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In the original publication, the title was “A Shrinking
Projection Algorithm with Errors for Costerro Bounded
LinearMappings”; however, the author wishes to remove the
word “linear” from the title and throughout the manuscript.

"is is to make clear that convex sets are for nonlinear
maps, and as a result, it is not appropriate to define linear
maps on convex sets. Linear maps are mostly defined on
subspaces and not on convex sets.

"e title is therefore corrected as above. And, the revised
article is as follows.

A Shrinking Projection Algorithm with Errors for
Costerro Bounded Mappings

Joseph Frank Gordon
Department of Mathematics, Nanjing University of

Aeronautics and Astronautics, Nanjing 211106, China
"e purpose of this paper is to introduce and analyze the

shrinking projection algorithm with errors for a finite set of
Costerro bounded mappings in the setting of uniformly convex
smooth Banach spaces. Here, under finite-dimensional or
compactness restriction or the error term being zero, we study
the strong limit point of the sequence stated in our iterative
scheme for thesemappings in uniformly convex smooth Banach
spaces. "is paper extends Ezearn and Prempeh’s result for
nonexpansive mappings in real Hilbert spaces.

1. Introduction

Fixed point theory is a fascinating subject, with a lot of
applications in various fields of mathematics and engi-
neering. In a number of situations, one may need to find a

common fixed point of a family of mappings. In practice, a
modification may be needed to turn the problem into a
fixed point problem (see for instance Picard (1) and
Lindelöf (2)). For more information on fixed point
problem and its applications to certain types of linear and
nonlinear problems, interested readers should refer to
Tang and Chang (3) (equilibrium problems), Solodov
and Svaiter (4) (proximal point algorithm), Takahashi (5,
6) (convex optimization and minimization problems),
and Blum and Oettli (7) (variational inequalities).

In practice, finding an exact closed form of a solution to a
fixed point problem is almost a difficult task. For this reason, it
has been of particular importance in the development of feasible
iterative schemes or methods for approximating fixed points of
certainmaps,most notably, nonexpansive type ofmappings. For
instance, Halpern (8), Mann (9), and Ishikawa (10) studied and
developed an iterative scheme to approximate the fixed points of
nonexpansive mappings in Hilbert spaces under certain con-
ditions. In their scheme, strong convergence is always guar-
anteed for all closed convex subsets of a Hilbert space.
Haugazeau (11) initially proposed the projection method
which was later developed by Solodov and Svaiter (4). A
type of projection method which is of relevance and
central to this paper is called the Shrinking Projection
Method with Errors, which was developed by Takahashi
et al. (12) and used by Yasunori (13). "e strong con-
vergence result is always guaranteed for all closed convex
subsets of a Hilbert space under certain conditions.

In (14), Ezearn and Prempeh improved the boundedness
requirement of Yasunori’s result (13) regarding a shrinking
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projection algorithm for common fixed points of non-
expansive mappings in a real Hilbert space. In their results,
they showed that the boundedness requirement in Yasu-
nori’s results could be removed. "at is to say, the con-
vergence of the iterative sequence in the scheme presented in
Yasunori’s paper, that is, when the error term ε0 � 0, is
independent of the boundedness of the closed convex subset
in a real Hilbert space. With the boundedness being re-
moved, Ezearn and Prempeh further provided a better es-
timate for the convergence result of the iterative sequence in
their algorithm especially in finite dimension and further
showed that when the closed convex set is compact, their
estimates does not involve the diameter of the subset.

In this paper, we show that the strong limit point of the
iterative sequence xn n≥1 presented in Section 1.1 always
exists in a finite-dimensional space.We also show that, when
the space is not finite dimensional, the strong limit point of
xn n≥1 is guaranteed when the closed convex subset is
compact. Finally, we show that the strong limit point of
xn n≥1 also exists when the error term (ε0) is zero regardless
of the compactness of the closed convex subset and the
dimension of the space.

Definition 1 (normalised duality mapping, see Lunner (18)).
Let X be a Banach space with the norm ‖ · ‖, and let X∗ be
the dual space ofX. Denote 〈·, ·〉 as the duality product. "e
normalised duality mapping J from X to X∗ is defined by

Jx ≔ f ∈ X∗: ‖f‖
2
∗ � ‖x‖

2
� 〈x, f〉 � fx , (1)

for all x ∈ X. "e Hahn–Banach theorem guarantees that
Jx≠∅ for every x ∈ X. For our purposes in this paper, our
interest mostly lies on the case when Jx is single-valued for
all x ∈ X, which is equivalent to the statement that X is a
smooth Banach space.

"roughout this paper, R denotes the real part of a
complex number. We also use F(T) to denote the set of fixed
points of the mapping T (that is, F(T) � x ∈ C: Tx � x{ }).

"e mappings we study in this paper are defined as
follows.

Definition 2 (Costerro bounded mappings). Let X be a
strictly convex smooth reflexive space and C be a closed
convex subset of X. A mapping T: C⟶ X is said to be a
Costerro bounded mapping if

‖Tx‖≤ ‖x‖, (2)

such that whenever z ∈ F(T), then

R〈z, JTx − Jx〉≥ 0, ∀x, z ∈ C. (3)

An immediate example of such mappings is the scaling
operator given by

T(x) � ax, (4)

where the scaling factor a lies in the closed unit disk.

In order to state our iterative scheme, let us define the
following function.

Definition 3 (generalised projection functional, see (16)). Let
X be a smooth Banach space, and letX∗ be the dual space of
X. "e generalised projection functional
ϕ(·, ·): X × X⟶ R is defined by

ϕ(y, x) � ‖y‖
2

− 2R〈y, Jx〉 +‖x‖
2
, (5)

for all x, y ∈ X, where J is the normalised duality mapping
from X to X∗. It is obvious from the definition that the
generalised projection functional ϕ(·, ·) satisfies the fol-
lowing inequality:

(‖y‖ − ‖x‖)
2 ≤ϕ(y, x)≤ (‖y‖ +‖x‖)

2
, (6)

for all x, y ∈ X.
We should note here that the generalised projection

functional ϕ(·, ·) is continuous.
"e next function which is stated in our iterative scheme

is established via the theorem as follows.

Theorem 1 (generalised projection, see [18]). Let Xbe a
uniformly convex smooth Banach space, and letC≠∅be a
closed convex subset ofX. .en, for everyx ∈ X, there exists a
uniquey ∈ Csuch that

Λ(x, C) � ϕ(y, x) � inf
z∈C

ϕ(z, x). (7)

"e unique point y satisfying equation (7) is called the
generalised projection of x on C. "at is, we define the
projection operator ΠC: X⟶ C by setting

ΠCx � y, (8)

where y is the only point in C satisfying equation (7).

Remark 1. In "eorem 1, note that if X is a Hilbert space,
then ϕ(y, x) � ‖y − x‖2. Hence, the (generalised) projection
ΠC defined in equation (8) coincides with the metric pro-
jection onto C in the Hilbert space setting. "e converse is
not necessarily true in a general Banach space.

"e iterative scheme is stated as follows.

1.1. Iterative Scheme 1. LetX be a uniformly convex smooth
Banach space, and let C≠∅ (not necessarily bounded) be a
closed convex subset ofX. Let Tk 

m

k�1be a finite set of Costerro
bounded mappings fromCtoXwithF ≔ ∩ m

k�1F(Tk)≠∅.
Let αn,k 

n≥ 1and εn n≥ 1be nonnegative real sequences satis-
fying the following conditions, for all1≤ k≤mandn≥ 1:

(i) αn,k 
n≥ 1 ⊂ [0, 1]

(ii) 
m
k�1 αn,k � 1
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(iii) αk ≔ liminfn⟶∞αn,k > 0
(iv) ε0 ≔ limsupn⟶∞εn <∞

"en, for any arbitrary u ∈ X with the assumptions
x1 ∈ C1 ≔ C and ϕ(x1, u)< ε21, the sequence xn n≥ 1 is
defined iteratively by the following scheme:

Bn � z ∈ C: 
m

k�1
αn,kϕ z, Tkxn( ≤ ϕ z, xn( 

⎧⎨

⎩

⎫⎬

⎭, (9)

Cn+1 � Bn ∩Cn, (10)

xn+1 ∈ Cn+1, ϕ xn+1, u( ≤Λ u,Cn+1(  + ε2n+1, (11)

for all n≥ 1.

2. Preliminaries

"e inequality R〈z, JTx − Jx〉≥ 0 in Definition 2 can be
written equivalently in terms of norms. "is is achieved via
the elementary lemma by Ezearn in (19). We give the proof
here for the sake of completeness.

Theorem 2 (see, for instance, (19)). LetXbe a smooth
Banach space, and letx ∈ X\ 0{ }and anyy ∈ X. .en,

1
‖x‖

R〈y, Jx〉 � lim
α⟶0

‖x + αy‖ − ‖x‖

α
, (12)

for all α> 0.

Lemma 1 (19). LetXbe a smooth Banach space
andx1, x2, . . . , xm, y ∈ Xwherem ∈ N. .en,



m

k�1
xk

����
����
2 ≤ 

m

k�1
xk

����
���� xk + αy
����

����, (13)

for all α ∈ [0, q] (where q ∈ R>0) if and only if

R〈y, Jx1 + Jx2 + . . . + Jxm〉 ≥ 0. (14)

Proof. We observe that if α � 0, then the lemma is proved
trivially and as a result, we assume that α≠ 0 (without loss of
generality, we can equally assume that xk ≠ 0). Now, if
R

m
k�1〈y, Jxk〉≥ 0, then



m

k�1
xk

����
����
2

� R 
m

k�1
〈xk, Jxk〉≤R〈xk + αy, Jxk〉≤ 

m

k�1
xk + αy

����
���� xk

����
����. (15)

On the other hand, if 
m
k�1 ‖xk‖2 ≤ 

m
k�1 ‖xk‖‖xk + αy‖

for every α ∈ (0, q] (where q ∈ R>0), then

0≤
1
α



m

k�1
xk

����
���� xk + αy

����
���� − xk

����
����  � 

m

k�1
xk

����
����

xk + αy
����

���� − xk

����
����

α
.

(16)

Taking the limit as α⟶ 0, then by"eorem 2, equation
(16) becomes

1
‖ xk ‖

R 
m

k�1
〈y, Jxk〉 ≥ 0. (17)

Since xk ≠ 0, then R
m
k�1〈y, Jxk〉≥ 0 and hence

proved. □

Corollary 1. .e inequalityR〈z, JTx − Jx〉≥ 0is equivalent
to

‖Tx‖
2

+‖x‖
2 ≤ ‖Tx‖‖Tx + αz‖ +‖x‖‖x − αz‖, (18)

for all α≥ 0.

Proof. By considering Lemma 1 for the case when m � 2, the
inequality

R〈z, Jx1 − Jx2〉 � R〈z, Jx1 + J − x2( 〉 ≥ 0 (19)

is equivalent to the following condition:



2

k�1
xk

����
����
2 ≤ 

2

k�1
xk

����
���� xk + αy
����

����, (20)

x1
����

����
2

+ x2
����

����
2 ≤ x1

����
���� x1 + αy
����

���� + x2
����

���� x2 + αy
����

����. (21)

Now, replacing x1 with Tx, y with z, and x2 with (− x),
the corollary is proved.

In the following, we give a nontrivial example of Cos-
terro bounded mappings which we refer to as Ezearn
nonexpansive mapping. Ezearn, in his thesis (19), had de-
fined certain closely related mappings (named Type III
variational nonexpansive mappings). □

Corollary 2 (Ezearn nonexpansive mapping). LetCbe a
closed convex subset of a strictly convex smooth reflexive
spaceX. .en, the following is a nontrivial example of a
Costerro bounded mapping:
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‖Tx‖
2

+‖Ty‖
2

  + ‖x‖
2

− ‖y‖
2

 ≤ ‖Tx‖‖Tx + αTy‖ +‖x‖‖x − αy‖, (22)

for all x, y ∈ C and all α≥ 0.

Proof. For α � 0, equation (18) reduces to the following:

‖Tx‖
2

+‖Ty‖
2

+‖x‖
2

− ‖y‖
2 ≤ ‖Tx‖

2
+‖x‖

2
, (23)

‖Ty‖
2 ≤ ‖y‖

2
, (24)

‖Ty‖≤ ‖y‖, (25)

which satisfies the first part of Definition 2. To show the
second part of Definition 2, if y ∈ F(T), where F(T) refers to
the fixed point set of T, then equation (18) reduces to the
following evaluation:

% ‖Tx‖
2

+‖y‖
2

  + ‖x‖
2

− ‖y‖
2

 ≤ ‖Tx‖‖Tx + αy‖ +‖x‖‖x − αy‖,

(26)

‖Tx‖
2

+‖x‖
2 ≤ ‖Tx‖‖Tx + αy‖ +‖x‖‖x − αy‖, (27)

which by Corollary 1 is equivalent to R〈y, JTx − Jx〉≥ 0.
Hence proved. □

Lemma 2 (see, for instance, Ezearn, (19)). Let Cn n≥ 1be a
sequence of nonempty closed convex subsets of a uniformly
convex smooth Banach spaceXsuch thatCn+1 ⊂ Cn. Suppose
further thatC∞ � ∩

n≥ 1
Cnis nonempty. .en, the sequence of

generalized projections ΠCn
x 

n≥ 1converges strongly
toΠC∞xfor anyx ∈ X.

Proposition 1 (Alber (20), Alber and Reich (21), Kamimura
and Takahashi, (22)). LetXbe a real uniformly convex
smooth Banach space andC≠∅be a closed convex subset
ofX. .en, the following inequality holds:

ϕ y,ΠCx(  + ϕ ΠCx, x( ≤ϕ(y, x), (28)

for all y ∈ C and x ∈ X.

Proposition 2 (continuity in duality pairing). LetXbe a
Banach space, and letX∗be the dual space ofX. Denote〈·, ·〉as
the duality product. Now, for xn n≥ 1 ⊂ Xand fn n≥ 1 ⊂ X

∗,
suppose either of the following conditions hold:

xnx and fn⟶ f, xn⟶ x and f∗n f

.en, limn⟶∞〈xn, fn〉 � 〈x, f〉.

Lemma 3 (weak star-continuity in smooth spaces). LetXbe
a real smooth Banach space. .en,J: X⟶ X∗is norm-to-
weak star continuous, whereJis the normalized duality
mapping.

Lemma 4 (Kamimura and Takahashi, strong). LetXbe a
uniformly convex and smooth Banach space, and
let xn and yn be two sequences inXsuch that
either xn or yn is bounded. Iflimn⟶∞ϕ(xn, yn) � 0,
thenlimn⟶∞‖xn − yn‖ � 0.

3. Main Results

We give the proof of the main result of this paper, which is
accomplished in "eorem 3. "e following corollary and
lemmas shall aid us in arriving at the conclusion of the main
result.

Corollary 3. Let Tk 
m
k�1be a continuous Costerro bounded

mapping. If the sequence xn n≥ 1has a strong limit point, sayx,
thenx ∈ F � ∩ m

k�1Fix(T)k.

Proof. Without loss of generality, we assume that the se-
quence xn n≥ 1 � x1, x2, x3, . . . is the subsequence con-
verging to x. Now, for n≥ 1, since the sets Cn form a
decreasing sequence of sets, that is, Cn+1 ⊂ Cn, then from
Section 1.1, we have that xn+1 ∈ Cn+1 ⊂ Cn, where
xn+1 n≥ 1 � x2, x3, x4, . . .. Hence, we observe that



m

k�1
αn,kϕ xn+1, Tkxn( ≤ϕ xn+1, xn( . (29)

Hence, taking limit as n⟶∞ of the above inequality,
we have

lim
n⟶∞



m

k�1
αn,kϕ xn+1, Tkxn( ≤ lim

n⟶∞
ϕ xn+1, xn( . (30)

By Proposition 2 and Lemma 3,
limn⟶∞ϕ(xn+1, xn)⟶ 0 and as a result, we obtain

lim
n⟶∞



m

k�1
αn,kϕ xn+1, Tkxn( ≤ 0. (31)

Since the generalised functional ϕ(·, ·) is nonnegative
and the limit infimum of αn,k  is nonzero for all k, we have

lim
n⟶∞

ϕ xn+1, Tkxn(  � 0 , (32)

for all. k ∈ 1, . . . , m{ }.

So by Lemma 4, we have that

lim
n⟶∞

xn+1 − Tkxn

����
���� � 0, (33)

for all k ∈ 1, . . . , m{ } and that proves the corollary due to the
continuity of the norm functional and the mappings Tk. □

Lemma 5. For alln≥ 1, the setsBnandCnin Section1.1are
closed convex sets.

Proof. Because C1 ≔ C is a closed convex set by assump-
tion, it suffices to show thatBn is a closed convex set for all
n. To prove the closure aspect of the lemma, we observe that
if zj 

j≥ 1 ⊂Bn converges to z ∈ C, then via the continuity
of the generalised functional ϕ(·, ·), we have the following:
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m

k�1
αn,kϕ z, Tkxn(  � lim

j⟶∞


m

k�1
αn,kϕ zj, Tkxn ≤ lim

j⟶∞
ϕ zj, xn  � ϕ z, xn( , (34)

and as a result, z ∈Bn.
Finally, to prove convexity, let u, v ∈Bn and t ∈ [0, 1].

First, note that whenever z ∈Bn, then we have the following
inequality:



m

k�1
αn,kϕ z, Tkxn( ≤ ϕ z, xn( , (35)

which can be expanded and observed to be equivalent to



m

k�1
αn,k Tkxn

����
����
2

− xn

����
����
2

 ≤ 2R 
m

k�1
αn,k〈z, JTkxn − Jxn〉.

(36)

So by making the substitution z � u and multiplying it
by t and adding it to z ≔ v multiplied by (1 − t), we obtain



m

k�1
αn,k Tkxn

����
����
2

− xn

����
����
2

  � t 
m

k�1
αn,k Tkxn

����
����
2

− xn

����
����
2

  +(1

− t) 
m

k�1
αn,k Tkxn

����
����
2

− xn

����
����
2

 ≤ 2tR 
m

k�1
αn,k〈u, JTkxn − Jxn〉

+ 2(1 − t)R 
m

k�1
αn,k〈v, JTkxn − Jxn〉

� 2R 
m

k�1
αn,k〈tu +(1 − t)v, JTkxn − Jxn〉.

(37)

From this, we conclude that



m

k�1
αn,kϕ tu +(1 − t)v, Tkxn( ≤ϕ tu +(1 − t)v, xn( . (38)

Hence, Bn is convex.
Now, let us define

C∞ ≔ ∩ n≥1Cn. (39)
□

Lemma 6. .e setC∞is a closed convex set containingF.
Hence, the sequence ΠCn

x 
n≥ 1of generalised projections

converges strongly toΠC∞xfor any arbitraryxin a uniformly
convex smooth Banach spaceX.

Proof. By induction, we observe that the sets Cn are all
closed convex subsets by the help of Lemma 5 and the
definition of Cn+1 in Section 1.1 Moreover, by inclusion,
these sets Cn form a decreasing sequence of sets. "at is,
Cn+1 ⊂ Cn for all n≥ 1. SoC∞ is either empty or nonempty.
We claim that C∞

F by induction. By the assumption in
Section 1.1, it is observed that F ⊂ C � C1 and x1 is given.
Now, let us suppose F ⊂ Cm for all m≤ n and choose ar-
bitrary z ∈ F. "en, we have the following evaluation:



m

k�1
αn,kϕ z, Tkxn(  � 

m

k�1
αn,k ‖z‖

2
+ Tkxn

����
����
2

− 2R〈z, JTkxn〉 

� 
m

k�1
αn,k‖z‖

2
+ 

m

k�1
αn,k Tkxn

����
����
2

− 2R 
m

k�1
αn,k〈z, JTkxn〉

� 
m

k�1
αn,k‖z‖

2
+ 

m

k�1
αn,k Tkxn

����
����
2

− 2R 
m

k�1
αn,k〈z, JTkxn〉≤ 

m

k�1
αn,k‖z‖

2
+ 

m

k�1
αn,k xn

����
����
2

− 2R 
m

k�1
αn,k〈z, Jxn〉

� ‖z‖
2

+ xn

����
����
2

− 2R〈z, Jxn〉 � ϕ z, xn( ,

(40)

where we have used the fact that the mappings are Costerro
bounded mappings in the third step. Hence, we have shown
that z ∈ Cn+1. From Lemma 2, we conclude that ΠCn

x 
n≥ 1

converges strongly to ΠC∞x. □

Lemma 7. .e sequence xn n≥ 1satisfies the following
inequality:

ϕ xn,ΠCn
u ≤ ε2n. (41)

Proof. Since Λ(u,Cn) ≔ infx∈Cn
ϕ(x, u) � ϕ(ΠCn

u, u), then
for every εn > 0, we can find our xn ∈ Cn such that

ϕ xn, u( ≤Λ Cn, u(  + ε2n � ϕ ΠCn
u, u  + ε2n, (42)

which implies that

ϕ xn, u(  − ϕ ΠCn
u, u ≤ ε2n. (43)

However, Proposition 1 implies that

ϕ xn,ΠCu( ≤ ϕ xn, u(  − ϕ ΠCu, u( , (44)

and so in addition to equation (43), we have the following
inequality:

ϕ xn,ΠCn
u ≤ ε2n. (45)

"is completes the proof.
"e main result of this paper is given by the following

theorem. □

Theorem 3 (main result). LetXbe a uniformly convex
smooth Banach space and suppose any of the following cases
hold:

(1) .e space X is finite dimensional
(2) .e convex set C is compact
(3) ε0 � 0

Journal of Mathematics 5



.en, ω( xn n≥ 1)≠∅ and ω( xn n≥ 1)⊆∩m
k�1F(Tk),

where ω denotes the (strong) limit set of the iterative sequence
xn n≥ 1.

Proof. First we observe that xn n≥ 1 is a bounded sequence.
As a matter of fact, by Lemma 7, we have

ϕ xn,ΠCn
u  � xn

����
����
2

− 2R〈xn, JΠCn
u〉 + ΠCn

u
�����

�����
2
≤ ε2n,

(46)

which simplifies to

xn

����
����
2

+ ΠCn
u

�����

�����
2

− 2 xn

����
���� ΠCn

u
�����

����� � xn

����
���� − ΠCn

u
�����

����� 
2
≤ ε2n.

(47)

Hence, we have ‖xn‖≤ ‖ΠCn
u‖ + εn. So by Lemma 6 and

the conditions in Section 1.1, we have that xn n≥ 1 is a
bounded sequence.

We now consider the following cases stated in "eorem
3. □

Case 1. Given that xn n≥ 1 is bounded and X is finite di-
mensional, then by the Bolzano–Weierstrass "eorem,
xn n≥ 1 has a limit point, say z, and by Corollary 3, z ∈ F,
and as a result, a subsequence of xn n≥ 1 converges strongly
to z ∈ F.

Case 2. Given that C is compact, since in metric spaces,
compactness implies sequential compactness, then xn n≥ 1
being a bounded sequence has a limit point, say z, and by
Corollary 3, z ∈ F, and as a result, a subsequence of xn n≥ 1
converges strongly to z ∈ F.

Case 3. Given that ε0 � 0, then by Lemma 7, we have

lim
n⟶∞

xn − ΠCn
u

�����

����� � 0. (48)

By continuity of the norm function and Lemma 6, we
have that xn n≥ 1⟶ΠC∞u and as result,ΠC∞u ∈ F since it
is the only limit point of the sequence xn n≥ 1.

Remark 2. We also note that for infinite dimensions, we can
also say that the sequence xn n≥ 1has a weak limit point since
a uniformly convex smooth Banach is a reflexive space.
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