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For a connected graph, the concept of metric dimension contributes an important role in computer networking and in the
formation of chemical structures. Among the various types of the metric dimensions, the fault-tolerant metric dimension has
attained much more attention by the researchers in the last decade. In this study, the mixed fault-tolerant dimension of rooted
product of a graph with path graph with reference to a pendant vertex of path graph is determined. In general, the necessary and
su�cient conditions for graphs of order at least 3 having mixed fault-tolerant generators are established. Moreover, the mixed
fault-tolerant metric generator is determined for graphs having shortest cycle length at least 4.

1. Introduction

�e concept of metric dimension is applicable in all those
networks where there is a need of localization of particular
nodes. It is signi�cantly used in di�erent �elds of science
such as telecommunication, road networking, chemistry,
and image processing to �nd winning combinations for
di�erent games. Slater in 1975 [1] introduced the locating set
of graphs, whereas, in 1976, Harary and Melter [1] de�ned
the term resolving set for graphs. Later on, both the terms
were emerged and named asmetric-based basis or generator.
For a graph, J,W⊆V(J) is termed as metric generator if for
a, b ∈ V(J)(a ≠ b), there exists a vertex w ∈W, such that
d(a, w)≠ d(b, w). �en, the vertex w ∈W is said to dis-
tinguish (resolve) vertices a and b. IfW � w1, . . . , ws{ }, then
the distance coordinate vector of a ∈ V(J) is s-tuple
r(a|W) � (d(a, w1), . . . , d(a, ws)). �is metric generator is
extensively studied in literature.

�e behavior of metric dimension of graphs relative to
di�erent graph products was investigated by di�erent au-
thors, like Cartesian product by Caceres et al. [2], the join
product as well as Cartesian product by Hernando et al. [3],
and join of di�erent combinations of complete, path, cycle

graphs by Sunitha et al. [4]. Even though metric generator
was �rst proposed for problem of robot navigation, now this
metric generator along with its various variants can have
interesting and signi�cant connections to other �elds as well.
For example, the determination of local variant named as
local metric dimensionmay be associated to limited function
of robot sensors. �e mixed metric generator is one of the
variants of the metric generator. �is mixed version of
metric generators was presented in 2017 by Kelenc et al. [5].
A subsetM⊆V(J) is termed as the mixed metric generator of
graph J if coordinate distance vectors relative to M of any
two distinct elements of V(J)∪E(J) are not same. �e
smallest set which is the mixed generator of graph J is
termed as mixed basis, and its cardinality is termed as mixed
dimension (dim(J)). Kelenc et al. [5] showed that a nec-
essary and su�cient condition for a graph J of order r to
have mixed dimension two is J � Pr. �ey also proved that
dim(Cn) � 3 and dim(Pr2□Pr2) � 3 for r1 ≥ r2 ≥ 2.

Hernando et al. [6] in 2008 presented the idea of the
fault-tolerant metric (FTM) generator. To illustrate this,
consider a network where the metric basis represents the
censors [7]. In this situation, if some censor is forced to not
operate properly, then other censors will not be su�cient to
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localize all stations or places uniquely and to deliver proper
information to confront the problem.)is type of frequently
occurring situation in networks was resolved by Hernando
et al. [6] with the help of applying fault-tolerance in the
metric generator. To consider the fault-tolerance in the
metric generator, the new generator will be able to transfer
the information correctly even when a censor is disabled for
any reason. It can be said that this FTM generator is ap-
plicable to all those networks where metric dimension has its
significance like in optimal flow control problems of
interconnecting networks.

)e FTM generator and FTM dimension for a tree was
determined in [6]. Javaid et al. [8] also explored the FTM
dimension and FTMpartition dimension of different graphs.
)ey exhibited that for a graph of order m, m≤PDn− 2 m,
where P is the fault-tolerant partition dimension andD is the
diameter of the graph. )e FTM dimension of infinite
families of convex polytopes is proved to be constant by Raza
et al. [9]. So far, a lot of research works on metric dimension
and its different variants have been carried out by different
authors, whereas comparatively less investigations have been
made in the exploration of mixed generators.)emotivation
of this research work is to fill this literature gap and to apply
the concept of fault-tolerance in mixed generators.

2. Mixed Dimension of Rooted Product

)e rooted product Q1⊳oQ2 can be constructed by taking
connected graphsQ1 andQ2 and a root vertex o ∈ Q2 such that
V(Q1 oQ2) � {(a1, b1)|a1 ∈V(Q1), b1 ∈V(Q2)} and E(Q1 oQ2) �

{(a1, b1)(a2, b2)|a1 � a2 & b1 ∼ b2 or b1 � b2 � o & a1 ∼ a2}.

Corollary 1 (see [10]). A pendant vertex always belongs to
every mixed metric generator of the graph.

Theorem 1. Consider a graph Q having order n≥ 2. If o is the
pendant vertex of Pm, then dimm(Q′ � Q⊳oPm) � n.

Proof. Let V(Q) � p1, p2, . . . , pn  and
S � w1, w2, . . . , wk  be the mixed metric basis of Q. Also,
suppose that V(Pm) � q0, q1, . . . , qm− 1 , such that q0 and
qm− 1 are the pendant vertices and
E(Pm) � qiqi− 1: 1≤ i≤m − 1 . To construct required
Q′ � Q⊳oPm, take the vertex o � q0. )e vertex set and edge
set of Q′ � Q⊳oPm are given as
V(Q′) � (pi, qj: 1≤ i≤ n, 0≤ j≤m − 1)  and
E(Q′) � (pi, qj− 1)(pi, qj), (pi, o)(pj, o): pipj ∈ E(Q) .
Clearly, the set of pendant vertices of Q′ is
M � (pi, qm− 1): 1≤ i≤ n . If S∗ is the mixed metric gen-
erator of Q′, then from Corollary 1,
M � (pi, qm− 1): 1≤ i≤ n ⊆S∗. Hence,

dimm Q′ � Q⊳oPm( ≥ n. (1)

Let X � (pi, qj), (pi, qj− 1)(pi, qj): 1≤ i≤ n, 1≤ j≤

m − 1}⊆Q′. )en, Q � Q′ − X. Now, we prove that M is a
mixed metric generator. For this, let g, h ∈ Q′. )en, there
arise three cases. □

Case 1: Let g, h ∈ X. If g � (pi, qk)(respectively (pi, qk − 1)

(pi, qk)) and h � (pj , qk)(respectively (pj , ql− 1)(pj , ql)),
such that i≠ j; then, d(g, (pi, qm − 1))

� t<m, d(h, (pi, qm− 1))≥m. If g � (pi, qk) and
h � (pj, ql− 1)(pj, ql)(i≠ j), then d(g, (pi, qm− 1))<m, d

(h, (pi, qm− 1))≥m. If g � (pI, qk) and h � (pi, ql− 1)(pi, ql)

(k≠ l), then clearly, d(g, (pi, qm− 1))≠d(h, (pi, qm− 1)). But if
g � (pi, qk) and h � (pi, qk− 1)(pi, qk), then d(g, (pi, qm− 1))

� d(h, (pi, qm− 1)). Now, as n≥ 2, there exist j≠ i, such that
(pj, qm− 1) ∈ X. But as (pi, qk− 1) is nearer to (pj, qm− 1) as
compared to (pi, qk), so d((pi, qk− 1)(pi, qk), (pj, qm− 1))

� d((pi, qk− 1), (pj, qm− 1)). )is shows that

d g, pj, qm− 1   � d pi, qk− 1( , pj, qm− 1   + 1,

� d pi, qk− 1(  pi, qk( , pk, qm− 1( (  + 1
(2)

)is implies that d(g, (pj, qm− 1))≠d(h, (pj, qm− 1)).
Now, if g � (pi, qk− 1) and h � (pi, qk− 1)(pi, qk), then as
(pi, qk) is nearer to (pi, qm− 1) as compared to (pi, qk− 1) (pi,
qk− 1), so d((pi, qk− 1)(pi, qk), (pi, qm− 1)) � d((pi, qk),

(pi, qm− 1)). )is shows that

d g, pi, qm− 1( (  � d pi, qk( , pi, qm− 1( (  + 1

� d pi, qk− 1(  pi, qk( , pi, qm− 1( (  + 1
(3)

)is further shows that d(g, (pi, qm− 1))

≠d(h, (pi, qm− 1)). )us, every pair g, h ∈ X is resolved byM.

Case 2: Let g, h ∈ Q. Since S is the mixed resolving set of Q,
there exists s � (wi, o) ∈ S, such that

d(g, s)≠ (h, s). (4)

Consider the pendant vertex (wi, qm− 1) ∈ S∗. )en, any
path from g (respectively h) to (wi, qm− 1) must contain s �

(wi, o) and

d g, wi, qm− 1( (  � d g, wi, o( (  + m–1,

d h, wi, qm− 1( (  � d h, wi, o( (  + m–1.
(5)

As d(g, s)≠ (h, s), so d(h, (wi, qm− 1))≠d(g, (wi, qm− 1)).
)us, all elements of Q are resolved by M.

Case 3: Last, let g ∈ Q, h ∈ X. )en, h � (pi, qj) or
h � (pi, qj− 1)(pi, qj). In any case, d(g, (pi, qm− 1))≥m–1 but
d(h, (pi, qm− 1))≤m–2, which shows that the pair g, h in this
case are also resolved by M. Hence, M is a mixed metric
generator and dimm(Q′) � n.

Now, we note that by considering o as the pendant vertex
of P2, the corona graph Q′ � QoK1 is actually the rooted
product graph of Q by P2, i.e., QoK1 � Q⊳OP2.

As a consequence, the following corollary can be stated.

Corollary 2. If Q′ is a corona graph with t vertices, then
dimm(Q′) � t/2.

3. Mixed Fault-Tolerant Generators of Graphs

A mixed metric generator Mf of a graph J is termed
as the mixed fault-tolerant (MFTM) generator, if for
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u ∈Mf,Mf∖ u{ }, u is also a mixed generator. �e smallest
MFTM generator is termed asMFTM basis, and its cardinality
is MFTM dimension (dimmf

(J)).

Remark 1. From de�nition, it is obvious that the MFTM
dimension is always greater than or equal to the mixed
metric dimension, i.e., for any graph J,

dimmf
(J)≥ dimm(J) + 1. (6)

Example 1. Take P3□P3 with labeling as shown in Figure 1
and M � v1, v3, v7, v9{ }⊆V(P3□P3). �en, the distance co-
ordinate vectors of all vertices of P3□P3 relative to M are
computed as follows:

r v1|M( ) �(0, 2, 2, 4),
r v2|M( ) �(1, 1, 3, 3),
r v3|M( ) �(2, 0, 4, 2),
r v4|M( ) �(1, 3, 1, 3),
r v5|M( ) �(2, 2, 2, 2),
r v6|M( ) �(3, 1, 3, 1),
r v7|M( ) �(2, 4, 0, 2),
r v8|M( ) �(3, 3, 1, 1),
r v9|M( ) �(4, 2, 2, 0).

(7)

Similarly, the distance coordinate vectors of all of its
edges relative to M are computed as follows:

r e1|M( ) �(0, 1, 2, 3),
r e2|M( ) �(1, 0, 3, 2),
r e3|M( ) �(1, 2, 1, 2),
r e4|M( ) �(2, 1, 2, 1),
r e5|M( ) �(2, 3, 0, 1),
r e6|M( ) �(3, 2, 1, 0),
r e7|M( ) �(0, 2, 1, 3),
r e8|M( ) �(1, 3, 0, 2),
r e9|M( ) �(1, 1, 2, 2),
r e10|M( ) �(2, 2, 1, 1),
r e11|M( ) �(2, 0, 3, 1),
r e12|M( ) �(3, 1, 2, 0).

(8)

We can see that all distance coordinate vectors are
distinguished by at least two points. �us, M is a MFTM
generator, and dimmf

(P3□P3)≤ 4. But from Proposition 4.4
of [10], dimm(P3□P3) � 3. �is along with [7] implies that
dimmf

(P3□P3)≥ 4. �us, we have dimmf
(P3□P3) � 4.

To recall, for the vertex z in a graph J, the open
neighbourhoodN(z) is the collection of all vertices adjacent
to z and closed neighbourhood is N[z] � N(z)∪ z{ }. For a
vertex w, a vertex q ∈ N(w) is referred to as maximal
neighbourhood of w ifN[w]⊆N[q]. A vertex v is referred to

as the dominant vertex if it is adjacent to all other vertices of
graph.

Lemma 1 (see [10]). Consider u ∈ V(J) andM � V(J)∖ u{ }.
Suppose for each w ∈ N(u), there is y ∈ S, such that
d(vw, x)≠d(w, y). �en,M is a mixed metric generator for
J.

Lemma 2 (See [6]). For a graph J, let S be a metric generator
and T(y) � w ∈ V(J): N(y)⊆N(w){ } for ∈∈S. �en, Sf �
∪ y∈S(N[y] ∪T(y)) is a FTM generator.

Theorem 2. A connected graph of order at least 3 contains a
mixed fault-tolerant (MFTM) generator if and only every
vertex is neither a pendant vertex nor possesses a maximal
neighbourhood.

Proof. Let M � q1, q2, . . . , qs{ } be a MFTM generator of
connected graph J. Suppose p2 is a pendant vertex of J.
�en, there is a unique pendant edge with one end vertex as
p1, say p � p1p2 . �en, p2 ∈M by Corollary 1, i.e., p2 � qj
for some j � 1, . . . , s. Now, assume that the distance co-
ordinate vector of p1 relative to M is given as

r p1|M( ) � d1, d2, . . . , dj− 1, 1, dj+1, . . . , ds( ). (9)

As p1 is adjacent to p2 and p2 � qj, therefore j
th co-

ordinate of r(p1|M) is equal to 1. Since p2 is a pendant
vertex, every path from any vertex of J to p2 must contain
vertex p1. �is implies that p1 is nearer to any vertex of J
than p2. �is further implies that for p2 ≠y ∈ V(J)∪E(J),
we have d(y, p) � d(y, p1) but d(p2, p). �us, the distance
coordinate vector of edge p relative to M is given as

r(p|M) � d1, d2, . . . , dj− 1, 0, dj+1, . . . , ds( ). (10)

�e jth coordinate is 0 because p � p1p2 and p2 � qj. It
is cleared from [3, 11] that the coordinate vectors of p1 and p
di�er exactly by one coordinate. �is further implies that
r(p1|M∖ p2{ }) � r(p|M∖ p2{ }). �is shows that M cannot
be a MFTM generator, which leads to a contradiction. Next,
we may assume that the graph J has no pendant vertex, but
there exists a vertex t having maximal neighbourhood c, i.e.,
N[t]⊆N[c]. �is implies that d(c, t) � 1 but d(tc, t) � 0.�e
elements tc and c can only be distinguished by the vertex t
because if there is a vertex m ∈M, such that m≠ t and

v1 v2 v3

v7 v8 v9

v4 v5 v6

e7 e9 e11

e8 e10

e1 e2

e3 e4

e5 e6

e12

Figure 1: Graph P3□P3.
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d(c, m)≠ d(m, tc), then as d(m, tc) � min(d(t, m),

d(c, m)), so

d(t, m)<d(c, m). (11)

)is further implies that any shortest path from m to t

must have a vertex from N(t) different from c. As deg(t)≥ 2,
there is a vertex t1 ∈ N(t)∖ c{ } on the shortest path fromm to
t. Since N[t]⊆N[c], c ∼ t1. )erefore,

d(m, c)≤d m, t1(  + d t1, c(  � 1 + d m, t1(  � d(m, t).

(12)

)is contradicts (6). )us, tc and c can only be distin-
guished by t. Now, if ∉M, then M cannot be a mixed
generator. On the other hand, if t ∈M, then M∖ t{ } cannot
not be the mixed generator. In any case, M is not a MFTM
generator which again leads to a contradiction. Conversely,
suppose that any vertex of J is the nonpendant vertex and
does not have any maximal neighbourhood, i.e., for
a ∈ V(J), deg(a)≥ 2 and N[a]⊈N[y] for any y ∈ N(a). For
any a ∈ V(J), we exhibit that the set V(J)\ a{ } is a mixed
generator. Let b ∈ N(a). As deg(a)≥ 2 and N[a]⊈N[b] (by
assumption), there is a vertex a1 (different from a and b),
such that a1 ∼ a but a1≁b. )en, d(a1, b)> 1 but
d(a1, a) � 1. )is shows that d(a1, ab) � d(a1, a)≠d(a1, b).
Using Lemma 1, it is easy to see that V(J)\ a{ } is a mixed
generator for any a ∈ V(J). )us, the vertex set V(J) itself is
the MFTM generator. □

Corollary 3. A tree does not possess the mixed fault-tolerant
generator.

Proof. Since a tree must have minimum two pendant ver-
tices, the result follows using )eorem 2. □

Corollary 4. A connected graph containing a dominant
vertex d have no mixed fault-tolerant generator.

Proof. Let d be a dominant vertex of connected graph J.
)en, d serves as maximal neighbourhood of every vertex of
V(J)\ d{ }. )e result follows by using )eorem 2. □

Theorem 3. Suppose J is a graph having girth at least four
and contains the MFTM generator. If M is a mixed basis of
graph J, then Mf � ∪ m∈M{ }(N[m]∪ (∩ mi∈N(m){ }N(mi))) is
a MFTM generator for J.

Proof. Suppose a ∈ V(J). If a ∉M, then as M⊆Mf\ a{ }, so
Mf\ a{ } is a mixed generator. )us, we may assume that
a ∈M. Now, we show that Mf\ a{ } still is a mixed generator
for J. For this, take two elements g, h ∈ V(J)∪E(J). Now,
there arise the following cases:

Case (1): suppose g, h ∈ V(J), such that g≠ h. As g and
h both are vertices, so using Lemma 1, these can be
distinguished by a vertex of Sf \ a{ }, where
Sf � ∪ m∈M{ }(N[m] ∪T(m)) and T(m): � m1 ∈

V (J): N(m)⊆N(m1)}. To show g and h are distin-
guished by some element of Mf\ a{ }, it is enough to

exhibit that Sf⊆Mf. To show this, take a′ ∈ T(m)⊆ Sf.

)en, clearly, N(m)⊆N(a′), that is for every
b′ ∈ N(m), a′ ∼ b′. )is implies that a′ ∈ N(b′) for
every b′ ∼ m or we can say that
a′ ∈ ∩ b′∈N(m){ }N(b′)⊆Mf.
Case (2): now suppose g and h are the two distinct
edges, such that g � g1g2 and h � h1h2. Clearly, one of
gi must be different from one of hj. Suppose there does
not exist any vertex in Mf\ a{ } that distinguished these
edges. )en, as M is mixed metric and M⊆Mf, so the
edges g and h must be distinguished by the vertex a,
that is, d(a, g)≠ d(a, h) d(a, g). Assume without any
loss of generality (WLG) that

d(a, g)< d(a, h). (13)

Now, there are two possibilities, either all vertices on
these edges are distinct or there is some common vertex
between them.

Case 2(a): suppose g1, g2, h1, and h2 are distinct, i.e.,
edges are nonadjacent. Using (13), we have

d(a, g)≤ d(a, h) − 1,

min d a, g1( , d a, g2(  ≤min d a, h1( , d a, h2(   − 1.

(14)

AssumeWLG that g1 and h2 are nearer to the vertex a

relative to g2 and h1, respectively. )en, from (14), we
have

d a, g1( ≤d a, h2(  − 1. (15)

Now assume that g1 ≠ a and a′ ∈ N(a) lies on the
minimum path between a and g1. )en, clearly,
a′ ∈Mf\ a{ } ∈ Fm \ {a} being member of neigh-
bourhood of a, we can write

d a, g1(  � 1 + d a′, g1(  (16)

By using (15) and (16), we have

d a′, g1(  + 1≤d a, h2(  − 1 (17)

Now, by taking the path a − a′ − · · · − h2, we have
d(a′, h2) + 1≥d(a, h2). )en, using (17), we have

d a′, g1(  + 1≤d a, h2(  − 1≤d a′, h2( ,

d a′, g1( ≤d a′, h2( 

d a′, g1( <d a′, h2( .

(18)

Since a′ ∈ N(a) and lies on the minimum path be-
tween g1 and a and d(a, g1)< d(a, g2), therefore
d(a′, g1)<d(a, g1)< d(a, g2). Now, by taking the
path a − a′ − · · · − g2, we have
d(a′, g1)< d(a, g2)≤ d(a′, g2) + 1. )is implies that
d(a′, g1)≤ d(a′, g2). )us, we can write

d a′, g(  � min d a′, g1( , d a′, g2( (  � d a′, g1( .

(19)

Also, we have
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d a′, h(  � min d a′, h2( , d a′, h1( ( . (20)

We claim that d(a′, g1)<d(a′, h1), for otherwise,
d(a, g1) � 1 + d(a′, g1)≥ 1 + d(h1, a′)≥d(a, h1)

≥d(a, h2) which contradicts [10]. Hence,
d(a′, g1)< d(a′, h2), and using [1, 4, 13], we can write

d a′,g(  � d a′,g1( <min d a′,h2( ,d a′,h1( (  � d a′,h( ,

(21)

Which implies that edges g and h are distinguished by
a′ ∈Mf\ a{ }.
Now, if a coincides with g1, then g2 ∈Mf\ a{ }, such
that d(g, g2) � 0 and d(h, g2)≥ 1. Hence, g and h are
distinguished by g2.
Case 2(b): now suppose that g and h are adjacent and
g2 is their common vertex, i.e., g � g1g2 and h � g2h1.
Furthermore, suppose that a and g1 are distinct. )is
implies that a≠g1, g2, h1 and d(g1, a)< d(g2, a).
)en, (13) becomes

d a, g1( <min d a, g2( , d a, h1(  . (22)

If a′ ∈ N(a) lies on the minimum path between a and
g1, then we have

d a′, g(  � d g1, a′( <d g2, a′( . (23)

Also, we have

d a′, h(  � min d g2, a′( , d h1, a′(  . (24)

We claim that d(a′, g1)< d(a′, h1); for otherwise, we
have

d a, g1(  � 1 + d a, g2( ≥ 1 + d a′, h1( ≥ d a, h1( .

(25)

)is contradicts (22). )us, d(a′, g1)< d(a′, h1), and
using (23) and (24), we can write

d a′,g(  � d g1,a′( <min d g2,a′( ,d h1,a′(   � d a′,h( .

(26)

)us, the edges are distinguished by a′ ∈Mf\ a{ }.
Now, suppose a lies on one of the edges g and h. Using
(13), it is easy to see that only possibility is that the
vertex a coincides with vertex g1. If the vertex
h1 ∈Mf\ a{ }, then g and h are distinguished by h1.
)us, we may suppose that
h1 ∉Mf � N[m]∪ (∩mi∈N(m)N(mi)). )is further
implies that there exists a vertex a′ ∈ N(a), such that
h1≁a′. If g2 ∼ a′, then we have a triangle
g1 − a′ − g2 − g1, which is not possible as the graph J

has girth at least four. )us, g2≁a′ which implies that
d(a′, h)≥ 2, but d(a′, g) � 1. Hence, this case is
completed.

Case (3): finally, suppose that g is a vertex and h � h1h2
is an edge of J, such that there does not exist any vertex
in Mf\ a{ } that distinguishes them. )en, g and h can
only be distinguished by a, i.e., d(a, g)≠d(a, h). Now,
the vertex g may lie on h or not.

Case 3a: suppose g≠ h1, h2 and a is distinct from g, h1,
and h2. Furthermore, suppose

d(g, a)< d(h, a). (27)

If the vertex a is nearer to h1 as compared to h2, then
from (27), we have

d(g, a)≤d h1, a( –1. (28)

Consider a′ ∈ N(a) on the minimum path between a
and g. )en, d(g, a′) � d(g, a) − 1, and from (28), we
have

d g, a′(  + 1≤ d h1, a( –1. (29)

From the path a − a′ − · · · − h1, we can see that

d a, h1( ≤ d a′, h1(  + 1. (30)

Now, using (29) and (30),

d g, a′(  + 1≤d a′, h1( ,

d g, a′( < d a′, h1( .
(31)

d a′, h(  � min d a′, h1( , d a′, h2( ( . (32)

We claim that d(a′, g)< d(a′, h2); for otherwise,
d(a, g) � 1 + d(a′, g)≥ 1 + d(a′, h2)≥ d(a, h2), that
is, d(a, g)≥d(a, h2)≥ d(a, h), which contradicts (27).
)us,

d a′, g( <d a′, h2( . (33)

Using (31), (32), and (33), we can write

d a′, g( <min d a′, g1( , d a′, h2( (  � d a′, h( . (34)

)is implies that the vertex g and edge h are dis-
tinguished by a′ ∈Mf\ a{ }. )e case d(a, g)>d(a, h)

can be dealt using same arguments. Now, suppose
that a � g. If h1 or (h2) ∈Mf, then g and h are
distinguished by h1 (or h2). )erefore, we may
suppose that h1, h2 ∉Mf and d(h1, a)≤d(h2, a).
)en, there exists a

’′ ∈ N(a), such that h1≁a
’′. By

using the paths a − a
’′ − · · · − h2 and a − a

’′ − · · · − h1,
we can see that

d a′, h2( ≥ d a, h2(  − 1≥ d a, h1(  − 1≥ 1 + d a′, h1( 

− 1 � d h1, a′( ≥ 2.

(35)

Since a� g and a″ ∼ a, so d(g, a′) � 1, i.e.,
a′ ∈Mf\ a{ } resolves g and h. Now, assume that
vertex a coincides with some vertex of h, say h1, i.e.,
h � h1h2 � ah2. If g ∈Mf, then g and h are dis-
tinguished by g. But if g ∉ , then g is not adjacent
to some vertex b′ ∈ N(a). )is implies that
d(b′, h) � 1 and d(b′, g)≥ 2. )is completes this
subcase.
Case 3b: suppose that the vertex g lies on h. Let h1 � g.
If a≠g, h2, then we have
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d(h, a) � d h2, a( < d(g, a)≤d h2, a(  + 1. (36)

)us,

d(a, g) � d a, h2(  + 1. (37)

If h2, ∈Mf, then g and h are distinguished by h2, but if
h2, ∉Mf, then h2,≁a. )is implies that there exists a
vertex b

’′ ∈ N(a) on the minimum path between a

and h2. Using (37), we have

d b′, g(  � d a, h2(  � 1 + d b′, h2( . (38)

)is implies that d(b′, g)>d(b′, h2). Hence, g and h
are distinguished by b

’′ ∈Mf\ a{ }. Finally, suppose
that the vertices a and g both are on the edge h, that
is, h � ag. As the graph J possesses the MFTM
generator, so by )eorem 2, the vertex a is not a
pendant vertex and therefore deg(a)> 1. )is fur-
ther implies that there exists a vertex
c ∈ N(a)⊆Mf\ a{ } other than g, i.e., c≠g. As J has
girth at least four, so c is not adjacent to g ,and we
have d(c, h) � 1, whereas d(c, g)≥ 2. )us, in all
cases, any pair of element of J is distinguished by
vertices of Mf\ a{ }. )is completes the proof. □

4. Conclusion

In this study, it is shown that the mixed metric dimension
for the rooted product of graph of order n≥ 2 n by path
graph by taking pendant vertex as root vertex is n. As a
consequence, it is presented that the mixed metric di-
mension of the corona graph with t vertices is t/2. )e
notion of the mixed fault-tolerant metric generator is
defined for the mixed generator. As the graphs like path
graph, tree, and complete graph do not have any mixed
metric generators, so it is important to classify those
graphs which possess the mixed generator. )is problem
is settled in this study, and the graphs having the mixed
fault-tolerant metric generator are characterized. Spe-
cifically, it is shown that the necessary and sufficient
conditions for existence of the mixed generator for a
graph Q are that the graph Q does not have pendant
vertices and does not contain any vertex having maximal
neighbourhood. Moreover, the mixed fault-tolerant
metric resolving set for a graph Q with girth at least 4 is
presented as Fm � ∪ t∈A(N[t]∪ (∩ ti∈N[t]N(ti))), where
N[t] and N(t) are the closed and open neighbourhoods,
respectively, and A is the mixed basis for Q.
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