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Hepatitis B is a globally infectious disease. It is pretty contagious and can be transmitted by blood or bodily fluids, through
things like sharing razors and toothbrushes. It has been called the silent killer because it is asymptomatic, one might have the
virus but not know until it manifests itself until much later. Since people do not give attention, it will develop into cirrhosis
and hepatocellular carcinoma that leads to liver transplantation and death. -is nature of HBV disease motivated us to
perform this work. Mathematical modeling of HBV transmission is an interesting research area. In this paper, we present
characteristics of HBV virus transmission in the form of a mathematical model. We proposed and analyzed a compartmental
nonlinear deterministic mathematical model SEACTR for transmission dynamics and control of hepatitis B virus disease. In
this model, we used force infection which takes the contact rate of susceptible population and transmission probability into
account. We proved that the solution of the considered dynamical system is positive and bounded. -e model is studied
qualitatively using the stability theory of differential equations and the effective reproductive number which represents the
epidemic indicator is obtained from the largest eigenvalue of the next-generation matrix. Both local and global asymptotic
stability conditions for disease-free and endemic equilibria are determined. -e sensitivity index shows that the transfer rate
from exposed class to acute infective class and transfer rate from exposed class to chronic infective class are the most
dominant parameters contributing to the transmission of HBV. On the one hand, the vaccination rate and treatment rate are
the parameters that suppress the transmission of the disease the most, and enhancing the vaccination rate for newborns and
treatment for chronically infected individuals is very effective to stop the transmission of HBV. -e combined efforts of
vaccination, effective treatment, and interruption of transmission make elimination of the infection plausible and may
eventually lead to the eradication of the virus.

1. Introduction

Hepatitis means inflammation of the liver. -e liver is a vital
organ that processes nutrients, filters blood, and fights in-
fections [1]. When the liver is inflamed or damaged, its
function can be affected. Heavy alcohol use, toxins, some
medications, and certain medical conditions can cause
hepatitis [2, 3]. Hepatitis B is a potentially life-threatening
liver infection caused by HBV and is a major global health
problem and the most serious type of viral hepatitis (WHO,
2008). An estimated 600,000 persons die each year due to the

acute or chronic consequences of hepatitis B (WHO, 2008;
Shepard et al., 2006).

For researchers and policy advisors, mathematical
modeling has proven to be a useful tool to those who compile
and evaluate scientific evidence for health interventions.
Developing a mathematical model helps to synthesize in-
formation from different sources into a consistent frame-
work that allows an integrated analysis of complex problems
[4, 5]. Mathematical models are often used to simulate the
impact of various interventions or public health strategies
and to provide quantitative predictions of how interventions
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might affect population health in the future by researchers in
public health, who provide advice to policymakers. Math-
ematical modeling has a long history and has become an
important tool in decision-making for public health in the
last two decades in the field of infectious disease control.
Mathematical modeling helped the World Health Organi-
zation (WHO) outbreak response team and decision-makers
in national outbreak response units with the interpretation
of outbreak data during the early phase of the epidemic
during the influenza pandemic of 2009 [6].

More recently, during the large outbreak of Ebola in
West Africa, mathematical modelers estimated key pa-
rameters for outbreak control such as the impact of case
isolation, contact tracing with quarantine, and sanitary fu-
neral practices on the numbers of new infections [7, 8].
When a vaccine against Ebola became available, mathe-
matical modeling helped researchers and outbreak re-
sponders to design ring vaccination trials that could lead to
successful testing of the vaccine despite a decreasing ex-
posure risk during the declining epidemic phase [9, 10]. -is
experience has led the WHO to publish a guidance docu-
ment on the design of vaccine efficacy trials during public
health emergencies [6]. Models are used to generate pro-
jections of population health given demographic changes,
distributions, and trends of risk factors in a population and
possible effects of intervention programs especially in the
area of chronic diseases [11–14].

Mathematical models can be a useful tool in this approach
which helps us to optimize the use of finite sources or simply
to the goal (the incidence of infection) control measures more
impressively. A hepatitis B mathematical model was used to
develop a strategy for eliminating HBV in New Zealand [2].
Van Den Driessche and Watmough [15] proposed an age-
structure model to predict the dynamics of HBV transmission
and evaluate the long-term effectiveness of the vaccination
programme in China. Zhao et al. [16] developed a model to
explore the impact of vaccination and other controlling
measures of HBV infection. Owolabi (2020) proposed
“mathematical modeling of viral kinetics under immune
control during primary HIV-1 infection” and showed that
extending the target-cell-limited model, by implementing a
saturation term for HIV-infected cell loss dependent upon
infected cell levels, is able to reproduce the diverse observed
viral kinetic patterns without the assumption of a delayed
immune response. -eir results suggest that the immune
response may have a significant effect on the control of the
virus during primary infection andmay support experimental
observations that an anti-HIV immune response is already
functional during peak viremia [17].

Farman et al. (2020) proposed “numerical treatment of a
nonlinear dynamical hepatitis-B model: an evolutionary
approach” and implemented evolutionary computational
technique and Padé approximation (EPA) for the treatment
of nonlinear hepatitis-B model. -ey concluded that evo-
lutionary computational technique and Padé approximation
(EPA) help to reduce contamination levels rapidly without
the need to supply step size [18].

Naik et al. (2021) proposed “modeling the transmission
dynamics of COVID-19 pandemic in Caputo type fractional

derivative” to study the transmission of COVID-19. -ey
attempted to study the pattern and the trend of spread of this
disease and prescribe a mathematical model which governs
the COVID-19 pandemic using the Caputo type derivative.
-ey obtained results showing that the applied numerical
technique is computationally strong for modeling the
COVID-19 pandemic [19].

Naik et al. (2020) proposed “chaotic dynamics of a
fractional-order HIV-1 model involving AIDS-related
cancer cells” which involves the interactions between cancer
cells, healthy CD4+T lymphocytes, and virus-infected
CD4+T lymphocytes leading to chaotic behavior.-e results
of their work show that the order of the fractional derivative
has a significant effect on the dynamic process [20].

Manymodels developed concerning HBV did not consider
both vertical and horizontal modes of transmission at once. In
this paper, we study the dynamics of hepatitis B virus (HBV)
infection under the administration of vaccination and treat-
ment, where HBV infection is transmitted in two ways through
vertical transmission and horizontal transmission. We also
considered HBV disease-induced death rate, level of infec-
tiousness of chronic infective population, and exposure rate.
-is work will contribute to understanding which infective
class plays more roles in transmitting HBV disease and the
collaboration of vaccination and treatment interventions is the
best strategy to decrease transmission of the disease. While the
horizontal transmission is reduced through the administration
of vaccination to those susceptible individuals especially for the
new born populations, the vertical transmission gets reduced
through the administration of treatment to chronically infected
individuals; therefore, the vaccine and the treatment play
different roles in controlling HBV. Since HBV is an asymp-
tomatic and silent killer, we are motivated to study factors
contributing to its transmission and controlling strategies.

2. Model Description and Formulation

Conceptual ideas and quantitative results from mathemat-
ical models are at the core of many reports and documents
produced at public health institutes containing advice for
policymakers. -erefore, modeling often in combination
with health economic assessments potentially has great
influence on policy decisions. -e analysts usually base their
work on “scenario analysis” (i.e., a comparison of various
possible intervention strategies in a systematic way) using
“dynamic transmission models” [2, 21].

In this model, we consider a SEACTR epidemic model by
dividing the total population into six time-dependent classes
based upon the nature of HBV disease, namely, S, suscep-
tible; E, exposed; A, acutely infected; C, chronically infected;
T, treated; and R, recovered classes. To make the meaning of
each compartment clear and easily understandable, we
stated the biological meaning of each compartment below.

3. Biological Meaning

Susceptible: susceptible person is someone who is not
vaccinated or otherwise immune or a person with a
weakened immune system who has a way for the virus to
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enter the body. For an infection to occur, the virus must
enter a susceptible person’s body and invade tissues, mul-
tiply, and cause a reaction. -ey are individuals who can be
infected but have not yet contracted HBV butmay contract it
if exposed to any mode of its transmission.

Exposed are individuals who became infected but have
not yet become infectious.

Acute infective refers to microbe living inside a host for a
limited period of time, typically less than six months. -ey
are a number of individuals who have contracted the HBV
and are active or capable of transmitting it.

Chronic infective is characterized by the continued
presence of infectious virus following the primary infection
and may include chronic or recurrent disease. -ey are a
number of individuals who although apparently healthy
themselves harbor infections that can be transmitted to
others.

Treated class are individuals who get treated by lam-
ivudine, tenofovir, and other treatments after they became
chronically infected.

Recovered class are individuals who get successful
treatment or recover by natural immunity. -ey are the
number of individuals who are recovered after treatment
and are immune to the disease.

In this model, the total population N(t) is divided into
six compartments depending on the epidemiological status
of individuals: susceptible S(t), exposed E(t), acutely in-
fected A(t), chronically infected C(t), treated T(t), and
recovered R(t). Susceptible population increases by the
coming in of the birth flux rate μ − μp1C − μθR, loss of
immunity rate u2 from recovered population, and decreases
by force of infection entering into exposed population,
proportions of susceptible move to recovered class by
vaccination by the rate τ. Exposed population increases by
the coming in of force of infection and decreases by transfer
rate from exposed class to acutely infected class by rate of c1
and transfer rate from exposed class to chronic infective by
rate of c2. Acute infective class increases by the transfer rate
from exposed class to acute infective class c1 and decreases
by rate of moving from acute class to chronic class δ1 and
natural death rate μ. Chronic infective class increases by the
coming in of transfer rate from E to C, rate of moving from
A to C class; for vertical transmission, we assume that a
proportion p1 of newborns from infected class are infected
and it is denoted by the termμp1C, (p1 < 1), and decreases
by treatment rate σ, and disease-induced death rate d.
Treatment class increases by treatment rate σ and decreases
by recovery rate φ. A proportion θ of newborns from re-
covered class is immune and it is denoted by θ (<1). Re-
covered class increases by recovery rate φ, vaccination rate
θ with proportion of μ, and by proportions of susceptible
move to recovered class by vaccination rate τ, and since
vaccination is not perfect, it decreases by loss of immunity
rate u2.

(i) c1 is the rate by which exposed individuals are
transferred to chronic HBV carrier

(ii) c2 is the rate by which exposed individuals are
transferred to acute infective individuals

(iii) δ1 is the rate at which individuals leave the acute
infective class and enter chronic HBV carriers, d is
HBV disease-induced death rate

(iv) σ is the rate of chronic infective individuals going
for treatment

(v) δ2 is the rate by which acute infective individuals
recover from the disease by natural way (sponta-
neous recovery)

(vi) -e horizontal transmission of disease propagation
is denoted by the mass action term cω(A + cC)S,
where c is per capita contact rate,ω is probability of
acquiring HBV infection per contact with one
infectious individual, and c is level of infectious-
ness of chronic infective population

(vii) For vertical transmission, we assume that a pro-
portion p1 of newborns from infected class is
infected and it is denoted by the term μp1C,
(p1 < 1) [22]

(viii) Each compartment decreases by natural death rate
μ

We assume that the population of newborn carriers born
to carriers is less than the sum of the death carriers and the
population moving from carrier to recovery state. In this
case, we have μp1 < μ + d + σ; otherwise, carriers would keep
increasing rapidly as long as there is infection; that is,
dC/dt> 0 for C≠ 0 or A≠ 0.

Based up on the above assumptions, we constructed the
corresponding flow chart shown in Figure 1

Based up on the flow diagram in Figure 1, we constructed
the following corresponding dynamical system.

Corresponding dynamical system
_S � μ − μp1C − μθR + u2R

− (cω(A + cC) + μ + τ)S,
(1)

_E � cω(A + cC)S − c1 + c2 + μ( 􏼁E, (2)

_A � c1E − δ1 + δ2 + μ( 􏼁A, (3)

_C � c2E + δ1A − σ + d + μ − μp1( 􏼁C, (4)

_T � σC − (φ + μ)T, (5)

_R � φT + δ2A + τS + μθ − μ − u2( 􏼁R, (6)

4. Mathematical Analysis of the Model

In this section, the positivity, boundedness, and existence of
the solution of the model are checked. -is mathematical
analysis of the model could be considered as the primary
result.

Theorem 1 (positivity).
Let the initial data for the model be

S0 > 0, E0 > 0, A0 > 0, C0 > 0, T0 > 0, R0 > 0. -en, the
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solutions S(t), E(t), A(t), C(t), T(t), and R(t) of the model
will be remaining positive for all time t> 0.

Proof. Let S0 > 0, E0 > 0, A0 > 0, C0 > 0, T0 > 0, R0 > 0. More-
over, we assume that all parameters are positive. To show
this, we take these differential equations of the dynamical
system given above and show that their solutions are
nonnegative as follows.

(1) Let us take the first differential equation

dS

dt
� μ − μp1C − μθR + u2R − (cω(I + cC) + μ + τ)S.

(7)

After solving using the technique of separation of
variables and applying the initial conditions, the
following is obtained:
S(t)≥ S0e

− (ρ(I+θC)+μ+τ)t. Since S0 > 0 and
e− (cω(I+cC)+μ+τ)t is also positive, then we can conclude
that

⇒S(t)≥ S0e
− (cω(I+cC)+μ+τ)t > 0. (8)

(2) Let us consider the second ordinary differential
equation

dE

dt
� cω(I + cC)S − c1 + c2 + μ( 􏼁E. (9)

After solving using the technique of separation of
variable and applying the initial condition, the fol-
lowing is obtained:

E(t)≥E0e
− (c1+c2+μ)t. Since E0 is positive

and e− (c1+c2+μ)t is also positive, then we can conclude
that

⇒E(t)≥E0e
− c1+c2+μ( )t > 0. (10)

(3) Let us consider the third ordinary differential
equation

dA

dt
� c1E − δ1 + δ2 + μ( 􏼁A. (11)

It is true that after solving using the technique of
separation of variable and applying the initial con-
dition, the following is obtained:
⇒A(t)≥A0e

− (δ1+δ2+μ)t. Since A0 is positive and
e− (δ1+δ2+μ)t is also positive, we can conclude that

A(t) ≥A0e
− δ1+δ2+μ( )t > 0. (12)

(4) Let us consider the fourth differential equation

dC

dt
� c1E + δ1A − σ + d + μ − μp1( 􏼁C. (13)

After solving using the technique of separation of
variable and applying the initial condition, the fol-
lowing is obtained:
C(t)≥C0e

− (σ+d+μ− μp1)t. Since A0 is positive and
e− (σ+d+μ− μp1)t is also positive, then

⇒C(t)≥C0e
− σ+d+μ− μp1( )t > 0. (14)

E C T R

A

u2R

μS μT

μθR

μE

μA

μRμp1C

λS

τS

(μ + d)C

φTσCC1

C2

δ1

δ2

μ –μp1C –μθR

S

Figure 1: Corresponding flow diagram of SEACTR model.
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(5) Let us consider the fifth ordinary differential
equation

dT

dt
� σC − (φ + μ)T. (15)

After solving using the technique of separation of
variable and applying the initial condition, the fol-
lowing is obtained:
T(t)≥T0e

− (φ+μ)t. Since C0 is positive and e− (φ+μ)t is
also positive, then we can conclude that

T(t)≥T0e
− (φ+μ)t > 0. (16)

(6) Let us consider the sixth ordinary differential
equation

dR

dt
� φT + δ2A + τS + μθ − μ − u2( 􏼁R. (17)

After solving using the technique of separation of
variable and applying the initial condition, the fol-
lowing is obtained:

R(t) � R0e
(μθ− μ− u2)t. Since R0 is positive and

e(μθ− μ− u2)t is also positive, then we can conclude that
R(t) � R0e

(μθ− μ− u2)t > 0 where μθ< μ + σ.

-is completes the proof of the theorem. -erefore, the
solution of the model is positive. □

Theorem 2 (boundedness).
To show the boundedness of the solution, we have to

show a lower bound and upper bound. But, initially, N(0) �

N0 > 0, S(0) � S0 > 0, V(0) � V0 > 0, E(0) � E0 > 0,

A(0) � A0 > 0, C(0) � C0 > 0, T(0) � T0 > 0, R(0) � R0 > 0.
These initial conditions are considered as lower bounds.

Now, we are going to show the upper bound. By taking the
relation,

N(t) � S(t) + E(t) + A(t) + C(t) + T(t) + R(t),

⇒R � 1 − S − E − A − C − T.
(18)

Then, our system of differential equation becomes

_S � μ − μp1C − (cω(A + cC) + μ + τ)S + u2 − μθ( 􏼁(1 − S − E − A − C − T),

_E � cω(A + cC)S − c1 + c2 + μ( 􏼁E,

_A � c1E − δ1 + δ2 + μ( 􏼁A,

_C � c2E + δ1A − σ + d + μ − μp1( 􏼁C,

_T � σC − (φ + μ)T.

(19)

After substituting R � 1 − S − E − A − C − T in the first
equation, let Y � S + E + A + C + T. -is implies

dY

dt
�

dS

dt
+

dE

dt
+

dA

dt
+

dC

dt
+

dT

dt
(20)

After simplification, we get

dY

dt
+ μ + u2 − μθ( 􏼁Y≤ μ + u2. (21)

Now integrating both sides of the above inequality and
using the theory of differential inequality [3, 28], we get the
following:

This equation is in the form of dy/dt + p(x)y � q(x)

which is first-order linear differential equation with inte-

grating factor I.F � e
􏽒 − (μ+u2− μθ)dt

� e− (μ+u2− μθ)t.
After solving and simplifying, we get

Y(t)≤ e− (μ+u2− μθ)t[((μ + u2)e
(μ+u2− μθ)t/μ + u2 − μθ) + k]

where k is constant, and letting t⟶∞, we have
S + E + A + C + T≤ (μ + u2)/(μ + u2 − μθ).

From the first equation, we have
_S � μ − μp1C − (cω(A + cC) + μ + τ)S + (σ − μθ) (1 − S

− E − A − C − T). -en, S≤ ((μ + u2)/ (μ + τ +

u2) − μθ).Ω � (S, E, A, C, T) ∈{ R5
+ | S≤ (μ + u2)/(μ + τ

+ u2 − μθ), S + E + A + C + T≤ (μ + u2)/(μ + τ + u2 − μθ).}

is positively invariant.

Therefore, the basic model is well-posed epidemiologi-
cally and mathematically. Hence, it is sufficient to study the
dynamics of the basic model in Ω.

4.1. Disease Free Equilibrium Point (E1). To find disease free
equilibrium point of (1)–(5), we use E � A � C � 0 and
equate each system of differential equation to zero. -en, we
get

E
1

� S
0
, E

0
, A

0
, C

0
, T

0
, R

0
􏼐 􏼑 �

μ − μθ + σ
τ + μ + σ − μθ

, 0, 0, 0, 0􏼠 􏼡.

(22)

4.2. Effective Reproduction Number (REff ). -e larger the
number of people who are immune in a population, the
lower the likelihood that a susceptible person will come into
contact with the infection. It is more difficult for diseases to
spread between individuals if large numbers are already
immune as the chain of infection is broken.

-e effective reproduction number (REff ) is used to
measure the transmission potential of a disease. It is the
average number of secondary infections produced by a
typical case of an infection in a population where everyone is
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susceptible. -e key threshold result of epidemic theory
associates the outbreaks of epidemics and the persistence of
endemic levels with effective reproduction numbers greater
than one. Because the magnitude of REff allows one to
determine the amount of effort which is necessary either to
prevent an epidemic or to eliminate an infection from a
population, it is crucial to estimate REff for a given disease in
a particular population. We calculate the effective repro-
duction number denoted by REff using the Van Den
Driessche and Watmouth next-generation matrix approach
from [15, 29].

-e effective reproduction number is obtained by taking
the largest (dominant) eigenvalue (spectral radius) of the

matrix: FV− 1 � [zFi(E1/zxj)][zvi(E1/zxj)]
− 1, whereFi is

the rate of appearance of new infection in compartment i, vi

is the transfer of infections from one compartment i to
another, and E1is the disease-free equilibrium point. -e
effective reproduction number REff of our HBV model is
obtained by rearranging the differential equation of the
dynamical system (1)–(6) in terms of
dXi/dt � Fi − vi � Fi − (v−

i − v+
i ). We find the effective

reproduction number by using the next-generation matrix
method such that the reproduction number is the dominant
eigenvalue of the next-generation matrix G � FV− 1 where F

represents new infection and V represents transfer of in-
fections from one compartment to another [15, 29].

F E
0

􏼐 􏼑 �

0 cωS
0

cωcS
0

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V
− 1

E
0

􏼐 􏼑 �

1
μ + c1 + c2

0 0

c1
δ1 + δ2 + μ( 􏼁 μ + u2 − μp1( 􏼁

1
μ + d + σ − μp1

0

δ1c1 + cc2
μ + c1 + c2( 􏼁 δ1 + δ2 + μ( 􏼁 μ + u2 − μp1( 􏼁

δ1
μ + c1 + c2( 􏼁 μ + u2 − μp1( 􏼁

1
μ + c1 + c2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

FV
− 1

�

cωc1S
0

δ1 + δ2 + μ( 􏼁 μ + u2 − μp1( 􏼁
+

cωcS
0 δ1c1 + c2 μ + d + σ − μp1( 􏼁( 􏼁

μ + c1 + c2( 􏼁 δ1 + δ2 + μ( 􏼁 μ + u2 − μp1( 􏼁

cωS
0

μ + d + u2 − μp1
+

δ1cωcS
0

μ + c1 + c2( 􏼁 μ + u2 − μp1( 􏼁

cωcS
0

dμ + c1 + c2

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(23)

-en, effective reproduction number,

REff � ρ FV
− 1

􏼐 􏼑 �
S
0

cωc1 μ + c1 + c2( 􏼁 + δ1cωcc1 + cωcc2 μ + d + σ − μp1( 􏼁( 􏼁

μ + c1 + c2( 􏼁 δ1 + δ2 + μ( 􏼁 μ + u2 − μp1( 􏼁
(24)

where S0 � (μ − μθ + u2/τ + μ + u2 − μθ). After simplifica-
tion, we get

REff �
cω μ − μθ + u2( 􏼁 c1 μ + c1 + c2( 􏼁 + δ1cc1 + cc2 μ + d + σ − μp1( 􏼁( 􏼁

τ + μ + u2 − μθ( 􏼁 μ + c1 + c2( 􏼁 δ1 + δ2 + μ( 􏼁 μ + u2 − μp1( 􏼁
(25)
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Local stability analysis of the disease-free equilibrium
point.

Theorem 3. 4e disease-free equilibrium point
E1(S0, E0, A0, C0, T0) given by

E
1

�
μ − μθ + u2

τ + μ + u2 − μθ
, 0, 0, 0, 0􏼠 􏼡. (26)

Disease-free equilibrium point of the dynamical system
(1)–(5) is locally asymptotically stable, if REff < 1 and E1 is
unstable otherwise.

Proof.

J E
1

􏼐 􏼑 �

− (τ + μ) 0 0 0 0

0 − c1 + c2 + μ( 􏼁 cωS
0

cωcS
0 0

0 c1 − μ + δ1 + δ2( 􏼁 0 0

0 c2 δ1 − μ + d + σ − μp1( 􏼁 0

0 0 c1 u1 − (φ + μ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27)

-en, determinant of Jacobian matrix at E1 is given by

⇒

− (τ + μ) 0 0 0 0

0 − c1 + c2 + μ( 􏼁 cωS
0

cωcS
0 0

0 c1 − μ + δ1 + δ2( 􏼁 0 0

0 c2 δ1 μ + d + σ − μp1( 􏼁 0

0 0 c1 u1 − (φ + μ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 0 (28)

Let a � τ + μ, b � c1 + c2 + μ, c � μ + δ1 + δ2, f � μ+

d + σ − μp1, e � φ1 + μ.
Characteristic equation is given by

− a − λ 0 0 0 0

0 − b − λ cωS
0

cωcS
0 0

0 c1 − c − λ 0 0

0 c2 δ1 − f − λ 0

0 0 c1 u1 − e − λ

� 0

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⇒(− a − λ)(− e − λ) − (f + λ) (b + λ)(c + λ) − cωc1S
0

􏼐 􏼑 − cωcS
0

(c + λ)c2 + c1δ1( 􏼁􏼐 􏼑 � 0

⇒λ1 � − a, λ2 � − e, − (f + λ) (b + λ)(c + λ) − cωc1S
0

􏼐 􏼑 − cωcS
0

(c + λ)c2 + c1δ1( 􏼁􏼐 􏼑 � 0

⇒λ1 � − a, λ2 � − e, λ3 +(b + c + f)λ2 + bc + f(b + c) + cωc1S
0

+ cωcc2S
0

􏼐 􏼑λ + cωc1S
0

+ c
2ωcc2S

0
+ cωcc1δ1S

0
� 0.

(29)

-en, letting l1 � (b + c + f), l2 � (bc + f(b +

c) + cωc1S
0 + cωcc2S

0), l3 � ωc1S
0 + c2ωcc2S

0 + cωcc1δ1S0,

λ3 +(b + c + f)λ2 + bc + f(b + c) + cωc1S
0

+ cωcc2S
0

􏼐 􏼑λ + cωc1S
0

+ c
2ωcc2S

0
+ cωcc1δ1S

0
� λ3 + l1λ

2
+ l2λ + l3. (30)
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We need to verify the following three conditions:

(a) l1, l2, l3 > 0
(b) l1l2 − l3 > 0

-en, we have both λ1 � − a, λ2 � − e which are negatives
and the Routh-Hurwitz criterion and those inequalities in
(a)–(b) imply that the characteristic equation at E1 has only

roots with negative real part, which certifies the local stability
of E1. □

4.3. Endemic Equilibrium Point (E1). Endemic equilibrium
point of the system of differential equation (1)–(5) is given by
E1 � (S∗, E∗, A∗, C∗, T∗) where

S
∗ μ + c1( 􏼁 μ + c2( 􏼁 μ + δ2 − p1μ + u2( 􏼁

cωc1 μ + δ2 + δ1 − p1μ + u2( 􏼁
E
∗

�
cω A

∗
+ cC
∗

( 􏼁S
∗

μ + c1 + c2
, A
∗

�
cωc1cC

∗
S
∗

1 − cωc1S
∗ ,

C
∗

� c2cω
A
∗

+ cC
∗

( 􏼁S
∗

μ + c1 + c2( 􏼁 μ + d + σ − μp1( 􏼁
􏼠 􏼡 +

c1δ1cωθC
∗
S
∗

1 − cωc1S
∗

( 􏼁 μ + σ − μp1( 􏼁
,

T
∗

�
τ

(φ + μ)

c2 cω A
∗

+ cC
∗

( 􏼁S
∗

( 􏼁

c1 + c2 + μ( 􏼁 μ + σ − μp1( 􏼁
+

c1δ1cωcC
∗
S
∗

1 − cωc1S
∗

( 􏼁 μ + σ − μp1( 􏼁
􏼠 􏼡.

(31)

4.4. Local Stability of Endemic Equilibrium Point (E1).
Endemic equilibrium points are steady-state solutions where
the disease persists in the population (all state variables are
positive). We use the Jacobean matrix and Routh-Hurwitz
criterion to prove the existence of at least one locally stable
endemic equilibrium point for REff > 1. When REff > 1, it is
expected that the disease would be able to invade in the
population.

Theorem 4. 4e endemic equilibrium point
E1 � (S∗ , E∗ , A∗ , C∗ , T∗ ) of the HBV model (1)–(5) is
locally asymptotically stable (LAS) if Reff > 1.

J E1( 􏼁 �

a b b c b

0 e 0 0 0

0 c1 f 0 0

0 c2 δ1 − g 0

0 0 0 σ − h

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (32)

where a � cω(A∗ + cC∗) + τ + μ + μθ − u2, b � μθ − u2, c �

μp2 − u2 − μp1, e � c1 + c2 + μ, f � μ + δ1 + δ2, g � μ + σ − μ
p1, h � φ1 + μ.

Then, determinant of Jacobian matrix is given by

a − λ b b c b

0 e − λ 0 0 0

0 c1 f − λ 0 0

0 c2 δ1 − g − λ 0

0 0 0 σ − h − λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 0. (33)

Then, the characteristic equation at E1 is (λ + abg)(λ4 +

k1λ
3 + k2λ

2 + k3λ + k4) � 0 where λ1 � − abg,

k1 � a + e + f + g + h, k2 � ac + ef − ag − bh − bg, k3 � cfh + acg + cfh − bce − bfg, k4

� aefh + abgh + bcfg − afgh − cefh.
(34)

We need to verify the following three conditions:

(c) k1, k2, k3, k4 > 0
(d) k1k2 − k3 > 0
(e) k3(k1k2 − k3) − k2

1k4 > 0

It is easy to see those conditions (a) and (b) are satisfied.
After computations, we can prove that
k3(k1k2 − k3) − k2

1k4 > 0 is also valid. -e Routh-Hurwitz
criterion and those inequalities in (a)–(c) imply that the

characteristic equation atE1 has only roots with negative real
part, which certifies the local stability of E1.

Globally Asymptotically Stability (GAS) of the Disease-
Free Equilibrium Point (E1).

Theorem 5. 4e disease-free equilibrium
E1 � (μ − μθ + u2/τ + μ + u2 − μθ, 0, 0, 0, 0) is globally as-
ymptotically stable in the feasible region Ω if REff < 1.
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Proof. To proof this theorem, we first developed a Lyapunov
function, technically.

L �
cw + cδ1
k1k2k3

􏼠 􏼡E + σA + k2C, (35)

where k1� c1 + c2 + μ, k2 � δ1 + δ2 + μ, k3 � σ + μ − μp1.

-en, differentiating L both sides leads to

dL

dt
�

cw + cδ1
k1k2k3

􏼠 􏼡λS + σ
dA

dt
+ k2

dC

dt
. (36)

Substituting expression for dE/dt, dA/dt, and dC/dt

from equation (36),

dL

dt
�

cw + cδ1
k1k2k3

􏼠 􏼡λS − c1 + c2 + μ( 􏼁E + c1E − δ1 + δ2 + μ( 􏼁A( 􏼁 + c2E + δ1A − σ + μ − μp1( 􏼁C. (37)

By collecting like terms of (37), we get

dL

dt
�

cw + cδ1
k1k2k3

􏼠 􏼡λS + δc1 − μ( 􏼁E + δ2 + μ( 􏼁A − σ + μ − μp1( 􏼁C,

dL

dt
� REff δc1 − μ( 􏼁􏼐 􏼑λS δc1 − μ( 􏼁E + δ2 + μ( 􏼁A − σ + μ − μp1( 􏼁C,

dL

dt
≤ REff − 1􏼐 􏼑 δ2 + μ( 􏼁A.

(38)

So, dL/dt≤ 0 if REff ≤ 1. Furthermore, dL/dt � 0 which
implies A � 0 which leads to E � C � 0 or REff � 1.

Hence, L is Lyapunov function on Ω and the largest
compact invariant set in (S, E, A, C, T) ∈ Ω, dL/dt � 0{ } is
the singleton (S0, 0, 0, 0, 0) where
S0 � (μ − μθ + u2/τ + μ + u2 − μθ). -erefore, by LaSalle’s
invariance principal [30], every solution to equations of
model (1)–(5) with initial conditions inΩ which approaches
the disease-free equilibrium at t (time) tends to infinity
(t⟶∞) whenever REff ≤ 1. Hence, the disease-free
equilibrium is globally asymptotically stable. □

4.5. Global Stability of Endemic Equilibrium Point (EEP), E1

Theorem 6. 4e endemic equilibrium point
E1 � (S∗, E∗, A∗, C∗, T∗) is globally asymptotically stable in
the feasible region Ω if REff > 1.

Let the endemic equilibrium of our normalized model
system (1)–(5) be denoted by E1. It is obtained by
(S∗, E∗, A∗, C∗, T∗) setting the right-hand side of each
equation of the normalized model system (1)–(5) equal to
zero and solving for the state variables in terms of the force
of λ � cω(cC + A). -at is, E1 � (S∗, E∗, A∗, C∗, T∗) where

S
∗

�
μ + λ1( 􏼁 μ + λ2( 􏼁 μ + λ3 − p1μ + u2( 􏼁

cωλ1 μ + λ3 + cλ2p3 − p1μ + u2( 􏼁
E
∗

�
cω A

∗
+ cC
∗

( 􏼁S
∗

μ + c1 + c2
, A
∗

�
cωc1cC

∗
S
∗

1 − cωc1S
∗ ,

C
∗

� c2cω
A
∗

+ cC
∗

( 􏼁S
∗

μ + c1 + c2( 􏼁 μ + d + u1 − μp1( 􏼁
􏼠 􏼡 +

c1δ1cωθC
∗
S
∗

1 − cωc1S
∗

( 􏼁 μ + σ − μp1( 􏼁
,

T
∗

�
u1

(φ + μ)

c2 cω A
∗

+ cC
∗

( 􏼁S
∗

( 􏼁

c1 + c2 + μ( 􏼁 μ + d + σ − μp1( 􏼁
+

c1δ1cωcC
∗
S
∗

1 − cωc1S
∗

( 􏼁 μ + d + σ − μp1( 􏼁
􏼠 􏼡.

(39)

Now, we can show the existence of endemic equilibrium
points using the force of infection λ � cω(cC + A).

Then, λ � cω(cC + A) this implies.

λ � cω(cC∗ + A∗) substituting A∗ � (cωc1cC∗S∗)/1−

cωc1S
∗, C∗ � c2cω((A∗ + cC∗)S∗/(μ + c1 + c2)(μ + d + u1 −

μp1)) + c1δ1cωθC∗S∗/(1 − cωc1S
∗)(μ + σ − μp1), we get
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λ � cω c c2cω
A
∗

+ cC
∗

( 􏼁S
∗

μ + c1 + c2( 􏼁 μ + d + u1 − μp1( 􏼁
􏼠 􏼡 +

c1δ1cωθC
∗
S
∗

1 − cωc1S
∗

( 􏼁 μ + σ − μp1( 􏼁
􏼠 􏼡 +

cωc1cC
∗
S
∗

1 − cωc1S
∗􏼠 􏼡

⇒λ � cωC
∗
S
∗ c2λ

μ + c1 + c2( 􏼁 μ + d + u1 − μp1( 􏼁
􏼠 􏼡 +

c1δ1
1 − cωc1S

∗
( 􏼁 μ + σ − μp1( 􏼁

+
c1c

1 − cωc1S
∗􏼠 􏼡,

λ 1 −
c2cωC

∗
S
∗

μ + c1 + c2( 􏼁 μ + d + u1 − μp1( 􏼁
􏼠 􏼡 � c1cωC

∗
S
∗ δ1

1 − cωc1S
∗

( 􏼁 μ + σ − μp1( 􏼁
+

c

1 − cωc1S
∗􏼠 􏼡

⇒λ 1 − REff􏼐 􏼑 � c1cωC
∗
S
∗ δ1

1 − cωc1S
∗

( 􏼁 μ + σ − μp1( 􏼁
+

c

1 − cωc1S
∗􏼠 􏼡.

(40)

Letting D1 � c1cωC∗S∗((δ1/(1 − cωc1S
∗)(μ + σ − μ

p1)) + c/1 − cωc1S
∗) which is less than zero (negative).

Then, for λ(1 − REff) � D1 where D1 is clearly less than
zero (negative), to have positive eigenvalue, 1 − REff should
be negative meaning that REff > 1. -is shows existence of
unique endemic equilibrium point which is globally as-
ymptotically stable, as shown in Figure 2 graphically. -is
ends the proof.

5. Sensitivity Analysis

To determine the most optimum approach in suppressing
the number of infected individuals, one needs to identify
several factors that contribute to the transmission of the
virus and its prevalence. In this section, the study calculates
the sensitivity index of each parameter model that corre-
lates with the effective reproductive number, REff.-is
index provides information about the importance of each
parameter to the model representing the transmission of
HBV. -e index is used to identify the parameter that has
the most significant impact on REff which is later served as
the intervention target. -e parameter with a high impact
in REff shows that the parameter has a dominant influence
on the endemicity of HBV. We carried out the sensitivity
analysis to determine the model robustness to parameter
values. -e normalized forward sensitivity index of a
variable REff that depends differentiable on a parameter p is
defined as SI(P) � (zReff/zp) × (p/Reff) [31]. -e pa-
rameter with higher sensitivity index magnitude is/are
more influential than that with smaller magnitude of
sensitive index. -e sign of the sensitivity indices of REff
with respect to the parameters shows the positive or
negative impact of the parameter on REff . -at is, if the sign
of the sensitivity indices is positive, then the value of REff
increases whenever the value of the parameter increases
and if the sign of the sensitivity indices is negative, then the
value of REff decreases whenever the value of the parameter
increases.

-e resulting sensitivity indices of REff to the sixteen
different parameters in the model are shown in Table 1 in the
order from the most sensitive to least. From the sensitivity
index of the model, we consider that the most sensitive
parameter is c2, which is transfer rate of exposed class to
acute infective class. -e least sensitive parameter is u2,

which is rate of loss of immunity.

-e parameters c2 and c1 have a positive sensitivity
index, while the parameters θ and ? have a negative sen-
sitivity index. Parameters with a positive sensitivity index
represent the positive significance in the increase of ef-
fective reprodzuction numbers. -ereby, increasing (or
decreasing) the value of the parameter, while the other
parameters’ value remaining the same will contribute to the
increases (or decreases) in the effective reproduction
numbers. Parameters with a negative sensitivity index
represent the negative significance to the increase of ef-
fective reproduction numbers. In other words, increasing
(or decreasing) the value of the parameter, while the other
parameters’ value remains the same, will contribute to the
decreases (or increases) in the effective reproduction
numbers. Sensitivity index shows that the transfer rate
from exposed class to acute infective class and transfer rate
from exposed class to chronic infective are the most
dominant parameters contributing to the transmission of
HBV. On the one hand, the vaccination rate and treatment
rate are the parameters that suppress the transmission of
the disease the most.

Since SI(c2) � (zREff /zc2) × (c2/REff ) � +1.4761, in-
creasing (or decreasing) the parameter c2 by 10% will result
in increases (or decreases) of the value effective reproduction
number by 14.761%. -e result that SI(θ) � (zREff /zθ) ×

(θ/REff ) � − 1.3287 signifies that increasing (or decreasing)
the parameter θ by 10% will lead to a decrease (or increases)
in the value of effective reproduction number by 13.287%.
Interrupting transfer rate from exposed class to both acute
infective and chronic infective and maximizing vaccination
for the population and treatment for chronically infected
population are crucial.

6. Numerical Simulation and Discussion

Here, we discuss effect of each parameter to the value of
effective reproduction number to determine their contri-
bution for transmission of HBV.

Figure 3 shows the HBV effective reproduction number
simulation at variable transfer rate from exposed class to
chronic infective class c1, and from the graph, we see that
HBV infection dies out at HBV vaccination rate c1 < 0.267.
-is shows that by keeping transfer rate from exposed class
to chronic infective class less than 0.267, it is possible to
decrease transmission of HBV.
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Figure 4 shows the HBV effective reproduction number
simulation at variable contact rate c, and from the graph, we
see that HBV infection dies out at HBV contact rate
c< 0.32.-is shows that by keeping contact rate less than
0.32, it is possible to decrease transmission of HBV.

Figure 5 shows the HBV effective reproduction number
simulation at variable vaccination rate θ, and from the graph,
we see that HBV infection dies out at HBV vaccination rate
θ> 0.41.-is shows that by increasing number of vaccinated
populations and keeping it greater than 0.41, it is possible to
decrease transmission of HBV.

Figure 6 shows the HBV effective reproduction number
simulation at variable treatment rate σ, and from the graph,
we see that HBV infection dies out at HBV treatment rate
σ > 0.682. -is shows that by increasing number of treated
chronic infective populations and keeping it greater than
0.682, it is possible to decrease transmission of HBV.

Figure 7 shows the HBV effective reproduction number
simulation at variable transfer rate from exposed class to
acute infective class c2, and from the graph, we see that HBV
infection dies out at HBV transfer rate from exposed class to
acute infective class c2 < 0.192. -is shows that by keeping
transfer rate from exposed class to acute infective class less
than 0.192, it is possible to decrease transmission of HBV.

In Figure 8, we considered R0− basic reproduction
number, RVOnly− reproduction number with intervention of
vaccination only, RTOnly− reproduction number with in-
tervention of treatment only, and RVT− reproduction
number with intervention of vaccination and treatment
(effective reproduction number). It is shown that
R0 >RTOnly >RVOnly >RVT. -is means reproduction num-
ber of HBV disease without intervention is greater than
reproduction number with intervention of treatment only,
reproduction number with intervention of treatment only is
greater than reproduction number with intervention of
vaccination only, and reproduction number with inter-
vention of vaccination only is greater than reproduction
number with intervention of treatment and vaccination

Stability of endemic equilibrium point of SEACTR model
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Figure 2: Behavior of SEACTR model at endemic equilibrium point.

Table 1: Sensitivity indices of the model parameters.

Sensitivity index Value
SI(c2) � (zREff /zc2) × (c2/REff ) +1.4761
SI(c1) � (zREff /zc1) × (c1/REff ) +1.3769
SI(θ) � (zREff /zθ) × (θ/REff ) − 1.3287
SI(σ) � (zREff /zσ) × (σ/Reff) − 1.0025
SI(c) � (zREff /zc) × (c/REff ) +1
SI(ω) � (zREff /zω) × (ω/REff ) +1
SI(φ) � (zREff /zφ) × (φ/REff ) +0.9138
SI(δ1) � (zREff /zδ1) × (δ1/REff ) − 0.7338
SI(δ2) � (zREff /zδ2) × (δ2/REff ) − 0.5968
SI(φ1) � (zREff /zφ1) × (φ1/REff ) − 0.4286
SI(d) � (zREff /zd) × (d/REff ) +0.3748
SI(μ) � (zREff /zμ) × (μ/Reff) +0.3647
SI(τ) � (zREff /zτ) × (τ/REff ) +0.3593
SI(φ1) � (zREff /zφ1) × (φ1/REff ) +0.33962
SI(p1) � (zREff /zp1) × (p1/REff ) +0.33593
SI(u2) � (zREff /zu2) × (u2/REff ) +0.3297
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Figure 3: Behavior of effective reproduction number in relation to
c1.
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(effective reproduction number). -is confirms that using
intervention of both vaccination and treatment plays best
role in decreasing reproduction number of HBV disease.

As it is shown in Figure 9, when effective reproduction
number is less than unity, number of susceptible and re-
covered population increases, whereas number of infective
classes decreases. -is confirms that keeping effective re-
production number less than unity helps to decrease the
transmission of HBV implying decrease of infective pop-
ulation and increase of noninfective population in the
society.

Figure 2 is plotted using the values REff � 3.513 at c1 �

0.67, c2 � 0.281 with all other parameters as given in Table 2.
-e simulation in Figure 2 shows the stability of the HBV
model endemic equilibrium point. From Figure 2, in the
long run, the convergence of the solutions is observed at the
values greater than 10 years.
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Figure 5: Behavior of effective reproduction number in relation to
vaccination rate, θ.
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Figure 7: Behavior of effective reproduction number in relation to
c2.
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Figure 4: Behavior of effective reproduction number in relation to
contact rate, c.
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Figure 10 is plotted using MATLAB ode45 program
under consideration of the effective reproduction numbers
being less than a unity and shows the behavior of the in-
fectious classes of the HBV model (1)–(6) at REff < 1. -e
simulation given in Figure 10 shows that each of infectious
classes (E, A, C) is converging to the disease-free equilib-
rium point of the model. -is is obtained when REff � 0.765
at c1 � 0.00437, c2 � 0.000725 with all other parameters as
given in Table 2. -is indicates that the disease-free equi-
librium point of the HBV model is globally asymptotically
stable. From Figure 10, it is understood that making effective
reproduction number less than a unity leads to convergence
of infective population to zero. -is confirms that if REff < 1,

then the HBV disease dies out in ten years.
As it is observed from Figure 11, as we decreased transfer

rate from exposed class to acutely infected class from 0.5 to
0.14, the number of acute infective population also decreases
from 1, 250 to 730. -is shows that by decreasing transfer
rate, it is possible to decrease acutely infected population.

-is can be successful by educating the society to have best
understanding about means of transmission of HBV disease.

As it is shown in Figure 12, as we decreased transfer rate
from exposed class to chronic infective class from 0.59 to
0.12, the number of chronically infected population also
decreases from 950 to 700. -is shows that as transfer rate
increases, the number of chronically infected population also
increases. -en, to decrease the number of chronically in-
fected population, transfer rate should be decreased by
educational campaign in the society.

From Figure 13, we can understand that as treatment
rate increases from 0.34 to 0.59, the number of chronically
infected population decreases faster. So, in order to decrease
chronically infected population, we should give early
treatment for individuals who are chronically infected by
HBV disease.

From Figure 14, it is observed that as we increased
vaccination rate from 0.13 to 0.79, then the number of
chronic infective population decreases faster and converges
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Figure 9: Behavior of SEACTR model when REff < 1.

Table 2: Parameters and their values used in numerical simulation.

Parameter Description Values Range Reference
c Contact rate 0.33 [23]
ω Probability of acquiring HBV infectious per contact with one infectious individual 0.32 [24]
c Level of infectiousness of chronically infected population 0.5 [23]
θ Vaccination rate 0.52 [25]
μ Birth (Death) rate 0.27 [26]
p1 Probability of infected newborns 0.11 [24]
c1 Transfer rate from E to C 0.082 [24]
c2 Transfer rate from E to A 0.13 [25]
σ Treatment rate 0.28 [27]
σδ1 Rate of moving from acute to chronic 0.475 [24]
δ2 Rate of moving from acute to recovery 0.4 [23]
φ Recovery rate 0.32 [25]
d HBV disease-induced death rate 0.175 Assumed
τ Proportions of susceptible move to recovered class by vaccination 0.483 Assumed
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to zero.-en, increasing vaccination rate enables to decrease
chronically infected individuals. So, vaccinating new born
population plays a vital role in decreasing chronically in-
fected individuals in the society.

As it is shown in Figure 15, as the vaccination rate is
increased from 0.14 to 0.59, the number of acutely infected
population falls fast. -is shows that vaccinating the pop-
ulation has a great importance in decreasing acutely infected
individuals in the society. So, increasing vaccination rate of
the population enables to decrease number of acutely in-
fected individuals.

From Figure 16, it is understood that as the rate of
vaccination increased from 0.12 to 0.549, the number of
susceptible populations also increases from 1, 350 to 1, 650.
-is shows that vaccination decreases the number of

infected populations and leads to increment of susceptible
population confirming that vaccination is one of the best
control strategies for HBV.

As it is understood from Figure 17, as we increase the
rate of treatment from 0.012 to 0.49, the number of sus-
ceptible populations grows faster. -is shows treatment for
infected population also plays a vital role in decreasing
infected population and in reverse in increasing the number
of susceptible populations.

As it is shown in Figure 18, as we increase vaccination
rate from 0.112 to 0.7549, the number of exposed pop-
ulations decreases faster. -is shows that vaccination in-
tervention plays crucial role in decreasing exposed
population.
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Figure 10: Behavior of infectious classes of SEACTR model when
REff < 1.
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Figure 11: Effect of transfer rate on acutely infected population.
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Figure 12: Effect of transfer rate on chronically infected
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Figure 13: Effect of treatment rate on chronically infected
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7. Conclusion

As public health policy decisions are becoming more
complex in a globalized and digitalized world, the benefits
that mathematical models can offer for analyzing problems
and quantifying the possible impact of interventions are
huge [10]. -ese benefits can only be fully reaped, if
mathematical modeling is sufficiently supported and facil-
itated within the organization of public health institutes.

In this paper, we proposed an SEACTR model of hep-
atitis B virus infection with two controls: vaccination and
treatment. First, we analyzed the dynamic behavior of the
system for constant controls. In the constant controls case,
we calculated the effective reproduction number and

investigated the existence and stability of equilibria. -ere
are two nonnegative equilibria of the system, namely, the
disease-free and endemic. We see that the disease-free
equilibrium always exists and is locally asymptotically stable
if REff < 1, and endemic equilibrium exists and is locally
asymptotically stable if REff > 1. We evaluated effective re-
production number versus exposure rate with respect to
each intervention and also with respect to both vaccination
and treatment interventions. Since, decreasing exposure rate
decreases reproduction number of HBV disease, this shows
the increment of susceptible population. By education
campaign, it is possible to decrease exposure rate of the
population to HBV disease. We also compared reproduction
number as RVT <RV Only <RT Only <R0 showing that both
vaccination and treatment interventions play a vital role in
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Figure 14: Effect of vaccination rate on chronically infected
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Figure 16: Effect of vaccination rate on susceptible population.
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Figure 17: Effect of treatment rate on susceptible population.
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decreasing reproduction number of HBV disease compared
to no intervention reproduction number. -e index of the
sensitivity parameter shows that the parameters c2 and c1
have the most dominant sensitivity to raise the endemicity of
HBV. On the other hand, the parameters θ and σ are the ones
that can decrease the endemicity of HBV the most.

8. Significant Outcomes of Our Work

-e efficiency of the measurement against HBV, therefore,
can be assured by suppressing transfer rate from exposed
class to acute and chronic infective classes and maximizing
vaccination for the whole population and treatment for
chronic infective population. Mass hepatitis B vaccination in
the new born population largely decreases the carriage of the
virus and the diseases associated with acute and chronic
infection, including cirrhosis and hepatocellular carcinoma.

Worldwide, about 360 million people are chronically
infected with the virus and they continue to spread the virus
to others. -ey themselves are at the risk of chronic liver
diseases and hepatocellular carcinoma. -e transmission
route of HBV can now be interrupted by immunizing all the
susceptible population and the infection can be treated by
nucleotide analogs, antivirals, or interferons. Nevertheless,
the most effective means is to immunize all susceptible
individuals, especially young children, with safe and effi-
cacious vaccines.

To begin with, the existing HBV carriers can now be
treated effectively and viral load can decrease to undetectable
levels, so that infection does not spread rampantly. Another
important strategy is to interrupt the transmission route
which can be reduced after education campaign for the
public and medical personnel.

To investigate the effect of vaccination and treatment on
transmission of HBV, we analyzed by numerical simulation.
We have shown the most sensitive parameters of our model
which can be epidemiologically controlled are the HBV
acute infective class transfer rate c2 and chronic infective

class transfer rate c1. So, it is reasonable to recommend the
use of intervention strategies for HBV transmission in
making c1 less than 0.267 and c2 less than 0.192. -ese
intervention strategies are vaccination and treatment. By
making the sensitive parameters vaccination rate θ greater
than 0.41 and treatment rate σ greater than 0.682, it is
possible to decrease transmission of HBV in the society.

From Figure 7, we see that the number of susceptible
populations decreases than when there is no control because
reproduction number of HBV is greater in the absence of
control. In this case, most of this population tends to the
infected class. Again, when only treatment control is applied,
then the number of susceptible populations is not much
different than the population in the case having no control.
But the susceptible population differs much from these two
strategies if we apply the strategies of only vaccination
control and both vaccination and treatment controls make
reproduction number of the disease decrease fast. At a high
rate of vaccination, the sensitive population density is re-
duced to a very low level initially and then it takes longer
time to restore the steady-state value.
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