handled by [21]. El-Mesady et al. [22] generalized the
MacNeish’s Kronecker product theorem of MOLS. MOGS
were used to construct graph-transversal designs and graph-
authentication codes in [3, 23]. MOGS are used to construct
orthogonal arrays that have many applications [24].

Te main purpose of this paper is to construct several new
results on MOGS. All of the previously mentioned MOGS
results motivated us to introduce novel diferent product
techniques to MOGS that yield new MOGS results. Te pro-
posed product techniques are the half-starters’ vectors Cartesian
product, half-starters’ function product, and graph tensor
product.Tenovelty of the current paper is demonstrated by the
fact that it is the frst to introduce the MOGS by the afore-
mentioned product techniques. It is shown that by taking
mutually orthogonal subgraphs of complete bipartite graphs,
one can obtain enough mutually orthogonal subgraphs in some
larger complete bipartite graphs. Also, we try to fnd the
minimumnumber ofmutually orthogonal subgraphs for certain
graphs based on the proposed product techniques. As a direct
application to the proposed diferent product techniques, mu-
tually orthogonal graph squares for disjoint unions of stars are
constructed.Temain diference between this paper and almost
all the related study works that we surveyed in this section is that
the proposed product techniques are recursive construction
techniques that can use all the results in the literature to con-
struct novel results concerned withMOGS. Also, the Kronecker
product [4] was applied to the squares, but the half-starters’
vectors Cartesian product is applied to the vectors, the half-
starters’ function product is applied to the functions, and the
graph tensor product is applied to graphs.

Te remaining part of the present paper is divided as follows:
Section 2 is devoted to MOGS from mutually orthogonal half-
starters’ vectors. Section 3 constructs MOGS based on the
Cartesian product of half-starters’ vectors.MOGS frommutually
orthogonal half-starters’ functions are presented in Section 4.
Section 5 introduces the tensor products of MOGS. MOGS for
complete bipartite graphs by stars based on the tensor product
are proved in Section 6. Discussion is presented in Section 7.
Section 8 is devoted to the conclusion and future work.

2. MOGS from Mutually Orthogonal Half
Starters’ Vectors

If we have a graph F which is considered a subgraph of Kn,n

with n edges, then the graph F + x is called the x− translate of
F and E(F + x) � (a0 + x, b1 + x): (a0, b1) ∈ E(F) . If the
edge (a0, b1) ∈ E(F), then its length is defned by b − a,

Table 1: Te nomenclature used in the paper.

Nomenclature
d(x) Degree of a vertex x

Zn Te group 0, 1, . . . , n − 1{ }

Km Complete graph with m vertices

Km,n

Complete bipartite graph having two independent sets of
sizes m and n

Ck Cycle of length k

Pk Path on k vertices
G∪H Disjoint union of G and H

mG m disjoint copies of G

M(i, j) Entry in row i and column j of a square matrix M

⊗ Cartesian product operation

Pn(F)
F− path obtained by replacing each edge in Pn by the

graph F
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where arithmetic operations are calculated modulo n. A
graph F is called a half-starter w.r.t. Zn if |E(F)| � n and the
edges in F have diferent lengths that are equivalent to the
group Zn.

Theorem 2 (see [9]). If F is a half-starter, then an edge
decomposition of Kn,n can be constructed by fnding all the
translates of F and taking their union; that is,
∪ x∈Zn

E(F + x) � E(Kn,n).

Te vector
u(F) � (u0, u1, . . . , un− 1) ∈ Zn

n �Zn × · · · × Zn

√√√√√√√√√√n− times

can be used
to represent the half-starter F where uk, k ∈ Zn, and (uk)0 is
the unique vertex ((uk, 0) ∈ Zn × 0{ }) that belongs to the
unique edge of length k in F with
E(F) � (uk, uk + k): uk, k ∈ Zn . Two half-starters’ vectors
u(H) and u(F) are said to be orthogonal if
uk(H) − uk(F): k ∈ Zn  � Zn. A set of half-starters’ vectors

u(F0), u(F1), . . . , u(Fλ− 1) is mutually orthogonal if u(Fk)

and u(Fl) are orthogonal for every 0≤ k< l≤ λ − 1. It is
worth noting that each half-starter and its translates of
a subgraph F of Kn,n are equivalent to F− square. Hence, the
set of k mutually orthogonal half-starters and their translates
are equivalent to a set of k mutually orthogonal F− squares.

3. MOGS Based on the Cartesian Product of
Half-Starters’ Vectors

Te Cartesian product of half-starters’ vectors has been
defned in literature for constructing orthogonal double
covers of Kn,n. Tis method has been applied to construct
orthogonal double covers of Kn,n by new graph classes. Te
Cartesian product of two vectors corresponding to two half-
starter graphs is considered a very special case of the tensor
product of these two half-starter graphs.

Defnition 3. Te tensor product of two graphs G1 and
G2, G1 × G2 is defned as follows. If a vertex u1 is adjacent to
a vertex v1 in G1 and a vertex u2 is adjacent to a vertex v2 in
G2, then the vertex (u1, u2) is adjacent to the vertex (v1, v2)

in G1 × G2.

Example 1. Figure 1 exhibits an example of the graphs
G1, G2, and G1 × G2.

Defnition 4 (see [25]). Let G be a graph, and v belongs to the
vertex set of G. Te number of edges incident at v in G is
called the degree (or valency) of the vertex v in G and is
denoted by d(v). From the degrees of vertices of G, we can
construct a sequence which is called a degree sequence of G,

when the vertices are taken in the same order. It is customary
to put this sequence in nondecreasing or nonincreasing
order. Tis gives a unique sequence.

Example 2 (see [25]). In the graph G of Figure 2, the number
within the parentheses indicates the degree of the corre-
sponding vertex. Te degree sequence of G is
(0, 1, 2, 2, 4, 4, 5).

Defnition 5. If we have the vector u(G) � (u0, u1,

. . . , u(m− 1)) ∈ Zm
m, then, by determining the repetition

number of each element in the vector u(G), we get the vector
N � ((n(0), n(1), . . . , n((m − 1))), where n(i) is the rep-
etition number of the element i, i ∈ Zm. By the ascending
order for the vector N, we get the degree sequence of the
vector u(G) defned by L � (l0, l1, . . . , l(m− 1)), where l0 ≤ l1 ≤
. . . ≤ l(m− 1).

Defnition 6. If we have the two vectors up(Gp) �

(u
p
0 , u

p
1 , . . . , u

p

(m− 1)),u
q(Gq) � (u

q
0, u

q
1, . . . , u

q

(m− 1)) and the
two vectors u′P � (u′p0 , u′P1 , . . . , u′P(m− 1)),u′

q
� (u′q0, u′q1,

. . . , u′q(m− 1)), where u′Pi � u
p
i + i, u′qi � u

q
i + i, i ∈ Zm,

then the two half-starters Gp and Gq are isomorphic if Lp �

Lq and LP
′ � Lq
′ or Lp � Lq

′ and Lp
′ � Lq, where Lp is the

degree sequence of the vector up, Lp
′ is the degree sequence of

the vector u′
p,Lq is the degree sequence of the vector uq, and

Lq
′ is the degree sequence of the vector u′

q
. In our paper, we

consider the case of Lp � Lq and LP
′ � Lq
′ for the iso-

morphism of the two half-starters Gp and Gq.

For Proposition 1, if we have the two half-starters G and
H which are represented by the vectors v(G) ∈ Zm

m and
u(H) ∈ Zn

n, respectively, then the graph T� G⊗H is defned
by the edge set E(T) �E(G⊗H) � (viuj, (vi + i)

(uj + j)): i ∈ Zm, j ∈ Zn}.

Proposition 1. If there are k mutually orthogonal half-
starters’ vectors of length m for the graph G, and k mutually
orthogonal half-starter’ vectors of length n for the graph H,

then there are k mutually orthogonal half-starters’ vectors of
length mn for the graph T� G⊗H.

Proof 1. For p≠ q ∈ Zk, let v(Gs � G) be k mutually or-
thogonal half-starters’ vectors of length m and v(Hs � H) be
k mutually orthogonal half-starters’ vectors of length n,

where vs(Gs) � (vs
0, vs

1, . . . , vs
(m− 1)) ∈ Z

m
m and us(Hs) �

(us
0, us

1, . . . , us
n− 1) ∈ Z

n
n. Hence,

v
p
i G

p
(  − v

q
i G

q
( : i ∈ Zm  � Zm, (1)

u
p
i H

p
(  − u

q
i H

q
( : i ∈ Zn  � Zn. (2)

Ten, vs(Gs)⊗ us(Hs) � (vs
0u

s
0, vs

0u
s
1, vs

0u
s
2, . . . , vs

i u
s
j, . . . ,

vs
(m− 1)u

s
n− 1) where i ∈ Zm, j ∈ Zn. For

Tp� Gp ⊗Hp,Tq� Gq ⊗Hq, we conclude from (1) and (2),

v
p

i u
p

j − v
q

i u
q

j : ij ∈ Zm ⊗Zn  � v
p

i G
p

(  − v
q

i G
q

(   u
p

j H
p

(  − u
q

j H
q

(   : i ∈ Zm, j ∈ Zn � Zm ⊗Zn. (3)
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Hence, from (3), the two half-starters Tp and Tq are
orthogonal. Since E(Gs) � (vs

i , vs
i + i): i ∈ Zm  and

E(Hs) � (us
j, us

j + j): j ∈ Zn , then

E G
s ⊗H

s
(  � E T

s
( ,

� v
s
i u

s
j, v

s
i + i(  u

s
j + j  : i ∈ Zm, j ∈ Zn .

(4)

Now, we will try to prove the isomorphism of the
graphs T s, s ∈ Zk. We have E(Tp) � (v

p

i u
p

j , (v
p

i + i) (u
p

j +

j)): i ∈ Zm, j ∈ Zn} � ((v
p
i u

p
j , v′pi u′pj ): i ∈ Zm, j ∈

Zn} and E(Tq) � (v
q
i u

q
j , (v

q
i + i)(u

q
j + j)): i ∈ Zm,

j ∈ Zn} � (v
q
i u

q
j , v′qi u′qj): i ∈ Zm, j ∈ Zn . Since the de-

gree sequence of the vector vp equals the degree sequence of
the vector vq, the degree sequence of the vector v′

P equals the
degree sequence of the vector v′

q, the degree sequence of the
vector up equals the degree sequence of the vector uq, and
the degree sequence of the vector u′

p equals the degree
sequence of the vector u′

q, then the degree sequence of the
vector vpup equals the degree sequence of the vector vquq,

and the degree sequence of the vector v′
pu′

p equals the
degree sequence of the vector v′

qu′
q. Hence, the two half-

starters Tp and Tq are isomorphic. □

Example 3. Let q be a prime > 2. Ten, we have q mutually
orthogonal half-starters’ vectors defned by us

i (Gs) � i(s − i),

where i, s ∈ Zq and Gs � Pq+1, see [11]. Hence, we have 3
mutually orthogonal half-starters’ vectors for both P6 and
P4, which are vs(Ps

6) and us(Ps
4), respectively. Ten, we

obtain 3 mutually orthogonal half-starters’ vectors
ws(Ps

6 ⊗Ps
4) as shown in Table 2. See Figure 3.

Also, the three MOGS corresponding to the vectors
vs(Ps

6) are A0, A1, and A2, the three MOGS corresponding to

the vectors us(Ps
4) are B0, B1, and B2, and the three MOGS

corresponding to the vectors ws(Ps
6 ⊗Ps

4) are L0, L1, and L2.

Of course in L0, L1, and L2, one can easily replace the
ordered pairs 00, 01, 02, 10, 11, 12, 20, 21, 22, 30, 31, 32, 40,
41, 42 by 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 to obtain
three mutually orthogonal (P6 ⊗P4)-squares of order 15,
where their elements are the usual symbols.

4. MOGS from Mutually Orthogonal Half-
Starters’ Functions

In what follows, if V1 � Zn ⊗ 0{ } and V2 � Zn ⊗ 1{ }, then the
graphs Gfi

will be represented by the functions
fi : V1⟶ V2. Te edge set of the graphs Gfi

is E(Gfi
) �

(x, fi(x)): x ∈ V1 . Every graph from the graphs Gfi

represents unions of stars which have the same direction
where every vertex x belongs to V1 has a degree of one, that
is, d(x) � 1. Te graph Gf is called f− half-starter if
E(Gf) � ∪ x∈V1

(x, f(x)) , where Gf is a subgraph of Kn,n

with n edges and f : V1⟶ V2.

Defnition 7 (see [9]). Let z ∈ Zn. Ten, the graph Gf + z �

(x, f(x) + z): (x, f(x)) ∈ E(Gf)  is called the
(z, f)− translate of Gf.

Remark 1 (see [9]). Te union of all translates of Gf forms
an edge decomposition of Kn,n, that is, ∪ z∈Zn

E(Gf + z) �

E(Kn,n).

Defnition 7 and Remark 1 show that every f− half-
starter graph Gf and the translates are equivalent to
Gf-square.

Let Gfi
� G, i ∈ Zk be subgraphs of Kn,n with |E(G)| �

n. Ten, the set Gfi
  is called a set of k mutually orthogonal

subgraphs, if fi(x) − fj(x): x ∈ Zn  � Zn for all
i, j ∈ Zk and i≠ j. If the two half-starters Gf and Gg are
orthogonal, then the two sets of translates of Gf and Gg are
orthogonal. A set of edge decompositions Hfi

�

∪ z∈Zn
E(Gfi

+ z)} is a set of k MOGS if Hfi
and Hfj

are
orthogonal for all i, j ∈ Zk and i≠ j.

Example 4. Let fi(x) � x2 + ix be f− half-starter graphs
Gfi

� K2 ∪K1,2 of K3,3 for all i, x ∈ Z3. Te edge set of the
graphs Gfi

and their translates are shown in Tables 3, 4,
and 5.

G1

u1

(u2, v3)
(u1, v2)

(u2, v1)

(u2, v4)

(u1, v4)

(u1, v3)
(u2, v2)

(u1, v1)

u2

v1

v2

v3

v4

G2 G1 × G2

Figure 1: An example for the graphs G1, G2, and G1 × G2.

v1 (4)

v6 (1)
v5 (4) v4 (2)

v2 (5)
v7 (0)

v3 (2)

G

Figure 2: Degrees of vertices for the graph G.
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bl

e
2:

T
e
us
ed

ve
ct
or
s
in

Ex
am

pl
e
3.

vs
(

P
s 6)

,v
′s

(
P

s 6)
u

s
(

P
s 4)

,u
′s

(
P

s 4)
w

s
(

P
s 6
⊗

P
s 4)

,w
′s

(
P

s 6
⊗

P
s 4)

s
�
0

(
0,
4,
1,
1,
4)

,(
0,
0,
3,
4,
3)

(
0,
2,
2)

,(
0,
0,
1)

(
00

,0
2,
02

,4
0,
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,4
2,
10

,1
2,
12

,1
0,
12

,1
2,
40

,4
2,
42

),
(
00

,0
0,
01

,0
0,
00

,0
1,
30

,3
0,
31

,4
0,
40

,4
1,
30

,3
0,
31

)

s
�
1

(
0,
0,
3,
4,
3)

,(
0,
1,
0,
2,
2)

(
0,
0,
1)

,(
0,
1,
0)

(
00

,0
0,
01

,0
0,
00

,0
1,
30

,3
0,
31

,4
0,
40

,4
1,
30

,3
0,
31

),
(
00

,0
1,
00

,1
0,
11

,1
0,
00

,0
1,
00

,2
0,
21

,2
0,
20

,2
1,
20

)

s
�
2

(
0,
1,
0,
2,
2)

,(
0,
2,
2,
0,
1)

(
0,
1,
0)

,(
0,
2,
2)

(
00

,0
1,
00

,1
0,
11

,1
0,
00

,0
1,
00

,2
0,
21

,2
0,
20

,2
1,
20

),
(
00

,0
2,
02

,2
0,
22

,2
2,
20

,2
2,
22

,0
0,
02

,0
2,
10

,1
2,
12

)
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Hence, we deduce the following three mutually or-
thogonal (K2 ∪K1,2)-squares:

L
0

�

0 1 2

2 0 1

2 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

L
1

�

0 1 2

1 2 0

0 1 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

L
2

�

0 1 2

0 1 2

1 2 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(5)

Defnition 8. For the f− half-starter graph Gf represented
by the function f : V1⟶ V2, where
V1 � Zn ⊗ 0{ },V2 � Zn ⊗ 1{ }, and
E(Gf) � (x, f(x)): x ∈ V1 , we have d(x) � 1 for all
x ∈ V1. By determining the degree of each vertex belonging
to V2, from Gf, we get the vector
N � (d(01), d(11), . . . , d((n − 1)1)), where d(i1) is the
degree of the vertex i1, i1 ∈ Zn ⊗ 1{ }. By the ascending
order for the vector N, we get the degree vector of Gf

denoted by Lf � (l0, l1, . . . , ln− 1) where l0 ≤ l1 ≤ . . . ≤ ln− 1.

Defnition 9. If we have the f-half-starter graph Gf repre-
sented by the function f : V1⟶ V2 and the g-half-starter
graph Gg represented by the function g : V1⟶ V2, then
Gf and Gg are isomorphic if Lf � Lg, where Lf is the degree
vector of Gf and Lg is the degree vector of Gg.

We shall denote by N(n, Gfi
) the maximal number of

fi− half-starter graphs Gfi
in the largest possible set of

mutually orthogonal subgraphs Gfi
in Kn,n, i ∈ Zk.

Hereafter, if we have N(m, Gfi
)≥ λ, where i ∈ Zλ and Gfi

�

G having m edges and N(n, Ggi
)≥ μ, where i ∈ Zμ and Ggi

�

H having n edges and min λ, μ  � k, then we obtain
N(mn, Ghi

)≥ k, where i ∈ Zk and Ghi
� Gfi
⊗Ggi

by Prop-
osition 2. Also, we present some results as direct applications
to Proposition 2. In the following, if there is no danger of
ambiguity, if (x, y) ∈ Zm ⊗Zn, we can write (x, y) as xy.

Proposition 2. If N(m, Gfi
)≥ λ, where i ∈ Zλ and Gfi

� G

havem edges,N(n, Ggi
)≥ μ,where i ∈ Zμ andGgi

� H have n

edges, and min λ, μ  � k, then N(mn, Ghi
)≥ k, where Ghi

�

Gfi
⊗Ggi

are isomorphic graphs having mn edges.

Proof 2. Let fi− half-starter graphs Gfi
be represented by the

functionsfi(x), i ∈ Zk, x ∈ Zm and gi− half-starter
graphs Ggi

be represented by the functions
gi(y), i ∈ Zk, y ∈ Zn. Ten, we obtain the hi− half-
starter graphs Ghi

� Gfi
⊗Ggi

, which are represented by the
functions

hi(xy) � fi(x)gi(y). (6)

Since hp(xy) − hq(xy) � fp(x) gp(y) − fq(x)gq(y)

� (fp(x) − fq(x))(gp(y) − gq(y)): p, q ∈ Zk, p≠ q}

� Zm ⊗Zn, then Ghp and Ghq are orthogonal. Te edge set of
the graphs Ghi

can be obtained as follows, since E(Gfi
) �

(x, fi(x))  and E(Ggi
) � (y, gi(y)) , then E(Ghi

) �

(xy, fi(x)gi(y)) . Now, we want to prove the isomorphism
of the two graphs Ghp and Ghq. For p, q ∈ Zk, p≠ q, we
have Lfp

� Lfq
and Lgp

� Lgq
, then for Ghp � Gfp

⊗Ggp
and

Table 4: Te graph Gf1
and it’s translates for Example 4.

E(Gf1
) � (x, f1(x))  E(Gf1

+ 1) E(Gf1
+ 2)

(0, 0) (0, 1) (0, 2)

(1, 2) (1, 0) (1, 1)

(2, 0) (2, 1) (2, 2)

Table 5: Te graph Gf2
and it’s translates for Example 4.

E(Gf2
) � (x, f2(x))  E(Gf2

+ 1) E(Gf2
+ 2)

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 2) (2, 0) (2, 1)

Table 3: Te graph Gf0
and it’s translates for Example 4.

E(Gf0
) � (x, f0(x))  E(Gf0

+ 1) E(Gf0
+ 2)

(0, 0) (0, 1) (0, 2)

(1, 1) (1, 2) (1, 0)

(2, 1) (2, 2) (2, 0)

000 100 420 020 400 120 410 010 300 400 310 000

201 111 211 001 101 011001 411 011 301 401 311

110

221

210

101 201

000 100

021

010 200

121 001

(P0
6 ◆ P0

4) (P2
6 ◆ P2

4)(P1
6 ◆ P1

4)

The graph corresponding to the
position s having 00 values in L0.

The graph corresponding to the
position s having 00 values in L1.

The graph corresponding to the
position s having 00 values in L2. 

Figure 3: Tree mutually orthogonal half-starters corresponding to the vectors ws(Ps
6 ⊗Ps

4).
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Ghq � Gfq
⊗Ggq

, the degree vector of Ghp is equal to the
degree vector of Ghq. Tis means that Lhp

� Lhq
. Hence, Ghp

and Ghq are isomorphic.
All the following results are based on (i) Proposition 2

and (ii) the following ingredients (see [9]).

(i) Let n> 2 be a prime number. Ten,
N(n, K1,1 ∪ ((n − 1)/2)K1,2) � n, and the fi− half-
starter graphs Gfi

� K1,1 ∪ ((n − 1)/2)K1,2 are rep-
resented by the functions fi(x) � x2 + ix, where
i, x ∈ Zn.

(ii) Let n be a prime number. Ten, N(n, nK1,1) � n − 1
and the fi− half-starter graphs Gfi

� nK1,1 are
represented by the functions fi(x) � ix, where
x ∈ Zn,i ∈ Zn/ 0{ }.

(iii) Let n> 2 be a prime number. Ten,
N(n, (n − 2)K1,1 ∪K1,2)≥ n − 1, and the fi− half-
starter graphs Gfi

� (n − 2)K1,1 ∪K1,2 are repre-
sented by the functions
fi(x) �

0; x � 0
1 + ix; i, x ∈ Zn.



(iv) Let n � 9. Ten, N(9, K1,3 ∪ 3K1,2)≥ 3, and the fi−

half-starter graphs Gfi
� K1,3 ∪ 3K1,2 are repre-

sented by the functions fi(x) � x2 + ix, where
x ∈ Z9, i ∈ Z3.

(v) Let n � 7. Ten N(7, 3K1,1 ∪ 2K1,2)≥ 4, for i ∈ Z4,

the fi− half-starter graphs Gfi
� 3K1,1 ∪ 2K1,2 are

represented by the functions

fi(x) �

0; x � 0,

1 + 4i; x � 4,

2 + i; x � 1,

4 + ix; x � 2, 5,

6 + ix; x � 3, 6.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Tese known fi− half-starter graphs Gfi
are the in-

gredients for the following results. Tese ingredients are
some of the literature results and are not all of the literature
results. □

Theorem  . Let n, m be odd primes. Ten, N(mn, G1)≥ k,

where k � min m, n − 1{ } and
G1 � nK1,1 ∪ ((((m − 1))n)/2)K1,2.

Proof 3. We have k mutually orthogonal fi− half-starter
graphs Gfi

� K1,1 ∪ (((m − 1))/2)K1,2, which are repre-
sented by the functions fi(x) � x2 + ix, where
x ∈ Zm, i ∈ Zk (ingredient (i)) and k mutually orthog-
onal gi− half-starter graphs Ggi

� nK1,1, which are repre-
sented by the functions gi(y) � (i + 1)y, where
y ∈ Zn,i ∈ Zk (ingredient (ii)). Ten, we obtain k mutually
orthogonal hi− half-starter graphs Ghi

� Gfi
⊗Ggi

, which
are represented by the functions hi(xy) � (x2 + ix)((i +

1)y). Since hp(xy)− hp(xy) � (x2 + px)

((p + 1)y) − (x2 + qx)((q + 1)y) � ((x2 +

px) − (x2 + qx))((p + 1)y − (q + 1)y): p, q ∈ Zk, p≠ q}

� Zm ⊗Zn, then Ghp and Ghq are orthogonal.Te edge set of

the graphs Ghi
can be obtained as follows, since E(Gfi

) �

(x, x2 + ix)  and E(Ggi
) � (y, (i + 1)y) , then E(Ghi

) �

(xy, (x2 + ix)((i + 1)y)) . Now, we want to prove the
isomorphism of the two graphs Ghp and Ghq. For

p, q ∈ Zk, p≠ q, we have Lfp
� Lfq

� (0, 0, . . . , 0
√√√√√√√√

(m− 1)/2

,

1, 2, 2, . . . , 2)
√√√√√√√√(m− 1)/2

and Lgp
� Lgq

� (1, 1, . . . , 1)
√√√√√√√√√√n

, then for Ghp �

Gfp
⊗Ggp

and Ghq � Gfq
⊗Ggq

, the degree vector of Ghp is
equal to the degree vector of Ghq. Tis means that Lhp

�

Lhq
� (0, 0, . . . , 0

√√√√√√√√
(m− 1)/2

, 1, 2, 2, . . . , 2)
√√√√√√√√

(m− 1)/2

⊗ 1, 1, . . . , 1)
√√√√√√√√n

. Hence, Ghp

and Ghq are isomorphic. □

Theorem 4. Let n, m be primes.Ten, N(mn, G2)≥ k, where
k � min m, n − 1{ } and
G2 � (n − 2)K1,1 ∪ ((((m − 1))(n − 2) + 2)/2)K1,2 ∪ (((m −

1))/2)K1,4.

Proof 4. We have k mutually orthogonal fi− half-starter
graphs Gfi

� K1,1 ∪ (((m − 1))/2)K1,2, which are repre-
sented by the functions fi(x) � x2 + ix, where
x ∈ Zm, i ∈ Zk (ingredient (i)) and k mutually orthogonal
gi− half-starter graphs Ggi

� (n − 2)K1,1 ∪K1,2, which are
represented by the functions gi(y) �

0; y � 0
1 + (i + 1)y; y ∈ Zn/ 0{ }, i ∈ Zk

 (ingredient (iii)).

Ten, we obtain k mutually orthogonal hi− half-starter
graphs Ghi

� Gfi
⊗Ggi

, which are represented by the func-
tions hi(xy) � (x2 + ix)gi(y). Since h p(xy) − hp(xy) �

(x2 + px)gp(y) − (x2 + qx)gq(y) � ((x2 + px)−

(x2 + qx))(gp(y) − gq(y)): p, q ∈ Zk, p≠ q} � Zm

⊗Zn, then Ghp and Ghq are orthogonal. Te edge set of the
graphs Ghi

can be obtained as follows, since
E(Gfi

) � (x, x2 + ix)  and E(Ggi
) � (y, gi(y)) , then

E(Ghi
) � (xy, (x2 + ix)(gi(y))) . Now, we want to prove

the isomorphism of the two graphs Ghp and Ghq. For

p, q ∈ Zk, p≠ q, we have Lfp
� Lfq

� (0, 0, . . . , 0
√√√√√√√√

(m− 1)/2

,

1, 2, 2, . . . , 2)
√√√√√√√√(m− 1)/2

and Lgp
� Lgq

� (0, 1, 1, . . . , 1
√√√√√√√√n− 2

, 2), then for
Ghp � Gfp

⊗Ggp
and Ghq � Gfq

⊗Ggq
, the degree vector of

Ghp is equal to the degree vector of Ghq. Tis means that

Lfp
� Lfq

� (0, 0, . . . , 0
√√√√√√√√(m− 1)/2

, 1, 2, 2, . . . , 2)
√√√√√√√√(m− 1)/2

⊗ (0, 1, 1, . . . , 1
√√√√√√√√n− 2

, 2).

Hence, Ghp and Ghq are isomorphic. □

Theorem 5. Let m be odd prime. Ten, N(9m, G3)≥ 3,

where
G3 � K1,3 ∪ 3K1,2 ∪ (((m − 1))/2)K1,6 ∪ (3((m − 1))/2)K1,4.

Proof 5. We have m mutually orthogonal fi− half-starter
graphs Gfi

� K1,1 ∪ (((m − 1))/2)K1,2, which are represented
by the functions fi(x) � x2 + ix, where x ∈ Zm, i ∈ Zk
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(ingredient (i)) and 3 mutually orthogonal gi− half-starter
graphs Ggi

� K1,3 ∪ 3K1,2, which are represented by the
functions gi(y) � y2 + iy, y ∈ Z9, i ∈ Z3 (ingredient
(iv)). Since min m, 3{ } � 3, then we obtain 3 mutually or-
thogonal hi− half-starter graphs Ghi

� Gfi
⊗Ggi

, which are
represented by the functions hi(xy) � (x2 + ix)

(y2 + iy), i ∈ Z3. Since hp(xy) − hp(xy) � (x2 + px)

(y2 + py) − (x2 + qx)(y2 + qy) � ((x2 + px) − (x2 + qx))

((y2 + py) − (y2 + qy)): p, q ∈ Z3, p≠ q} � Zm ⊗Z9,

then Ghp and Ghq are orthogonal. Te edge set of the graphs
Ghi

can be obtained as follows, since E(Gfi
) � (x, x2 + ix) 

and E(Ggi
) � (y, y2 + iy) , then E(Ghi

) � (xy,

(x2 + ix)(y2 + iy))}. Now, we want to prove the iso-
morphism of the two graphs Ghp and Ghq. For

p, q ∈ Z3, p≠ q, we have Lfp
� Lfq

� (0, 0, . . . , 0
√√√√√√√√

(m− 1)/2

,

1, 2, 2, . . . , 2)
√√√√√√√√(m− 1)/2

and Lgp
� Lgq

� (0, 0, 0, 0, 0, 2, 2, 2, 3), then for
Ghp � Gfp

⊗Ggp
and Ghq � Gfq

⊗Ggq
, the degree vector of

Ghp is equal to the degree vector of Ghq. Tismeans that Lhp
�

Lhq
� (0, 0, . . . , 0

√√√√√√√√
(m− 1)/2

, 1, 2, 2, . . . , 2)
√√√√√√√√

(m− 1)/2

⊗ (0, 0, 0, 0, 0, 2, 2, 2, 3)

Hence, Ghp and Ghq are isomorphic. □

Theorem 6. Let m> 3 be prime. Ten, N(7m, G4)≥ 4, where
G4 � 3K1,1 ∪ ((3((m − 1)) + 4)/2)K1,2 ∪ ((m − 1))K1,4.

Proof 6. We have m mutually orthogonal fi− half-starter
graphs Gfi

� K1,1 ∪ (((m − 1))/2)K1,2, which are repre-
sented by the functions fi(x) � x2 + ix, where
x ∈ Zm, i ∈ Zk (ingredient (i)) and 4 mutually orthogonal
gi− half-starter graphs Ggi

� 3K1,1 ∪ 2K1,2, which are rep-
resented by the functions

gi(y) �

0; y � 0,

1 + 4i; y � 4,

2 + i; y � 1,

4 + iy; y � 2, 5,

6 + iy; y � 3, 6,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where i ∈ Z4 (ingredient (v)). Since min m, 4{ } � 4, then we
obtain 4 mutually orthogonal hi− half-starter graphs Ghi

�

Gfi
⊗Ggi

, which are represented by the functions hi(xy) �

(x2 + ix)gi(y). Since hp(xy) − h p(xy) � (x2 + px)

gp(y) − (x2 + qx)gq(y) � ((x2 + px) − (x2 + qx))(gp(y)

− gq(y)): p, q ∈ Z4, p≠ q} � Zm ⊗Z7, then Ghp and
Ghq are orthogonal. Te edge set of the graphs Ghi

can be
obtained as follows, since E(Gfi

) � (x, x2 + ix)  and
E(Ggi

) � (y, gi(y)) , then E(Ghi
) � (xy, (x2 + ix)

(gi(y)))}. Now, we want to prove the isomorphism of the
two graphs Ghp and Ghq. For p, q ∈ Z4, p≠ q, we have

Lfp
� Lfq

� (0, 0, . . . , 0
√√√√√√√√

(m− 1)/2

, 1, 2, 2, . . . , 2)
√√√√√√√√

(m− 1)/2

and
Lgp

� Lgq
� (0, 0, 1, 1, 1, 2, 2), then for Ghp � Gfp

⊗Ggp
and

Ghq � Gfq
⊗Ggq

, the degree vector of Ghp is equal to the

degree vector of Ghq. Tis means that Lhp
� Lhq

�

(0, 0, . . . , 0
√√√√√√√√(m− 1)/2

, 1, 2, 2, . . . , 2)
√√√√√√√√(m− 1)/2

⊗ (0, 0, 1, 1, 1, 2, 2). Hence, Ghp

and Ghq are isomorphic. □

Theorem 7. Let n, m be primes. Ten N(mn, G5)≥ k, where
k � min m − 1, n − 1{ } and G5 � m(n − 2)K1,1 ∪m1,2.

Proof 7. We have ((m − 1)) mutually orthogonal fi− half-
starter graphs Gfi

� mK1,1, which are represented by the
functions fi(x) � (i + 1)x, where x ∈ Zm, i ∈ Zk (in-
gredient (ii)) and (n − 1) mutually orthogonal gi− half-
starter graphs Ggi

� (n − 2)K1,1 ∪K1,2, which are repre-
sented by the functions gi(y) �

0; y � 0
1 + (i + 1)y; y ∈ Zn/ 0{ }, i ∈ Zk

 (ingredient (iii)).

Ten, we obtain k mutually orthogonal hi− half-starter
graphs Ghi

� Gfi
⊗Ggi

, which are represented by the func-
tions hi(xy) � ((i + 1)x)gi(y). Since h p(xy) − hp(xy) �

((p + 1)x)gp(y) − ((q + 1)x)gq(y) � ((p + 1)x − (q +

1)x)(gp(y) − gq(y)): p, q ∈ Zk, p≠ q} � Zm ⊗Zn, then
Ghp and Ghq are orthogonal. Te edge set of the graphs Ghi

can be obtained as follows, since E(Gfi
) � (x, (i + 1)x){ } and

E(Ggi
) � (y, gi(y)) , then E(Ghi

) � (xy, ((i + 1)x)(gi

(y)))}. Now, we want to prove the isomorphism of the two

graphs Ghp and Ghq. For p, q ∈ Zk, p≠ q, we have Lfp
�

Lfq
� (1, 1, . . . , 1)

√√√√√√√√m

and Lgp
� Lgq

� (0, 1, 1, . . . , 1
√√√√√√√√n− 2

, 2), then
for Ghp � Gfp

⊗Ggp
and Ghq � Gfq

⊗Ggq
, the degree vector

of Ghp is equal to the degree vector of Ghq. Tis means that

Lhp
� Lhq

� (1, 1, . . . , 1)
√√√√√√√√m

⊗ (0, 1, 1, . . . , 1
√√√√√√√√n− 2

, 2). Hence, Ghp

and Ghq are isomorphic. □

Theorem 8. Let m> 3 be prime. Ten N(9m, G6)≥ 3, where
G6 � (m − 2)K1,3 ∪ 3(m − 2)K1,2 ∪K1,6 ∪ 3K1,4.

Proof 8. We have 3 mutually orthogonal fi− half-starter
graphs Gfi

� (m − 2)K1,1 ∪K1,2, which are represented by

the functions fi(x) �
0; x � 0
1 + (i + 1)x; x ∈ Zm/ 0{ }, i ∈ Z3



(ingredient (iii)) and 3 mutually orthogonal gi− half-starter
graphs Ggi

� K1,3 ∪ 3K1,2, which are represented by the
functions gi(y) � y2 + iy, y ∈ Z9, i ∈ Z3 (ingredient (iv)).
Ten, we obtain 3 mutually orthogonal hi− half-starter
graphs Ghi

� Gfi
⊗Ggi

, which are represented by the func-
tions hi(xy) � fi(x)(y2 + iy). Since hp(xy) − hp(xy) �

fp(x)(y2 + py) − fq(x)(y2 + qy) � (fp(x) − fq(x)(y2 +

py) − (y2 + qy))}: p, q ∈ Z3, p≠ q  � Zm ⊗Z9, then Ghp

and Ghq are orthogonal.Te edge set of the graphs Ghi
can be

obtained as follows, since E(Gfi
) � (x, fi(x))  and E(Ggi

)

� (y, y2 + iy) , then E(Ghi
) � (xy, fi(x)(y2 + iy))  Now,

we want to prove the isomorphism of the two graphs Ghp
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Table 6: Te edge set of the graphs Gf0
, Gf1

, and Gf2
for Example 5.

E(Gf0
) � (x, f0(x))  E(Gf1

) � (x, f1(x))  E(Gf2
) � (x, f2(x)) 

(0, 0) (0, 0) (0, 0)

(1, 1) (1, 2) (1, 0)

(2, 1) (2, 0) (2, 2)

Table 7: Te edge set of the graphs Gg0
, Gg1

, and Gg2
for Example 5.

E(Gg0
) � ((y, g0(y)))  E(Gg1

) � (y, g1(y))  E(Gg2
) � (y, g2(y)) 

(0, 0) (0, 0) (0, 0)

(1, 1) (1, 2) (1, 3)

(2, 4) (2, 1) (2, 3)

(3, 4) (3, 2) (3, 0)

(4, 1) (4, 0) (4, 4)

Table 8: Te edge set of the graphs Gh0
, Gh1

, and Gh2
for Example 5.

E(Gh0
) E(Gh1

) E(Gh2
)

(00, 00) (00, 00) (00, 00)

(01, 01) (01, 02) (01, 03)

(02, 04) (02, 01) (02, 03)

(03, 04) (03, 02) (03, 00)

(04, 01) (04, 00) (04, 04)

(10, 10) (10, 20) (10, 00)

(11, 11) (11, 22) (11, 03)

(12, 14) (12, 21) (12, 03)

(13, 14) (13, 22) (13, 00)

(14, 11) (14, 20) (14, 04)

(20, 20) (20, 20) (20, 20)

(21, 21) (21, 02) (21, 23)

(22, 24) (22, 01) (22, 23)

(23, 24) (23, 02) (23, 20)

(24, 21) (24, 00) (24, 24)

110

021011211

200

221

010140 240230 040030220020

001

120 130 100

201

210 000

Figure 5: Gh1
� K2 ∪ 3K1,2 ∪ 2K1,4 corresponding to the 00 values in C1.

210

031041241

000

231

110200 100010 030020140040

001

240 220 230

201

120 130

Figure 6: Gh2
� K2 ∪ 3K1,2 ∪ 2K1,4 corresponding to the 00 values in C2.
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000 040 030

041

240 230

Figure 4: Gh0
� K2 ∪ 3K1,2 ∪ 2K1,4 corresponding to the 00 values in C0.
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and Ghq. For p, q ∈ Z3, p≠ q, we have Lfp
� Lfq

�

(0, 1, 1, . . . , 1
√√√√√√√√m− 2

, 2) and Lgp
� Lgq

� (0, 0, 0, 0, 0, 2, 2, 2, 3), then
for Ghp � Gfp

⊗Ggp
and Ghq � Gfq

⊗Ggq
, the degree vector

of Ghp is equal to the degree vector of Ghq. Tis means that

Lhp
� Lhq

� (0, 1, 1, . . . , 1
√√√√√√√√m− 2

, 2)⊗ (0, 0, 0, 0, 0, 2, 2, 2, 3) Hence,
Ghp and Ghq are isomorphic. □

Example 5. Let fi(x) � x2 + ix be fi− half-starter graphs
Gfi

of K3,3 for all i, x ∈ Z3 and gi(y) � y2 + iy be gi− half-

starter graphs Ggi
of K5,5 for all i, x ∈ Z5. Since min 3, 5{ } �

3, then we obtain 3 hi− half-starter graphs Ghi
of K15,15,

which are represented by the functions hi(xy) � fi(x)gi(y)

for all i ∈ Z3. Te edge sets of Gfi
, Ggi

, and Ghi
are shown in

Tables 6, 7, and 8, where Gfi
� K2 ∪K1,2, Ggi

� K2 ∪ 2K1,2,

and Ghi
� K2 ∪ 3K1,2 ∪ 2K1,4. Also, the three MOGS corre-

sponding to the functions fi(x) are A0, A1, and A2, the three
MOGS corresponding to the functions gi(y) are B0, B1, and
B2, and the three MOGS corresponding to the functions
hi(xy) are C0, C1, and C2. See Figures 4, 5, and 6.

A0 �

0 1 2

2 0 1

2 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A1 �

0 1 2

1 2 0

0 1 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A2 �

0 1 2

0 1 2

1 2 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B0 �

0 1 2 3 4

4 0 1 2 3

1 2 3 4 0

1 2 3 4 0

4 0 1 2 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B1 �

0 1 2 3 4

3 4 0 1 2

4 0 1 2 3

3 4 0 1 2

0 1 2 3 4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B2 �

0 1 2 3 4

2 3 4 0 1

2 3 4 0 1

0 1 2 3 4

1 2 3 4 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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C0 �

00 01 02 03 04 10 11 12 13 14 20 21 22 23 24
04 00 01 02 03 14 10 11 12 13 24 20 21 22 23
01 02 03 04 00 11 12 13 14 10 21 22 23 24 20
01 02 03 04 00 11 12 13 14 10 21 22 23 24 20
04 00 01 02 03 14 10 11 14 13 24 20 21 22 23
20 21 22 23 24 00 01 02 03 04 10 11 12 13 14
24 20 21 22 23 04 00 01 02 03 14 10 11 12 13
21 22 23 24 20 01 02 03 04 00 11 12 13 14 10
21 22 23 24 20 01 02 03 04 00 11 12 13 14 10
24 20 21 22 23 04 00 01 02 03 14 10 11 12 13
20 21 22 23 24 00 01 02 03 04 10 11 12 13 14
24 20 21 22 23 04 00 01 02 03 14 10 11 12 13
21 22 23 24 20 01 02 03 04 00 11 12 13 14 10
21 22 23 24 20 01 02 03 04 00 11 12 13 14 10
24 20 21 22 23 04 00 01 02 03 14 10 11 12 13

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C1 �

00 01 02 03 04 10 11 12 13 14 20 21 22 23 24
03 04 00 01 02 13 14 10 11 12 23 24 20 21 22
04 00 01 02 03 14 10 11 12 13 24 20 21 22 23
03 04 00 01 02 13 14 10 11 12 23 24 20 21 22
00 01 02 03 04 10 11 12 13 14 20 21 22 23 24
10 11 12 13 14 20 21 22 23 24 00 01 02 03 04
13 14 10 11 12 23 24 20 21 22 03 04 00 01 02
14 10 11 12 13 24 20 21 22 23 04 00 01 02 03
13 14 10 11 12 23 24 20 21 22 03 04 00 01 02
10 11 12 13 14 20 21 22 23 24 00 01 02 03 04
00 01 02 03 04 10 11 12 13 14 20 21 22 23 24
03 04 00 01 02 13 14 10 11 12 23 24 20 21 22
04 00 01 02 03 14 10 11 12 13 24 20 21 22 23
03 04 00 01 02 13 14 10 11 12 23 24 20 21 22
00 01 02 03 04 10 11 12 13 14 20 21 22 23 24

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C2 �

00 01 02 03 04 10 11 12 13 14 20 21 22 23 24
02 03 04 00 01 12 13 14 10 11 22 23 24 20 21
02 03 04 00 01 12 13 14 10 11 22 23 24 20 21
00 01 02 03 04 10 11 12 13 14 20 21 22 23 24
01 02 03 04 00 11 12 13 14 10 21 22 23 24 20
00 02 02 03 04 10 11 12 13 14 20 21 22 23 24
02 03 04 00 01 12 13 14 10 11 22 23 24 20 21
02 03 04 00 01 12 13 14 10 11 22 23 24 20 21
00 01 02 03 04 10 11 12 13 14 20 21 22 23 24
01 02 03 04 00 11 12 13 14 10 21 22 23 24 20
10 11 12 13 14 20 21 22 23 24 00 01 02 03 04
12 13 14 10 11 22 23 24 20 21 02 03 04 00 01
12 13 14 10 11 22 23 24 20 21 02 03 04 00 01
10 11 12 13 14 20 21 22 23 24 00 01 02 03 04
11 12 13 14 10 21 22 23 24 20 01 02 03 04 00

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(9)

In the following section, we present the general tensor
product technique for constructing the MOGS. As stated
above, the MOGS represent mutually orthogonal covers
(MOCs) of complete bipartite graphs. A k mutually or-
thogonal covers (k MOCs) of the complete bipartite graph
Kn,n by F is a family G of isomorphic copies of a given
subgraph F such that they cover every edge of Kn,nk times and
the intersection of any two of them contains at most one edge.

5. Tensor Products of MOCs

Let A and B be simple graphs, then the tensor product,
A × B, of A and B, is the graph with the vertex set V(A) ×

V(B) and the edge set E(A × B) � (a, b)(c, d): ac ∈ E(A){ }

and b d ∈ E(B). If the simple graphs A and B are bipartite
with bipartitions (E, F) and (Y, Z), respectively, then the
induced subgraphs (A × B)[(E × Y)∪ (F × Z)] and
(A × B)[(E × Z)∪ (F × Y)] are called the weak-tensor
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products of A and B. We denote the weak-tensor product
(A × B)[(E × Y)∪ (F × Z)] by A⊛B.

Proposition  . If there are k MOCs of Km,m by A and k

MOCs of Kn,n by B, then there are k MOCs of Kmn,mn by A⊛B.

Proof 9. Let ∩ k
i�1Ai,whereAi � Ai

1, Ai
2, ..., Ai

m  be k MOCs
of Km,m by A on V(Km,m) � (E, F) where E � e1, ..., em 

and F � f1, ..., fm  is the bipartition of Km,m, and let
∩ k

i�1Bi, whereBi � Bi
1, Bi

2, ..., Bi
n  be k MOCs of Kn,n by B

on V(Kn,n) � (Y, Z) where Y � y1, ..., yn  and
Z � z1, ..., zn  is the bipartition of Kn,n. Let W � V(Kmn,mn)

and the partite sets of Kmn,mn be (ep, yq): 1≤p≤m,

1≤ q≤ n} and (fp, zq): 1≤p≤m, 1≤ q≤ n . Consider the
set Ci � (Ai

p × Bi
q)[W]: 1≤p≤m, 1≤ q≤ n , 1≤ i≤ k, of

subgraphs of Kmn,mn. Clearly, (Ai
p × Bi

q)[W] � A⊛B,

1≤p≤m, 1≤ q≤ n, 1≤ i≤ k, sinceAi
p � A andBi

q � B. □

Claim 1. Every edge of Kmn,mn occurs in exactly k graphs of
∪ k

i�1C
i.

Consider an arbitrary edge (es, yt)(fu, zv) of Kmn,mn.

Since ∪ k
i�1Ai and ∪ k

i�1Bi are k MOCs of Km,m by A and k

MOCs of Kn,n by B, respectively, the edges esfu and ytzv are,
respectively, in exactly k graphs of ∪ k

i�1Ai and ∪ k
i�1Bi. Let

the k graphs containing esfu be A1
t1

, A2
t2

, . . . , Ak
tk
and that of

ytzv be B1
r1

, B2
r2

, . . . , Bk
rk
. Ten, the k graphs containing the

edge (es, yt)(fu, zv) are
(A1

t1
× B1

r1
)[W], (A2

t2
× B2

r2
)[W], . . . , (Ak

tk
× Bk

rk
)[W].

Claim 2. Let i ∈ 1, 2, . . . , k{ }. Any two graphs in Ci have no
edges in common.

Te two graphs (Ai
t1

× Bi
r1

)[W] and (Ai
t2

× Bi
r2

)[W] have
no edges in common, because E(Ai

t1
)∩E(Ai

t2
) � ∅ and

E(Bi
r1

)∩E(Bi
r2

) � ∅.

Claim 3. Any graph inCx and any graph inCy have exactly
one edge in common, 1≤x<y≤ k.

Te two graphs (Ax
t1

× Bx
r1

)[W] and (A
y
t2

× B
y
r2)[W] have

exactly one edge in common, since |E(Ax
t1

)∩E(A
y
t2

)| � 1
and |E(Bx

r1
)∩E(B

y
r2)| � 1.

By Claims 1, 2, and 3, ∪ k
i�1C

i is k MOCs of Kmn,mn by
A⊛B.

6. MOCsofCompleteBipartiteGraphsBasedon
Tensor Product

All the following results are based on (i) the tensor product
in Proposition 3 and (ii) the existence of MOCs for some
classes of graphs.Tese graphs can be used as ingredients for
the tensor product to obtain new MOCs. See [9] for the
ingredients from (i) to (iv). Addition and subtraction are
calculated modulo n for the following ingredients.

(i) Let ∪ n
i�1Ai whereAi � Ai

1, Ai
2, . . . , Ai

n  be n MOCs
of Kn,n by(K1,1 ∪ n − 1/2K1,2), E(Ai

j+1) � (β, j

+(i − 1)β + β2)}, j, β ∈ Zn, n. be a prime > 2.

(ii) Let ∪ n− 1
i�1 Ai, where Ai � Ai

1, Ai
2, ..., Ai

n  be (n − 1)

MOCs of Kn,n by ((n − 2)K1,1 ∪K1,2),

E(Ai
j+1) � (0, 0), (β, iβ + j + 1) , j ∈ Zn, β ∈

1, 2, . . . , n − 1{ }, n be a prime > 2.

(iii) If n � 9, then the 3 MOCs of K9,9 by
K1,3 ∪ 3K1,2are∪ 3i�1Ai, where Ai � Ai

1, Ai
2, ...,

Ai
9, E(Ai

j+1) � (α, α2 + (i − 1)α + j) , j, α ∈ Z9.
(iv) If n � 7, then the 4 MOCs of K7,7

by 3K1,1 ∪ 2K1,2are ∪ 4i�1Ai, where Ai � Ai
1, Ai

2, ...,

Ai
7}, for j ∈ Z7,

E A
1
j+1  � (0, 0 + j), (1, 2 + j), (2, 4 + j), (3, 6 + j), (4, 1 + j), (5, 4 + j), (6, 6 + j) ,

E A
2
j+1  � (0, 0 + j), (1, 3 + j), (2, 6 + j), (3, 2 + j), (4, 5 + j), (5, 2 + j), (6, 5 + j) ,

E A
3
j+1  � (0, 0 + j), (1, 4 + j), (2, 1 + j), (3, 5 + j), (4, 2 + j), (5, 0 + j), (6, 4 + j) ,

E A
4
j+1  � (0, 0 + j), (1, 5 + j), (2, 3 + j), (3, 1 + j), (4, 6 + j), (5, 5 + j), (6, 3 + j) .

(10)

(v) If n � 4, then the 3 MOCs of K4,4 by
2K1,2are ∪ 3i�1Ai (follows fromTeorem 1 in [4], by
setting α � 0, β � 1, c � 2, and δ � 3), where
Ai � Ai

1, Ai
2, Ai

3, Ai
4 ,

12 Journal of Mathematics



B1
1 B1

2 B1
3

B2
1 B2

2 B2
3

B3
1 B3

2 B3
3

1010

11 0101

0000

10

01 21

00 00

21 11

20 20

11 01

10

00

11 01

20 10

21 11

00 20

01 21

10

2020

2121 11

Figure 8: 3 mutually orthogonal covers of K3,3 by P4.
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Figure 7: 3 mutually orthogonal covers of K3,3 by P3 ∪K2.
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E A
1
1  � (0, 0), (1, 2), (2, 0), (3, 2){ },

E A
1
2  � (0, 3), (1, 1), (2, 3), (3, 1){ },

E A
1
3  � (0, 2), (1, 0), (2, 2), (3, 0){ },

E A
1
4  � (0, 1), (1, 3), (2, 1), (3, 3){ },

E A
2
3  � (0, 0), (1, 1), (2, 1), (3, 0){ },

E A
2
4  � (0, 1), (1, 0), (2, 0), (3, 1){ },

E A
3
1  � (0, 1), (1, 1), (2, 2), (3, 2){ },

E A
3
2  � (0, 3), (1, 3), (2, 1), (3, 1){ },

E A
3
3  � (0, 3), (1, 3), (2, 0), (3, 0){ },

E A
3
4  � (0, 0), (1, 0), (2, 3), (3, 3){ }.

(11)

Tese known MOCs are the ingredients for the tensor
product to obtain the following results. Note that we used
some of the ingredients from the literature.

Theorem 9. Let m, n be odd primes and k �min n, m − 1{ }.
Ten, there are k MOCs of Kmn,nm by (m − 2)K1,1
∪ (((n − 1)(m + 2) + 2)/2)K1,2 ∪ ((n − 1)/2)K1,4.

Proof 10. We have n MOCs of Kn,n by (K1,1 ∪ n − 1/2K1,2)

(ingredient (i)) and ((m − 1)) MOCs of Km,m by ((m −

2)K1,1 ∪K1,2) (ingredient (ii)). If min n, m − 1{ } � k, then we
construct k MOCs of Kmn,nm by (m − 2)K1,1 ∪ (((n − 1)(m +

2) + 2)/2)K1,2 ∪ ((n − 1)/2)K1,4 (Proposition 3). □

Theorem 10. Let n be odd prime. Ten, there are 3MOCs of
K9n,9n by K1,3 ∪ 3K1,2 ∪ (n − 1)/2K1,6 ∪ 3(n − 1)/2K1,4.
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Figure 9: 3 mutually orthogonal covers of K9,9 by (P3 ∪K2)⊛P4.
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Proof 11. We have n MOCs of Kn,n by (K1,1 ∪ n − 1/2K1,2)

(ingredient (i)) and 3 MOCs of K9,9 by (K1,3 ∪ 3K1,2) (in-
gredient (iii)). Ten, we construct 3 MOCs of K9n,9n by
K1,3 ∪ 3K1,2 ∪ (n − 1)/2K1,6 ∪ 3(n − 1)/2K1,4 (Proposition
3). □

Theorem 11. Let n be odd prime. Ten, there are 3MOCs of
K4n,4n by 2K1,2 ∪ (n − 1)K1,4.

Proof 12. We have n MOCs of Kn,n by (K1,1 ∪ (n − 1)/2K1,2)

(ingredient (i)) and 3 MOCs of K4,4 by 2K1,2 (ingredient
(v)). Ten, we construct 3 MOCs of K4n,4n by 2K1,2 ∪ (n −

1)K1,4 (Proposition 3). □

Theorem 12. Let n be odd prime. Ten, there are 3MOCs of
K9n,9n by (n − 2)K1,3 ∪ 3(n − 2)K1,2 ∪K1,6 ∪ 3K1,4.

Proof 13. We have (n − 1) MOCs of Kn,n by
((n − 2)K1,1 ∪K1,2) (ingredient (ii)) and 3 MOCs of K9,9 by
(K1,3 ∪ 3K1,2) (ingredient (iii)). Ten, we construct 3 MOCs
of K9n,9n by (n − 2)K1,3 ∪ 3(n − 2) K1,2 ∪K1,6 ∪ 3K1,4
(Proposition 3). □

Theorem 1 . Let n be odd prime. Ten, there are 4MOCs of
K7n,7n by 3K1,1 ∪ (3n − 1)/2K1,2 ∪ (n − 1)K1,4.

Proof 14. We have n MOCs of Kn,nby(K1,1 ∪ (n − 1/2K1,2))

(ingredient (i)) and 4 MOCs of K7,7by ((3K1,1 ∪ 2K1,2)

(ingredient (iv)). Ten, we construct 4 MOCs of K7n,7n by
3K1,1 ∪ (3n + 1)/2K1,2 ∪ (n − 1)K1,4 (Proposition 3). □

Example 6. We have 3mutually orthogonal covers of K3,3 by
P3 ∪K2, shown in Figure 7, and 3 mutually orthogonal
covers of K3,3 by P4, shown in Figure 8. Hence, we construct
3 mutually orthogonal covers of K9,9 by (P3 ∪K2)⊛P4,

shown in Figure 9.

7. Discussion

All the results in this paper are based on recursive con-
struction techniques as stated above. In the literature, the
Kronecker product of graph squares has been used to
construct some results for MOGS. Herein, we defned three
novel product techniques, which are the Cartesian product
of half-starters’ vectors, the half-starters’ function product,
and the graph tensor product. Some graphs can be repre-
sented by vectors, so the Cartesian product can be used with
this class of graphs. Other graphs cannot be represented by
vectors but can be represented by functions; hence, the
function product can be used with this class of graphs. In
addition, there is a third class of graphs that cannot be
represented by vectors and functions; in this case, the tensor
product of graphs is applied to construct the MOGS. All the
results from the literature of MOGS with small orders can be
used to get MOGS with higher orders by applying the new
product techniques defned in this paper. Te main results
are Propositions 1, 2, and 3, which introduce the con-
struction techniques based on the defned novel product
techniques. All the remaining results in the paper are direct

applications to these propositions. Tese results are MOGS
for disjoint unions of stars such as nK1,1 ∪ (((((m − 1))n))/2)

K1,2,(n − 2)K1,1 ∪ ((((m − 1))(n − 2) + 2)/2)K1,2 ∪ ((m − 1)

/2)K1,4,K1,3 ∪ 3 K1,2 ∪ (((m − 1))/2)K1,6 ∪ (3(((m − 1)) /2))

K1,4,m(n − 2)K1,1 ∪mK1,2, and 3K1,1 ∪ 3n + 1/2K1,2 ∪ (n −

1) K1,4. All the constructed results in this paper can be used
to generate new graph-orthogonal arrays, new graph-au-
thentication codes, and new graph-transversal designs [3,
23]. Tey can also be used in the design of experiments [24].

8. Conclusion

In conclusion, we can say that the proposed novel product
techniques are helping tools for constructing several new
results concerned with the MOGS that have not been
constructed before. It is clear that the proposed product
techniques cannot be used to construct MOGS with prime
order. In future work, we will try to fnd new recursive
construction techniques for the MOGS.
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