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is article has concentrated on heat transfer analysis in the unsteady MHD natural convection �ow of viscous �uid under
radiation and uniform heat �ux over an in�nite vertical plate embedded in a porous medium. Overall solutions are found for
temperature as well as velocity by the Laplace transform techniques. In the literature, the solutions that have been achieved are
rare, meet with all the initial and boundary conditions imposed, and canmake general solutions for any problem withmotion with
this form’s methodological relevance. Also, few di�erent cases of engineering applications are discussed. Solutions are plotted
graphically through the use of the Mathcad software to analyze how the variation is taking place in the physical behavior of the
viscous �uid �ow with respect to the change in a distinct physical parameter.

1. Introduction

Magnetohydrodynamics is the study of the properties of
magnetic characteristics and electrically conducting �uid
performance. It occurs naturally and has numerous appli-
cations in the polymer and metallurgy industries. According
to astrophysics, sunspots are caused by the sun’s magnetic
�eld. MHD has a wide range of applications in geophysics,
particularly in earthquake investigation. e prominent au-
thors who usedmagnetic �eld and its outcomes in their works
are Soundalgekar et al. [1], Raptis and Singh [2], andMansour
[3], and they have also proposed a similar solution. Samiulhaq
et al. [4] obtained the exact solution in the study of porous
medium by ramped wall temperature and thermal di�usion of
unsteady magnetohydrodynamic free convection �ow. Khan
et al. [5] reviewed the unsteady magnetohydrodynamic �ow
in sodium alginate-based Casson kind nano�uid by New-
tonian heating with a porous medium. Ga�ar et al. [6] studied

the MHD free convection �ow which was shown from a
vertical surface by Hall/ion slip currents and Eyring–Powell
�uid ohmic intemperance in a porousmedium. Khan et al. [7]
studied theMHD free convection �ow past an oscillating plate
embedded in a porous medium. Fetecau et al. [8] investigated
the unstable solution for theMHD natural convection �ow by
the radiative special outcome. Seth et al. [9] studied the ra-
diative heat transfer past an unwisely �ow of the plate through
ramped wall temperature by MHD free convection �ow.
Zeeshan et al. [10], under the presence of MHD, studied the
normal convection �ow past a porous medium, and their
�ndings were recognized mathematically and graphically.
Ghara and Das [11] investigated the MHD free convection
�ow using an unwiselymoving vertical plate with rampedwall
temperature. e unsteady magnetohydrodynamic free
convection �ow past a plate of porous below oscillatory force
velocity was investigated by Reddy [12]. Ahmed and Kalita
studied the magnetohydrodynamic transient �ux in the
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existence of radiation restricted by a hot vertical plate over a
porous medium [13]. Ambethkar [14] studied the numerical
solutions and properties of heat andmass transfer of unsteady
magnetohydrodynamic free convective flow of infinite ver-
tical plate. *e unsteady flow of hydromagnetic free con-
vection through a flux of heat and rapid motion of boundary
was calculated by Chandran et al. [15]. Chandran et al. also
studied the ramped wall temperature of free convection flow
near a vertical plate [16]. Seth et al. studied natural convection
flow with radiative heat transfer past an accelerated moving
vertical plate with ramped temperature through a porous
medium [17]. Similarly, Das and Jana studied the natural
convective magneto-nanofluid flow and radiative heat
transfer past a moving vertical plate [18]. Moreover, Erdogan
worked on unsteady motions over a plane wall of a second-
order fluid [19]. Natural convection flow past an impulsively
moving vertical plate with Newtonian heating in a rotating
system was investigated by Seth et al. [20]. Fetecau et al.
worked on slip effects over a shifting plate on unstable ra-
diative MHD natural convection flow [21], while a mathe-
matical model with properties for MHD free convection flow
in a revolving flat channel was studied by Ghosh et al. [22].
Kelleher studied the free convection with irregular wall
temperature from a vertical plate [23]. Das et al. [24] worked
on the impact of mass transfer on the flow past a vertical
infinite plate with heat flux, and chemical reaction began
impulsively. Kim [25] worked on unsteady convective heat
transfer of MHD past a semi-infinite vertical porous variable
suction moving plate. An analysis of the effects on subli-
mation of a semi-infinite, frozen porous medium of the Darcy
and Fick laws was studied by Fey et al. [26]. Similarly, Ram
and Takhar [27] worked on MHD free convection on a re-
volving fluid with Hall and ion slip currents over an infinite
vertical plate. An analysis of the heat transfer in a nanofluid
occupied elliptic inside cylinder enclosure was conducted by
Sheikholeslami et al. [28]. Cheng andMinkowycz [29] studied
the free convection flow of a vertical flat plate with heat
transfer from a dike. Heat transfer of free convection to steady
radiating non-Newtonian MHD flow past a vertical porous
plate was investigated by Bestman [30]. Heat transfer in flow
by a porous medium restricted by a vertical plate which is
infinite under the action of a magnetic field was studied by
Raptis and Kafousias [31]. Makinde and Aziz [32] studied the
MHD mix convection with convective boundary condition
from a vertical plate embedded in a porous medium. Simi-
larly, Ibrahim et al. [33] studied the existence of thermal and
mass diffusion with a constant source of heat, unsteady
magnetohydrodynamic micropolar fluid flow, and heat
transfer over a vertical porous plate through a porous me-
dium. Natural laminar convection by a vertical plate with a
progressive change in wall temperature was investigated by
Lee and Yovanovich [34]. In a porous medium, MHD varied,
and convective flow, heat, and mass transfer past a vertical
plate were studied byMakinde and Sibanda [35]. Hayday et al.
[36] studied the free convection flow from a vertical flat plate
with step discontinuities in surface temperature. Gamal and
Azzam [37] investigated the radiation effects on the MHD
mixed free-forced convective flow past a semi-infinite moving
vertical plate for high-temperature differences. *e impact of

viscous dissipation plus radiation on MHD natural convec-
tion flow past an infinite heated vertical plate in a porous
medium was studied by Israel-Cookey et al. [38]. Jha and
Prasad [39] studied the MHD free convection flow on the
exponentially accelerated vertical plate. *e best, fresh, and
exciting results were obtained by researchers [40–57].

With our prior discussion in mind, the purpose of this
article is to find the solution for unsteady MHD free con-
vection flow. *e dimensionless governing equations are
solved using the Laplace transform approach. General ve-
locity solutions are presented as exponential and comple-
mentary error functions. Knowing the velocity offers a
dimensionless depiction of skin friction. *e temperature is
lowered to the form reported in a comparable reference by
Ghosh et al. [22]. When it comes to velocity, there are a few
options to consider. Finally, graphical diagrams are widely
used to show how device characteristics affect fluid velocity.

2. Statement of the Problem

Consider an incompressible flow of a viscous fluid under the
influence of a magnetic field with strength B0 that is applied
transversely on the plate. *e produced magnetic field be-
cause of the motion of the fluid is considered to be so small
in contrast to the generated magnetic field. Because of the
Reynolds magnetic number, this limit is appropriate for
metallic liquids and partly ionized fluids. Likewise, the effect
of fluid polarization is small if no extraneous electric field is
applied. At the original instant t � 0, the fluid and the plate
are at rest at constant temperature T∞. On time t � 0+, the
plate in its own plane begins to oscillate (y � 0), so

v � U cos(ωt)i, t> 0, (1)

where U is the constant amplitude of the movement while i

denotes the unit vector in direction of flow andω denotes the
frequency because of vibrations. Since fluid is progressively
moving, this velocity is

v � v(y, t) � u(y, t)i. (2)

Under common Boussinesq’s approximation, the flow is
governed through given system of equations
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where ρ is the fluid density, μ is the dynamic viscosity of
fluid, T is the fluid temperature, K represents the perme-
ability, σ denotes the electrical conductivity, g represents
acceleration because of gravity, β is the thermal expansion
volumetric coefficient, k is the thermal conductivity, cp is the
specific heat at any constant pressure, and qr is the radiative
heat flux, in direction of y.
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Consider that no slipping happens among the plate as
well as the fluid, with initial and boundary conditions
being

u(y, 0) � 0, T(y, 0) � T∞,

u(0, t) � UH(t),
zT(0, t)

zy
� −

q

k
,

u⟶ 0, T⟶ T∞, y⟶∞, t> 0,

(5)

where u(y, t) is for velocity while T(y, t) is for the tem-
perature; then q is for constant heat flux. Adapting the
Rosseland approximation for radiative flux qr,

qr � −
4σ∗zT

4

3k
∗
zy

, (6)

where σ∗ is the Stefan–Boltzmann constant while k∗ is the
coefficient of mean spectral absorption. It is imagined that
difference of temperature inside the flow is appropriately
minor, and thus it can be linearized through expanding T4

into the Taylor series around T∞; also, ignoring advanced
order terms, we conclude that
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and using (7) in (4), we get
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Presenting the dimensionless variables,
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(9)

Reducing the star representation from t, y,ω, u, andK,
then equations (3) and (8) take this system
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where h � M2 + (1/k).
In (9), Gr is the Grashof number, Pr is the Prandtl

number, and Nr is the parameter of radiation. *e non-
dimensional initial and boundary conditions (4) reduces to
u(y, 0) � 0, θ(y, 0) � 0, for y≥ 0,

u(0, t) � f(t),

zθ(y, t)

zy
� − 1,

t> 0.

(12)

3. Solution of the Problem

3.1. Temperature Field. We take Laplace transform tech-
nique into equation (11), and utilizing the transform initial
and boundary conditions, we obtained
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1
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Using the inverse Laplace transform of that above
equation, we obtained
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where Preff � Pr/(1 + Nr) is the effective Prandtl number.

3.2. Nusselt Number. Nu is the Nusselt number; it is the rate
of heat transfer at the plate and can be found by differen-
tiating the expression of temperature given in equation (17).
With respect to “y” and using y � 0, we get

Nu(t) � − 1. (15)

3.3. Velocity Field. We take the Laplace transform technique
into equation (10), and using the transform initial and
boundary conditions, we obtained
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Inverse Laplace transform is applied on the above
equation, and we develop

u(y, t) � Φ(y, t) + kj(y, t). (17)

Also,
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t
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Here U(t) is the Heaviside unit function.
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4. Applications

To determine the application of this problem solution in
(14) and (17), we consider some limiting and special
cases.

4.1. Limiting Case

(1) During the non-appearance of radiation.

In the non-appearance of thermal radiation, it corre-
sponds to Nr � 0; then, the dimensionless temperature
θ(y, t) is
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4.2. Special Cases

Case 1. Plate motion with constant velocity f(t) � U(t).

In this case, single impulse of plate is taken, so we take
f(t) � U(t).

Now by substitution, we get

u(y, t) �
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and using (21), we get skin friction
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where τ0j,j � 1, 2.
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Case 2. For accelerated plate motion

f(t) �
t

t0
U(t), (25)

t0 is a constant, so in this situation, this expression provides
complex velocity field
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*e expression for the skin friction is given by
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Case 3. For decaying oscillatory motion

f(t) � Re U(t)e
− λ2− iω( )t

 , (28)

λ and ω are dimensionless constants. Put (28) into (17), and
we have
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*e skin friction expression is

τ � −
U(t)
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5. Results and Discussion

We can study the general solution for unsteady MHD
natural convection flow with arbitrary motion of the infinite
vertical plate. *e governing equations which are dimen-
sionless can be explained with the techniques of Laplace

transform, and we can obtain a solution of temperature and
velocity in the form of special function (error and com-
plementary error functions). It satisfies all the given
conditions.

For understanding different parameters for the given
problem, different calculations can be done for temperature,
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velocity, and skin friction. For changed values of pertinent
parameters, i.e., Grashof number, radiation parameter,
phase angle, magnetic parameter, Prandtl number, and time,
Gr equal to zero links to the non-appearance of free con-
vection currents, whereas Gr greater than zero links to
externally cooled plate. Here we cannot discuss Gr� 0, and
we can start our graph journey with Grashof number. In
Figure 1, we get that velocity increases with the increase of
Grashof number Gr. Here we cannot discuss Gr for negative
values, but similarly, velocity decreases with the decrease of
Grashof number Gr. In Figure 2, the fluid velocity falls by

increasing parameter h. Figure 3 shows the motion of fluid
for different values of Pr. For a large value of Pr, velocity is an
increasing function of time and decays fluid motion.
Physically, this is correct since an increase in the Pr increases
the viscosity of the fluid, making it thicker and causing a
drop in the fluid’s velocity. In Figure 4, velocity profiles
because of variations in time t are shown for heating and
cooling of the plate; it can be understood that velocity in-
creases with time for the occasion of plate heating; similarly,
velocity decreases with time for the situation of cooling of
the plate.

Figures 5–7 show the temperature profiles for different
values of Nr, Pr, and t. Clearly, Figure 5 indicates that when
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the value of the radiation parameter Nr increases, then the
temperature will be decreased. Due to the existence of ra-
diation, the existing thermal boundary layer will thicken.
*is is actually because radiations provide an extra means
for diffuse energy. From Figure 6, we can see that the
temperature decreases with the increase of Pr, thickness of
air thermal layer of boundary (Pr� 0.71) is larger, and the
temperature shared through the thermal boundary layer is
more uniform relative to water (Pr� 7) and electrolytic
solution (Pr� 1.0). *e explanation is that lower Prandtl
number values contribute to an increase in thermal con-
ductivity, which makes it easier to disperse heat farther than
higher from the heated surface Prandtl number values.
*erefore, the water temperature decreases faster than that
of air as well as an electrolytic solution. From Figure 7, it is
found that with increased time in the existence of the ra-
diation, the temperature would rise. It is also noted that by
increasing time values, the thermal boundary layer thickens.

*e skin friction graph is shown in Figures 8 and 9. From
Figure 8, we can see that when the Gr value is negative, the
skin friction at some time tends to go up, but after some
time, it comes down and asymptotically reaches near the
surface. *en, when the value of Gr is positive, the skin
frictionmoves downward; after some time, it moves upward.
In Figure 9, a similar behaviour is shown by varying values
of h.

6. Conclusion

In this study, we can obtain a general solution for unsteady
MHD natural convection flow with arbitrary motion of the
infinite vertical plate. *e governing equations are analyt-
ically resolved by using the method of Laplace transform.
Finally, we obtained the solution for temperature, velocity,
and skin friction. In velocity profiles, we observe that ve-
locity increases with increasing Grashof numbers Gr and

permeability of porous medium K. While for increasing M,
velocity decreases. It has been observed that temperature
increases by increasing time t and radiation parameter Nr.
*e behaviour in all the figures corresponding to the Skin
friction is such that at some stage it reaches upward; then
after some time, it comes downward.

Nomenclature

T: Fluid temperature
g: Acceleration due to gravity
M: Magnetic parameter
q: Constant heat flux
K: Permeability of porous medium
s: Laplace transform parameter
U: Amplitude of the motion
Gr: *ermal Grashof number
k: *ermal conductivity of the fluid
Pr: Prandtl number
Nu: Nusselt number
Cp: Specific heat at a constant pressure
qr: Radiative heat flux in y− direction
T∞: Fluid temperature far away from the plate
C∞: Fluid concentration far away from the plate
Nr: Radiation parameter
Tw: Temperature at the plate
Preff: Effective Prandtl number
B0: Uniform magnetic field
t0: Characteristic time
]: Kinematic viscosity
μ: Dynamic viscosity
β: Volumetric coefficient of thermal expansion
ρ: Fluid density
σ: Electrical conductivity
ω: Frequency of vibrations.
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