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In this study, the highly accurate analytical Aboodh transform decomposition method (ATDM) in the sense of Caputo fractional
derivative is used to determine the approximate and exact solutions of both linear and nonlinear time-fractional Schrodinger
di�erential equations (SDEs) with zero and nonzero trapping potential that describe the nonrelativistic quantum mechanical
activity. e Adomian decomposition method (ADM) and the Aboodh transform of Caputo’s fractional derivative are combined
in this method. e recurrence and absolute error of the four problems are analyzed to evaluate the e�ciency and consistency of
the presented method. In addition, numerical results are also compared with other methods such as the fractional reduced
di�erential transform method (FRDTM), the homotopy analysis method (HAM), and the homotopy perturbation method
(HPM). e results obtained by the proposed method show excellent agreement with these methods, which indicates its ef-
fectiveness and reliability. is technique has the bene�t of not requiring any minor or major physical parameter assumptions in
the problem. As a result, it may be used to solve both weakly and strongly nonlinear problems, overcoming some of the inherent
constraints of classic perturbation approaches. To solve nonlinear fractional-order di�erential equations, just a few computations
are necessary. As a consequence, it outperforms homotopy analysis and homotopy perturbation approaches signi�cantly. e
procedure is quick, precise, and easy to implement. Convergence analysis of the series solution is also o�ered.

1. Introduction

e shortcoming of classical mechanics to explain several
physical processes, including those on microscopic scales,
such as the photoelectric e�ect, black body radiation, and
atomic stability, led to the development of modern quantum
mechanics. It is explained by the fact that all physical
quantities of a bound system are con�ned to discrete value
quantization. Quantum mechanics may successfully de-
scribe various modern physics processes in atomic and
nuclear physics, as well as other �elds of modern physics,
where the Schrödinger equation can be used to describe the
behavior of electrons in atomic physics and nucleons in
nuclear physics [1].is equation was developed by Austrian

physicist Erwin Schrodinger in late 1925 and published in
1926.

Fractional partial di�erential equations (PDEs), which
are an extension of integer-order PDEs, have subsequently
received much interest. ey can be used to extract memory
and hereditary qualities from a variety of materials and
processes. Fractional PDEs such as the Boussinesq equation,
Korteweg-de Vries equation, Schrodinger equation, Burger’s
equation, and others are frequently used to describe varied
nonlinear wave processes in mechanics, physics, biology,
chemistry, and other areas [2]. e time-fractional SDE is
the fundamental physics equation for characterizing non-
relativistic quantum mechanical activity. Electromagnetic
waves, quantitative �nance, quantum development of
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complex systems, and dielectric polarization have all been
pulled into the time-fractional SDE in recent years [3, 4].

We examined the exact and numerical approaches to
comprehend the physical mechanism of such a natural
phenomenon. As a result, we are looking for a mathematical
solution to PDEs that is both precise and numerical. Many
papers have focused on constructing solutions to PDEs
through well-known methods. Lie symmetry analysis [5],
inverse scattering approach [6], spectral collocation method
[7], Hirota method [8], Backlund transformation method
[9], Modified Kudryashov method [10], Laplace transform
coupled with Adomian decomposition method [11], Elzaki
residual power series method [12], adaptation on power
series method with conformable operator [13], Legendre
wavelet method [14] and modified conformable Shehu
transform decomposition method [15] are some of the most
effective and efficient methods.

Differential equations (DEs), partial integrodifferential
equations (PIDs), and delayed differential equations (DDEs)
are all solved by employing integral transforms, which are
among the most valuable techniques in mathematics. )e
conversion of DEs and integral equations into terms of a
simple algebraic equation is enabled by the appropriate
selection of integral transforms. )e origins of integral
transforms can be traced back to P. S. Laplace’s work in the
1780s and Joseph Fourier’s work in 1822. In the beginning,
ordinary and PDEs were solved using the Laplace transform
and the Fourier transform which are two well-known
transforms. )ese modifications were then applied to
fractional-order DEs in the domain of fractional calculus
[16–19]. In recent years, researchers have proposed lots of
new different transformations to solve a variety of mathe-
matical problems. Fractional-order DEs are solved using the
Laplace transform [20], fractional complex transform [21],
travelling wave transform [22], Elzaki transform [23],
Sumudu transforms [24], and ZZ transforms [25], among
others. )ese transformations are paired with additional
analytical, numerical, or homotopy-based techniques to
handle fractional-order DEs.

)e general state of quantum mechanics equations,
which are commonly described as fractional-order SDEs,
will be solved in this study using an appealing and effective
analytical technique, the Aboodh transform decomposition
method (ATDM). )e Aboodh transform was established in
2013 by Khalid Aboodh to facilitate solving ordinary DEs
and PDEs in the time domain [26].)e Aboodh transform is
generated using the traditional Fourier integral. )e Elzaki
transform and the Laplace transform are intimately related
to this integral transform. )e A-T, which has been used by
several researchers for fractional-order DEs [27–31], has
recently caught the interest of many mathematicians.

We analyze then on linear time fractional-order SDE
with zero trapping potential in its more general version,
which is represented by the complex-valued function ξ(ϖ, τ)

of the form [32].

iD
]
τξ(ϖ, τ) + Dϖϖξ(ϖ, τ) + η|ξ(ϖ, τ)|

2ƛξ(ϖ, τ) � 0, (1)

where η ∈ R, 0< ]≤ 1, i �
���
− 1

√
, D]

τ indicates Caputo frac-
tional derivative of order ], ξ(ϖ, τ) is the unknown complex-
valued function to be determined, ϖ ∈ R, τ ≥ 0, and |ξ(ϖ, τ)|

represent the modulus of ξ(ϖ, τ); with the following initial
and boundary conditions given by ξ(ϖ, 0) � Υ(ϖ),
ξ(0, τ) � A(ϖ), and ξϖ(0, τ) � B(ϖ).

)e time-fractional nonlinear SDE with nonzero trap-
ping potential has the following form [33]:

iD
]
τξ(ϖ, τ) � −

1
2
Iϖξ(ϖ, τ) + Θ(ϖ)ξ(ϖ, τ) + HdQ(ξ(ϖ, τ)),

τ ≥ 0, 0< ]≤ 1, ϖ ∈ R,

(2)

with the initial condition:

ξ(ϖ, 0) � Υ(ϖ), (3)

where ϖ ∈ R, Θd(ϖ) is the trapping potential and Hd is a
real constant Iϖ is a linear operator, Q(ξ(ϖ, τ)) is a non-
linear function, and D]

τ is the Caputo fractional differential
operator.

)e physical model (2) and its generalized forms arise in
various areas of physics, including nonlinear optics, plasma
physics, superconductivity, and quantum mechanics [34].

)e time-fractional SDE has been investigated through
various methods, such as the homotopy perturbation
method [35], exponential rational function method [36],
residual power series method [37], modified transformation
method [38], two-dimensional differential transform
method [39], extended simple equation method [40], trig-
onometric B-spline method [41], fractional reduced differ-
ential transform method [42], and homotopy analysis
method [43]. All these methods have their own specific
limits and deficiencies. )ese methods require enormous
computational work and high running times. In this study,
we used the simple and efficient technique known as the
ATDM to solve the SDE of the fractional derivative in the
sense of Caputo. )e recommended method is simple to use
and can be applied to both linear and nonlinear problems. It
also has the ability to reduce the complexity of the com-
putational effort. )e set of rules of ATDM depends on
converting the SDE into Aboodh transform space and, after
converting the SDE into an algebraic equation, applying
inverse A-Tand then introducing a series of solutions to the
obtained algebraic equation, at the final step, obtaining the
target result through the iteration process.

)e structure of the paper is as follows: we will employ
various fundamental definitions and results from fractional
calculus theory in the next section. )e primary idea of the
ATDM is investigated in Section 3 in order to establish
fractional SDE solutions. Section 4 demonstrates the
method’s potential, capability, and simplicity by obtaining
approximate and exact solutions to four SDE problems. )e
proposed method is illustrated numerically and graphically
in Section 5, and the numerical results are evaluated in
Section 5. )e conclusion is covered in Section 6.
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2. Basic Concepts and Representations in
Fractional Calculus Theory

Fractional calculus is a modified version of classical calculus.
Fractional calculus can explain a wide range of complex
phenomena, including memory and heredity. )is subject
has drawn many researchers because of its worldwide aspect
and numerous applications in several domains of science,
such as physics, signal processing, modeling, control theory,
economics, and chemistry [44, 45]. In this section, we
covered some definitions and basic features of fractional
calculus theory, as well as the fundamentals of the Aboodh
transformation, which will be used later in this paper.

Definition 1 (see [43]). )e Aboodh transform (A-T) for
function ξ(τ) of exponential order over the set of functions
is defined as

R � ξ(τ)|∃M, u1, u2 > 0, |ξ(τ)|<Me
− Zτ

 , (4)

where M is a finite number and u1, u2 may be finite or
infinite. A-T is denoted by the operator A [.] and defined as

A[ξ(τ)] � Q(Z) �
1
Z


∞

0
ξ(τ)e

− τZdτ, τ ≥ 0, u1 ≤ Z≤ u2. (5)

Definition 2 (see [46]). )e Inverse A-T of function ξ(τ) is
denoted by A− 1[Q(Z)] and defined as

A
− 1

[Q(Z)] � ξ(τ) �
1
2πi


w+i∞

w− i∞
Ze

Zτ
Q(Z)dZ. (6)

A-T of several functions can be seen in Table 1 [27–29].
A-T for some elementary functions is given as

ξ(τ)Q(Z) � A[ξ(τ)]

1
1
Z

τ
1
Z
2

τα
α!

Z
α+2, α � 1, 2, . . .

τ]
Γ(] + 1)

Z
]+2 .

(7)

Definition 3 (see [47]). )e Caputo fractional derivative of
order ]> 0 is defined by

D
]
τξ(τ) �

dα

dτα
ξ τ( ), α � ] ∈ N,

1
Γ(α − ])


τ

0
(τ − ρ)

α− ]− 1ξ(α)
(ρ)dρ, α − 1< ]< α.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

We have a few properties of Caputo’s fractional
derivative.

D
]1
τ D

]2
τ ξ(τ) � D

]1+]2
τ ξ(τ),

D
]
τ C � 0, C ∈ R,

D
]
τ(τ − η)

β
�
Γ(β + 1)

Γ(β + 1 − ])
(τ − η)

β− ]
,

α − 1< ]≤ α, β> α − 1, α ∈ N, β ∈ R,

D
]
τ C1ξ1(τ) + C2ξ2(τ)(  � C1D

]
τξ1(τ) + C2D

]
τξ2(τ), C1, C2 ∈ R.

(9)

i. D]
τ(J]τξ(τ)) � ξ(τ), J]τ is the R-L integral of ξ(τ) order ].

Lemma 1 (see [27–31]). If ξ1(τ) and ξ2(τ) are piecewise
continuous on [0, ∞) and are of exponential order
A[ξ1(τ)] � Q1(Z), A[ξ2(τ)] � Q2(Z), and C1, C2 are con-
stants, then the properties mentioned below are valid:

A C1ξ1(τ) + C2ξ2(τ)  � C1Q1(Z) + C2Q2(Z),

A
− 1

C1Q1(Z) + C2Q2(Z)  � C1ξ1(τ) + C2ξ2(τ),

A D
]
τξ(τ)  � Z

]
Q(Z) − 

α− 1

κ�0

ξ(κ)
(0)

Z
κ− ]+2 ,

α − 1< ]≤ α, α ∈ N.

(10)

3. Analysis of the Aboodh Transform
Decomposition Method

In this section, we derive the main algorithms of the ATDM
separately for the time-fractional Schrodinger differential
equation with zero and nonzero trapping potential. )e
convergence analysis of the expansion solution is also
presented.

To present the ATDM on the general SDE with zero
trapping potential given in equation (1), we first rewrite
equation (1) as

Table 1: )e absolute error in ATDM and FRDTM for Example 1 at ]� 1.

τ Real part [ATDM] Abs. error Img. part [ATDM] Abs. error Real part [FRDTM] Abs. error Img. part [FRTDM] Abs. error
0.2 0 2.775557561562891× 10− 17 0 2.775557561562891× 10− 17

0.4 3.508304757815494×10− 14 6.661338147750939×10− 16 3.508304757815494×10− 14 6.66133814775093×10− 16

0.6 4.540257059204578×10− 12 1.743050148661495×10− 14 4.540257059204578×10− 12 1.743050148661495×10− 14

0.8 1.43222100845719×10− 10 1.645683589401869×10− 12 1.43222100845719×10− 10 1.645683589401869×10− 12

1.0 2.081645966711676×10− 9 5.585931717178028×10− 11 2.081645966711676×10− 9 5.585931717178028×10− 11
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D
]
τξ(ϖ, τ) � iDϖϖξ(ϖ, τ) + iη|ξ(ϖ, τ)|

2ƛξ(ϖ, τ). (11)

Now, applying the A-T to equation (11), we have

A D
]
τξ(ϖ, τ)  � A iDϖϖξ(ϖ, τ) + iη|ξ(ϖ, τ)|

2ƛξ(ϖ, τ) .

(12)

Using the differentiation property of the A-T and the
initial condition of equation (12), we get

Z
]
A[ξ(ϖ, τ)] −

ξ(ϖ, 0)

Z
2− ] � A iDϖϖξ(ϖ, τ) 

+ A iη|ξ(ϖ, τ)|
2ƛξ(ϖ, τ) .

(13)

A[ξ(ϖ, τ)] �
ξ(ϖ, 0)

Z
2− ] +

1
Z
] A iDϖϖξ(ϖ, τ) 

+
1
Z
] A iη|ξ(ϖ, τ)|

2ƛξ(ϖ, τ) .

(14)

Taking the inverse A-T on equation (14), we get as

ξ(ϖ, τ) � A
− 1 ξ(ϖ, 0)

Z
2  + A

− 1 1
Z
] A iDϖϖξ(ϖ, τ)  

+ A
− 1 1

Z
] A iη|ξ(ϖ, τ)|

2ƛξ(ϖ, τ)  .

(15)

So, according to the ATDM, we can acquire the solution
ξ(ϖ, τ) to equation (15) as follows:

ξ(ϖ, τ) � 
∞

α�0
ξα(ϖ, τ). (16)

)e nonlinear operator is decomposed as

ℵ(ξ(ϖ, τ)) � 
∞

α�0
Wα ξ0, ξ1, ξ2, . . .( , (17)

where

Wα �
1
α!

dα

dƛα
ℵ 

α

κ�0
ƛκξκ(ϖ, τ)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

ƛ�0

. (18)

)e few terms of the decomposed nonlinear terms which
are calculated from equation (18) are given as

W0 � ξ20(ϖ, τ)ξ(ϖ, τ),

W1 � ξ20(ϖ, τ)ξ1(ϖ, τ) + 2ξ0(ϖ, τ)ξ1(ϖ, τ)ξ0(ϖ, τ),

W2 � ξ21(ϖ, τ)ξ0(ϖ, τ) + 2ξ0(ϖ, τ)ξ2(ϖ, τ)ξ0(ϖ, τ)

+ 2ξ0(ϖ, τ)ξ1(ϖ, τ)ξ1(ϖ, τ) + ξ20(ϖ, τ)ξ0(ϖ, τ).

(19)

Now, by replacing equations (18) and (16) with equation
(15), we attain as follows:



∞

α�0
ξα(ϖ, τ) � A

− 1 ξ(ϖ, 0)

Z
2  + A

− 1 1
Z
] A iDϖϖ

∞

α�0
ξα(ϖ, τ)⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭

+ A
− 1 1

Z
] A iη 

∞

α�0
Wα⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭.

(20)

Equating the like terms on both sides of equation (20)
yields the general solution of equation (11), which is re-
cursively expressed as

ξ0(ϖ, τ) � A
− 1 ξ(ϖ, 0)

Z
2 ,

ξ1(ϖ, τ) � A
− 1 1

Z
] A iDϖϖ

∞

α�0
ξ0(ϖ, τ)⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭

+ A
− 1 1

Z
] A ηiW0  ,

ξ2(ϖ, τ) � A
− 1 1

Z
] A iDϖϖ

∞

α�0
ξ1(ϖ, τ)⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭

+ A
− 1 1

Z
] A ηiW1  ,

ξ3(ϖ, τ) � A
− 1 1

Z
] A iDϖϖ

∞

α�0
ξ2(ϖ, τ)⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭

+ A
− 1 1

Z
] A ηiW2  ,

ξ4(ϖ, τ) � A
− 1 1

Z
] A iDϖϖ

∞

α�0
ξ3(ϖ, τ)⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭

+ A
− 1 1

Z
] A ηiW3  ,

ξα+1(ϖ, τ) � A
− 1 1

Z
] A iDϖϖ

∞

α�0
ξα(ϖ, τ)⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭

+ A
− 1 1

Z
] A iη 

∞

α�0
Wα

⎡⎣ ⎤⎦
⎧⎨

⎩

⎫⎬

⎭.

(21)

where α � 0, 1, 2, . . .

Now, to present the ATDM on the general SDE with
nonzero trapping potential given in equation (2), we first
rewrite equation (2) as

D
]
τξ(ϖ, τ) � − i −

1
2
Iϖξ(ϖ, τ) + Θd(ϖ)ξ(ϖ, τ) + HdQ(ξ(ϖ, τ)) .

(22)
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Now, applying the A-T to equation (22), we have:

A D
]
τξ(ϖ, τ)  � − iA −

1
2
Iϖξ(ϖ, τ) +Θd(ϖ)ξ(ϖ, τ)

+ HdQ(ξ(ϖ, τ)).

(23)

Using the differentiation property of the A-T and the
initial condition on equation (23), we get

Z
]
A[ξ(ϖ, τ)] −

ξ(ϖ, 0)

Z
2− ] � − iA −

1
2
Iϖξ(ϖ, τ)

+ Θd(ϖ)ξ(ϖ, τ) + HdQ(ξ(ϖ, τ)).

(24)

A[ξ(ϖ, τ)] �
ξ(ϖ, 0)

Z
2

−
1
Z
] iA −

1
2
Iϖξ(ϖ, τ) + Θd(ϖ)ξ(ϖ, τ)

+ HdQ(ξ(ϖ, τ)).

(25)

Taking the inverse A-T on equation (25), we get as

ξ(ϖ, τ) � A
− 1 ξ(ϖ, 0)

Z
2 

− A
− 1 1

Z
] iA −

1
2
Iϖξ(ϖ, τ) + Θd(ϖ)ξ(ϖ, τ)

+ HdQ(ξ(ϖ, τ)).

(26)

So, according to the ATDM, we can acquire the solution
ξ(ϖ, τ) to equation (26) as follows:

ξ(ϖ, τ) � 
∞

α�0
ξα(ϖ, τ). (27)

Q(ξ(ϖ, τ)) � 
∞

α�0
Wα. (28)

Wα �
1
α!

dα

dƛα
ℵ 

α

κ�0
ƛκξκ(ϖ, τ)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

ƛ�0

. (29)

)e few terms of the decomposed nonlinear terms which
are calculated from equation (29) are given as

W0 � ξ20(ϖ, τ)ξ(ϖ, τ),

W1 � ξ20(ϖ, τ)ξ1(ϖ, τ) + 2ξ0(ϖ, τ)ξ1(ϖ, τ)ξ0(ϖ, τ),

W2 � ξ21(ϖ, τ)ξ0(ϖ, τ) + 2ξ0(ϖ, τ)ξ2(ϖ, τ)ξ0(ϖ, τ)

+ 2ξ0(ϖ, τ)ξ1(ϖ, τ)ξ1(ϖ, τ) + ξ20(ϖ, τ)ξ0(ϖ, τ).

(30)

Now, by replacing equations (27) and (29) with equation
(26), we attain as follows:



∞

α�0
ξα(ϖ, τ) � A

− 1 ξ(ϖ, 0)

Z
2  − A

− 1 1
Z
] iA −

1
2
Iϖ

∞

α�0
ξα(ϖ, τ) + Θd(ϖ) 

∞

α�0
ξα(ϖ, τ) + Hd 

∞

α�0
Wα

⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭. (31)

Equating the like terms on both sides of equation (20),
we finally obtain the general solution of equation (22) given
recursively as

ξ0(ϖ, τ) � ξ(ϖ, 0),

ξ1(ϖ, τ) � − A
− 1 1

Z
] iA −

1
2
Iϖξ0(ϖ, τ) + Θd(ϖ)ξ0(ϖ, τ) + HdW0  ,

ξ2(ϖ, τ) � − A
− 1 1

Z
] iA −

1
2
Iϖξ1(ϖ, τ) + Θd(ϖ)ξ1(ϖ, τ) + HdW1  ,

ξ3(ϖ, τ) � − A
− 1 1

Z
] iA −

1
2
Iϖξ2(ϖ, τ) + Θd(ϖ)ξ2(ϖ, τ) + HdW2  ,

ξα+1(ϖ, τ) � − A
− 1 1

Z
] iA −

1
2
Iϖξα(ϖ, τ) + Θd(ϖ)ξα(ϖ, τ) + HdWα  ,

ξ(ϖ, τ) � ξ0(ϖ, τ) + ξ1(ϖ, τ) + ξ2(ϖ, τ) + · · · ,

(32)
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where α � 0, 1, 2, . . .

)e following theorem describes the criteria for the
expansion solution to converge.

Theorem 1. Let M be a Banach space with an appropriate
norm . and a series of partial sums 

∞
α�0 ξα(ϖ, τ) defined over

it. Assume that the initial guess w0 � ξ0(ϖ, τ) remains inside
the ball Br(ξ) of the solution ξ(ϖ, τ). 6en, the series solution

∞
α�0 ξα(ϖ, τ) converges if ∃σ > 0 such that

ξα+1(ϖ, τ)≤ σξα(ϖ, τ).

Proof. )e following is the description of a sequence of
partial sums:

Θ0 � ξ0(ϖ, τ),

Θ1 � ξ0(ϖ, τ) + ξ1(ϖ, τ),

Θ2 � ξ0(ϖ, τ) + ξ1(ϖ, τ) + ξ2(ϖ, τ),

Θ3 � ξ0(ϖ, τ) + ξ1(ϖ, τ) + ξ2(ϖ, τ) + ξ3(ϖ, τ),

⋮ ⋮ ⋮

Θα � ξ0(ϖ, τ) + ξ1(ϖ, τ) + ξ2(ϖ, τ)

+ ξ3(ϖ, τ) + · · · + ξα(ϖ, τ).

(33)

)en, we would have to demonstrate that Θα 
∞
α�0 is a

Cauchy sequence in M. To demonstrate this, consider the
relationship that

Θα+1 − Θα � ξα+1(ϖ, τ)≤ σξα(ϖ, τ)≤ σ2ξα− 1(ϖ, τ)

≤ σ3ξα− 2(ϖ, τ)≤ · · · σα+1ξ0(ϖ, τ),
(34)

where α � 0, 1, 2, 3, . . .

For every ℓ, α ∈ Ν, α≥ ℓ, we have

Θα − Θℓ � Θα − Θα− 1(  + Θα− 1 − Θα− 2( 

+ Θα− 2 − Θα− 3(  + Θα− 3 − Θα− 4(  + σ4

ξα− 3(ϖ, τ)≤ · · · + Θℓ+1 − Θℓ( .

(35)

We get the following from the triangle inequality:

Θα − Θα− 1(  + Θα− 1 − Θα− 2(  + Θα− 2 − Θα− 3( 

+ Θα− 3 − Θα− 4(  + · · · + Θℓ+1 − Θℓ( 

≤ Θα − Θα− 1(  + Θα− 1 − Θα− 2(  + Θα− 2 − Θα− 3( 

+ Θα− 3 − Θα− 4(  + · · · + Θℓ+1 − Θℓ( ,

Θα − Θα− 1(  + Θα− 1 − Θα− 2( 

+ Θα− 2 − Θα− 3(  + Θα− 3 − Θα− 4(  + · · · +

Θℓ+1 − Θℓ( ≤ σαξ0(ϖ, τ) + σα− 1ξ0(ϖ, τ) + σα− 2ξ0(ϖ, τ) + · · ·

+ σℓξ0(ϖ, τ) �
1 − σα− ℓ

1 − σ
 σℓ+1ξ0(ϖ, τ).

(36)

As a result, we have the following inequality:

Θα − Θℓ ≤
1 − σα− ℓ

1 − σ
 σα+1ξ0(ϖ, τ). (37)

Demonstrating that the sequence is bounded and we can
attain for 0< σ < 1, that,

lim
ℓ, α⟶∞
Θα − Θℓ � 0. (38)

As a consequence, the sequence of partial sums of the
ATDM is Cauchy and so convergent. □

4. Approximate and Exact Solutions to
SDEs with Zero and Nonzero
Trapping Potential

In this part, we determined the exact solution to linear and
nonlinear time-fractional SDEs with zero and nonzero
potential by using the ATDM.

Example 1. We consider the following linear SDE with zero
trapping potential:

iD
]
τξ(ϖ, τ) + Dϖϖξ(ϖ, τ) � 0,

0< ]≤ 1, τ ≥ 0,ϖ ∈ R,
(39)

with the initial condition:

ξ(ϖ, 0) � be
iaϖ

. (40)

By using the A-Ton both sides of equation (39), we get as
follows:

A iD
]
τξ(ϖ, τ) + Dϖϖξ(ϖ, τ)  � 0. (41)

Using the third part of Lemma 1, equation (41) is
transformed as follows:

A[ξ(ϖ, τ)] �
ξ(ϖ, 0)

Z
2 −

1
Z
]DϖϖA[ξϖ, τ]. (42)

By using the inverse A-T, equation (42) becomes as

ξ(ϖ, τ) � A
− 1 ξ(ϖ, 0)

Z
2  − A

− 1 1
Z
]DϖϖA[ξ(ϖ, τ)] . (43)

By using the procedure of ATDM, as explained in
Section 3, the expansion solution of equation (39) can be
represented by the expansion form as follows:

ξ(ϖ, τ) � 
∞

α�0
ξα(ϖ, τ). (44)

We get as by substituting equation (44) into equation
(43).



∞

α�0
ξα(ϖ, τ) � A

− 1 ξ(ϖ, 0)

Z
2  − A

− 1 1
Z
]DϖϖA 

∞

α�0
ξα(ϖ, τ)⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭.

(45)

Using the approach outlined in Section 3, we can get the
following from equation (45):
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ξ0(ϖ, τ) � be
iaϖ

, (46)

ξα+1(ϖ, τ) � − A
− 1 1

ϕ]
DϖϖQ ξα(ϖ, τ)  , α � 0, 1, 2, . . . .

(47)

By repeating the iteration process in equation (47), we
obtain the following results:

ξ1(ϖ, τ) � −
iτ]a2

be
iaϖ

Γ(] + 1)
,

ξ2(ϖ, τ) � −
τ2]a4

be
iaϖ

Γ(2] + 1)
,

ξ3(ϖ, τ) �
iτ3]a6

be
iaϖ

Γ(3] + 1)
,

ξ4(ϖ, τ) �
τ4]a8

be
iaϖ

Γ(4] + 1)
,

ξ5(ϖ, τ) � −
iτ5]a10

be
iaϖ

Γ(5] + 1)
.

(48)

As a result, we can find the series solution as

ξ(ϖ, τ) � be
iaϖ

−
iτ]a2

be
iaϖ

Γ(] + 1)
−
τ2]a4

be
iaϖ

Γ(2] + 1)
+

iτ3]a6
be

iaϖ

Γ(3] + 1)

+
τ4]a8

be
iaϖ

Γ(4] + 1)
−

iτ5]a10
be

iaϖ

Γ(5] + 1)
+ · · · .

(49)

When we use ] � 1 in equation (49), we get the following
precise solution to equation (39).

ξ(ϖ, τ) � be
ia(ϖ− aτ)

. (50)

Example 2. Consider the following one-dimensional non-
linear SDE with zero trapping potential:

iD
]
τξ(ϖ, τ) + Dϖϖξ(ϖ, τ) + 2|ξ(ϖ, τ)|

2ξ(ϖ, τ) � 0,

0< ]≤ 1, τ ≥ 0,ϖ ∈ R,
(51)

with the initial condition:

ξ(ϖ, 0) � e
iϖ

. (52)

By using A-T on both sides of equation (52), we get as

A[ξ(ϖ, τ)] �
ξ(ϖ, 0)

Z
2− ] +

1
Z
] A iDϖϖξ(ϖ, τ)  +

1
Z
] A 2i|ξ(ϖ, τ)|

2ξ(ϖ, τ) .

(53)

By following the process stated in Section 3, we achieve
the following result:

ξ(ϖ, τ) � A
− 1 e

iϖ

Z
2  + A

− 1 1
Z
] A iDϖϖξ(ϖ, τ)  

+ A
− 1 1

Z
] A 2i|ξ(ϖ, τ)|

2ξ(ϖ, τ)  .

(54)

ξ(ϖ, τ) � 
∞

α�0
ξα(ϖ, τ),

|ξ(ϖ, τ)|
2ξ(ϖ, τ) � ℵ(ξ(ϖ, τ)),

ℵ(ξ(ϖ, τ)) � 
∞

α�0
Qα ξ0, ξ1, ξ2, . . .( ,

W0 � ξ20(ϖ, τ)ξ(ϖ, τ),

W1 � ξ20(ϖ, τ)ξ1(ϖ, τ)

+ 2ξ0(ϖ, τ)ξ1(ϖ, τ)ξ0(ϖ, τ),

W2 � ξ21(ϖ, τ)ξ0(ϖ, τ)

+ 2ξ0(ϖ, τ)ξ2(ϖ, τ)ξ0(ϖ, τ)

+ 2ξ0(ϖ, τ)ξ1(ϖ, τ)ξ1(ϖ, τ)

+ ξ20(ϖ, τ)ξ0(ϖ, τ).

(55)

By using equation (55) in equation (54), we obtain as
follows:



∞

α�0
ξα(ϖ, τ) � A

− 1 e
iϖ

Z
2  + A

− 1 1
Z
] A iDϖϖ

∞

α�0
ξα(ϖ, τ)⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭

+ A
− 1 1

Z
] A 2i 

∞

α�0
Qα

⎡⎣ ⎤⎦
⎧⎨

⎩

⎫⎬

⎭.

(56)

By following the process stated in Section 3, we achieve
the following result:

ξ0(ϖ, τ) � e
iϖ

,

ξ1(ϖ, τ) �
e

iϖ
iτ]( 

1

Γ(] + 1)
,

ξ2(ϖ, τ) �
e

iϖ
iτ]( 

2

Γ(2] + 1)
,

ξ3(ϖ, τ) �
e

iϖ
iτ]( 

3

Γ(3] + 1)
,

ξ4(ϖ, τ) �
e

iϖ
iτ]( 

4

Γ(4] + 1)
,

ξ5(ϖ, τ) �
e

iϖ
iτ]( 

5

Γ(5] + 1)
.

(57)

As a result, we get the following solution in series form
for equation (51).
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ξ(ϖ, τ) � e
iϖ

+
e

iϖ
iτ]( 

1

Γ(] + 1)
+

e
iϖ

iτ]( 
2

Γ(2] + 1)
+

e
iϖ

iτ]( 
3

Γ(3] + 1)

+
e

iϖ 9iτ]( 
4

Γ(4] + 1)
+

e
iϖ

iτ]( 
5

Γ(5] + 1)
+ · · · .

(58)

When we use ] � 1 in equation (58), we get the following
precise solution to equation (51).

ξ(ϖ, τ) � e
i(ϖ+τ)

. (59)

Example 3. Consider the following one-dimensional non-
linear SDE with trapping potential:

D
]
τξ(ϖ, τ) � − i −

1
2
Dϖξ(ϖ, τ) + cos2ϖξ(ϖ, τ) +|ξ(ϖ, τ)|

2ξ(ϖ, τ) ,

0< ]≤ 1, τ ≥ 0,ϖ ∈ R.

(60)

with the initial condition:

ξ(ϖ, 0) � sinϖ. (61)

By using the A-T on both sides of equation (69), we
obtain as follows:

A D
]
τξ(ϖ, τ)  � A − i −

1
2
Dϖξ(ϖ, τ) + cos2ϖξ(ϖ, τ)

+|ξ(ϖ, τ)|
2ξ(ϖ, τ).

(62)

Using the third part of Lemma 1, equation (62) is
transformed as follows:

A[ξ(ϖ, τ)] �
ξ(ϖ, 0)

Z
2

+
1
Z
] A − i −

1
2
Dϖξ(ϖ, τ) + cos2ϖξ(ϖ, τ)

+|ξ(ϖ, τ)|
2ξ(ϖ, τ).

(63)

On both sides of equation (63), consider the inverse of
the A-T.

ξ(ϖ, τ) � A
− 1 ξ(ϖ, 0)

Z
2 

+ A
− 1 1

Z
] A − i −

1
2
Dϖξ(ϖ, τ) + cos2ϖξ(ϖ, τ)

+|ξ(ϖ, τ)|
2ξ(ϖ, τ).

(64)

By following the process stated in Section 3, we achieve
the following result:

ξ(ϖ, τ) � 
∞

α�0
ξα(ϖ, τ),

Q(ξ(ϖ, τ)) � |ξ(ϖ, τ)|
2ξ(ϖ, τ) � 

∞

α�0
Wα.

(65)

Using equation (65) in equation (64), we get as follows:



∞

α�0
ξα(ϖ, τ) � A

− 1 ξ(ϖ, 0)

Z
2 

+ A
− 1 1

Z
] A − i −

1
2
Dϖ

∞

α�0
ξα(ϖ, τ)⎛⎝⎡⎢⎢⎣

⎧⎨

⎩

+ cos2ϖ
∞

α�0
ξα(ϖ, τ) + 

∞

α�0
Wα

⎞⎠⎤⎥⎥⎦
⎫⎬

⎭.

(66)

By equating the like terms on both sides of equation (66),
we get as follows:

ξ0(ϖ, τ) � A
− 1 ξ(ϖ, 0)

Z
2 ,

ξα+1(ϖ, τ) � A
− 1 1

Z
] A − i −

1
2
Dϖξα(ϖ, τ) + cos2ϖξα(ϖ, τ) + Wα   .

(67)

)e following results are obtained from equation (67)
using the iteration procedure stated in Section 3.

ξ0(ϖ, τ) � sinϖ,

ξ1(ϖ, τ) � −
3iτ]

2Γ(] + 1)
sinϖ,

ξ2(ϖ, τ) � −
9τ2]

4Γ(2] + 1)
sinϖ,

ξ3(ϖ, τ) �
27iτ3]

8Γ(3] + 1)
sinϖ,

ξ4(ϖ, τ) �
81τ4]

16Γ(4] + 1)
sinϖ,

ξ5(ϖ, τ) � −
243iτ5]

32Γ(5] + 1)
sinϖ.

(68)

As a result, we get the following solution in series form
for equation (60).

ξ(ϖ, τ) � sinϖ −
3iτ]

2Γ(] + 1)
sinϖ −

9τ2]

4Γ(2] + 1)
sinϖ

+
27iτ3]

8Γ(3] + 1)
sinϖ +

81τ4]

16Γ(4] + 1)
sinϖ

−
243iτ5]

32Γ(5] + 1)
sinϖ + · · · .

(69)
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When we use ] � 1 in equation (69), we get the following
precise solution to equation (60).

ξ(ϖ, τ) � sinϖe− (3i/2)τ
. (70)

Example 4. Consider the nonlinear three-dimensional SDE
with trapping potential:

D
]
τξ(ϖ, β, μ, τ) � − i −

1
2

z
2

zϖ2
+

z
2

zβ2
+

z
2

zμ2
 ξ(ϖ, β, μ, τ) + K(ϖ, β, μ)ξ(ϖ, β, μ, τ) + |ξ(ϖ, β, μ, τ)|

2ξ(ϖ, β, μ, τ) , (71)

where 0< ]≤ 1, τ ≥ 0,ϖ, β, μ ∈ R × R × R, and
K(ϖ, β, μ) � 1 − sin2ϖ sin2β sin2μ, with the initial condition:

ξ(ϖ, β, μ, 0) � sinϖ sin β sin μ. (72)

Using the A-T on equation (71), we get:

A D
]
τξ(ϖ, β, μ, τ)  � A − i −

1
2

z
2

zϖ2
+

z
2

zβ2
+

z
2

zμ2
 ξ(ϖ, τ) + K(ϖ, β, μ)ξ(ϖ, β, μ, τ) + |ξ(ϖ, β, μ, τ)|

2ξ(ϖ, β, μ, τ)  . (73)

Using the third part of Lemma 1, equation (73) is
transformed as follows:

A[ξ(ϖ, β, μ, τ)] �
ξ(ϖ, β, μ, 0)

Z
2 +

1
Z
] A − i −

1
2

z
2

zϖ2
+

z
2

zβ2
+

z
2

zμ2
 ξ(ϖ, β, μ, τ) + K(ϖ, β, μ)ξ(ϖ, β, μ, τ) +|ξ(ϖ, β, μ, τ)|

2ξ(ϖ, β, μ, τ)  .

(74)

On both sides of equation (74), consider the inverse of
the A-T.

ξ(ϖ, β, μ, τ) � A
− 1 ξ(ϖ, β, μ, 0)

Z
2 

+ A
− 1 1

Z
] A − i −

z
2

zϖ2
+

z
2

zβ2
+

z
2

zμ2
 

1
2
ξ(ϖ, β, μ, τ) + K(ϖ, β, μ)ξ(ϖ, β, μ, τ) +|ξ(ϖ, β, μ, τ)|

2ξ(ϖ, β, μ, τ)   .

(75)

By following the process stated in Section 3, we achieve
the following result:

ξ(ϖ, β, μ, τ) � 
∞

α�0
ξα(ϖ, β, μ, τ),

Q(ξ(ϖ, β, μ, τ)) � |ξ(ϖ, β, μ, τ)|
2ξ(ϖ, β, μ, τ) � 

∞

α�0
Wα.

(76)

Using equation (76) in equation (75), we get as follows:



∞

α�0
ξα(ϖ, β, μ, τ) � A

− 1 ξ(ϖ, β, μ, 0)

Z
2 

+ A
− 1 1

Z
] A − i −

1
2

z
2

zϖ2
+

z
2

zβ2
+

z
2

zμ2
  

∞

α�0
ξα(ϖ, β, μ, τ) + K(ϖ, β, μ) 

∞

α�0
ξα(ϖ, β, μ, τ) + 

∞

α�0
Wα

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎨

⎩

⎫⎬

⎭.

(77)
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By equating the like terms on both sides of equation (77),
we get as follows:

ξ0(ϖ, β, μ, τ) � A
− 1 ξ(ϖ, β, μ, 0)

Z
2 ,

ξα+1(ϖ, β, μ, τ) � A
− 1 1

Z
] A − i −

1
2

z
2

zϖ2
+

z
2

zβ2
+

z
2

zμ2
 ξα(ϖ, β, μ, τ) + K(ϖ, β, μ)ξα(ϖ, β, μ, τ) + Wα   .

(78)

)e following results are obtained from equation (78)
using the iteration procedure stated in Section 3.

ξ0(ϖ, β, μ, τ) � sinϖ sin β sin μ,

ξ1(ϖ, β, μ, τ) � −
5iτ]

2Γ(] + 1)
sinϖ sin β sin μ,

ξ2(ϖ, β, μ, τ) �
25i

2τ2]

4Γ(2] + 1)
sinϖ sin β sin μ,

ξ3(ϖ, β, μ, τ) � −
125i

3τ3]

8Γ(3] + 1)
sinϖ sin β sin μ,

ξ4(ϖ, β, μ, τ) �
625i

4τ4]

16Γ(4] + 1)
sinϖ sin β sin μ,

ξ5(ϖ, β, μ, τ) � −
3125i

5τ5]

32Γ(5] + 1)
sinϖ sin β sin μ.

(79)

As a result, we get the following solution in series form
for equation (78).

ξ(ϖ, β, μ, τ) � sinϖ sin β sin μ −
5iτ]

2Γ(] + 1)
sinϖ sin β sin μ

+
25i

2τ2]

4Γ(2] + 1)
sinϖ sin β sin μ

−
125i

3τ3]

8Γ(3] + 1)
sinϖ sin β sin μ

+
625i

4τ4]

16Γ(4] + 1)
sinϖ sin β sin μ

−
3125i

5τ5]

32Γ(5] + 1)
sinϖ sin β sin μ + · · · .

(80)

When we use ] � 1 in equation (80), we get the following
precise solution to equation (78).

ξ(ϖ, β, μ, τ) � sinϖ sin β sin μe
− (i5/2)τ

. (81)

5. Numerical Simulation and Discussion

In this section, we discuss and evaluate the graphic and
numerical results of the approximate and exact solutions to
the models discussed in Examples 1–4. Figures 1–8 represent
the 2D graphs of the 5th approximate solution obtained by
ATDM at ] � 0.6, 0.7, 0.8, 0.9, 1.0 and the exact solution.
)ese figures show that the approximate solutions obtained
by the ATDM approach the exact solutions. )e approxi-
mate result corresponds with the precise result at ] � 1, and
this proves the effectiveness and precision of the suggested
method. Figures 9–16 demonstrate the 2D graph of absolute
error over the 5th term, with approximate and exact solu-
tions to Examples 1–4. As for the figure, approximate and
exact solutions are in very good agreement. Tables 1–4 show
comparisons of the absolute error of the 5th approximate
solution obtained by ATDM of Examples 1–4 at ] � 1 with
the absolute error of approximate solutions obtained by
FRDTM [42], HPM [35], and HAM [43]. )e results ob-
tained from the suggested method are extremely similar to
those obtained by FRDTM, HPM, and HAM. )e conver-
gence of the approximate solution to the exact solution for
Examples 1–4 has been shown numerically as in Tables 5–12.
)e results show that the proposed method is a useful and
efficient algorithm for solving certain classes of fractional-
order differential equations with fewer calculations and it-
eration steps. )e 3D graphs of these solutions are also
sketched to show the behavior of the exact solutions in
Figures 17–24.

)e following 2D graphs show the real and imaginary
parts of approximate and exact solutions to Example 1:

Figures 1 and 2 show the behavior of real imaginary in
the interval τ ∈ [0, 1] between the 5th step iteration ap-
proximate and exact solutions of equation (39) at several
values of ] when ϖ � 0.05, a � 1 and b � 1. )e approxi-
mate result corresponds with the precise result at ] � 1 and
this proves the effectiveness and precision of the suggested
method.

)e graphs of absolute error for the real and imaginary
parts of the 5th approximation and exact solutions to Ex-
ample 1 are as follows:

Figures 9 and 10 demonstrate the 2D graph of real and
imaginary parts of absolute error in the intervals τ ∈ [0, 1]

when ϖ � 0.05, a � 1, and b � 1 are over the 5th terms,
approximate and exact solutions of equation (39) at ] � 1. As
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for the figures, approximate and exact solutions are in very
good agreement.

)e accuracy and capability of the numerical method can
be determined using error functions. To demonstrate the
accuracy and capability of the ATDM, we used recurrence
and absolute error functions.

Table 1 shows comparisons of the real and imaginary
parts of the absolute error of the 5th approximate solution
obtained by ATDM in Example 1 at ] � 1 with the absolute
error of approximate solutions obtained by FRDTM [42].
)e results obtained from the suggested method are ex-
tremely similar to those obtained by FRDTM.

)e recurrence error |ξ5(ϖ, τ) − ξ4(ϖ, τ)| between the
5th and 4th approximate solutions of the real part with
different values of ], when ϖ � 0.05, a � 1, and b � 1 in
Example 1 are presented as follows:

)e recurrence error |ξ5(ϖ, τ) − ξ4(ϖ, τ)| between the
5th and 4th approximate solutions of the imaginary part

with different values of ], when ϖ � 0.05, a � 1, and b � 1 in
Example 1 are presented as follows:

)e convergence of the ATDM of real and imaginary of
the approximate solution to the exact solution for equation
(39) has been shown numerically as in Tables 5 and 6. )e
results show that the current technique is a useful and ef-
ficient algorithm for solving fractional-order differential
equations with fewer calculations and iteration steps.

)e following are 3D graphs for the real and imaginary
parts of the exact solution to Example 1:

)e real and imaginary parts of the exact solution
equation (39) at ] � 1 are shown in Figures 17 and 18 re-
spectively in the intervals τ ∈ [0, 2],ϖ ∈ [− 2π, 2π]with a � 1
and b � 1.

)e following 2D graphs show the real and imaginary
parts of approximate and exact solutions to Example 2:

Figures 3 and 4 show the behavior of real and imaginary
parts in the interval τ ∈ [0, 1] between the 5th step iteration
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Figure 1: )e approximate and exact solutions to the real part of
Example 1.
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Figure 2: )e approximate and exact solutions to the imaginary
part of Example 1.
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Figure 3: )e approximate and exact solutions to the real part of
Example 2.
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Figure 4: )e approximate and exact solutions to the imaginary
part of Example 2.
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approximate and exact solutions of equation (51) at several
values of ] when ϖ � 0.05. )e approximate result corre-
sponds with the precise result at ] � 1, and this proves the
effectiveness and precision of the suggested method.

)e graphs of absolute error for the real and imaginary
parts of the 5th approximation and exact solutions to Ex-
ample 2 are as follows:
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Figure 5: )e approximate and exact solutions to the real part of
Example 3.
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Figure 6: )e approximate and exact solutions to the imaginary
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Figure 7: )e approximate and exact solutions to the real part of
Example 4.
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Figure 8: )e approximate and exact solutions to the imaginary
part of Example 4.
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Figure 9: )e absolute error for the real part of Example 1.
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Figure 10: )e absolute error for the imaginary part of Example 1.
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Figures 11 and 12 demonstrate the 2D graph of real and
imaginary parts of absolute error in the intervals τ ∈ [0, 1]

when ϖ � 0.05 are over the 5th terms approximate and exact
solutions of equation (51) at ] � 1. As for the figures, ap-
proximate and precise solutions are in very good agreement.

Table 2 shows comparisons of the real and imaginary
parts of absolute error of the 5th approximate solution
obtained by ATDM of Example 2 at ] � 1 with the absolute
error of approximate solutions obtained by FRDTM [42].
)e results obtained from the suggested method are ex-
tremely similar to those obtained by FRDTM.

)e recurrence error |ξ5(ϖ, τ) − ξ4(ϖ, τ)| between the
5th and 4th approximate solutions of the real part with
different values of ], when ϖ � 0.05 in Example 2 are
presented as follows:

)e recurrence error |ξ5(ϖ, τ) − ξ4(ϖ, τ)| between the
5th and 4th approximate solutions of the imaginary part
with different values of ], when ϖ � 0.05 in Example 2 are
presented as follows:

)e convergence of the ATDM of real and imaginary of
the approximate solution to the exact solution for equation
(51) has been shown numerically as in Tables 7 and 8. )e
results show that the current technique is a useful and
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Figure 11: )e absolute error for the real part of Example 2.
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Figure 12: )e absolute error for the imaginary part of Example 2.
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Figure 13: )e absolute error for the real part of Example 3.
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Figure 14: )e absolute error for the imaginary part of Example 3.
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Figure 15: )e absolute error for the real part of Example 4.
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Figure 16: )e absolute error for the imaginary part of Example 4.
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Table 2: )e absolute error in ATDM and FRDTM for Example 2 at ]� 2.

τ Real part [ATDM] Abs. error Img. part [ATDM] Abs. error Real part [FRDTM] Abs. error Img. part [FRTDM] Abs. error
0.2 0 2.775557561562891× 10− 17 0 2.775557561562891× 10− 17

0.4 3.508304757815494×10− 14 2.886579864025407×10− 15 3.508304757815494×10− 14 2.886579864025407×10− 15

0.6 4.519384866341625×10− 12 4.35984581770299×10− 13 4.519384866341625×10− 12 4.35984581770299×10− 13

0.8 1.423423601210061× 10− 10 1.593580822856211× 10− 11 1.423423601210061× 10− 10 1.593580822856211× 10− 11

1.0 2.065669746365017×10− 9 2.633981921462691× 10− 10 2.065669746365017×10− 9 2.633981921462691× 10− 10

Table 3: )e absolute error in ATDM and HPM for Example 3 at ]� 1.

τ Real part [ATDM] Abs. error Img. part [ATDM] Abs. error Real part [HPM] Abs. error Img. part [HPM] Abs. error
0.2 5.551115123125783×10− 17 0 5.551115123125783×10− 17 0
0.4 2.266797860528413×10− 13 1.047079090099600×10− 14 2.266797860528413×10− 13 1.047079090099600×10− 14

0.6 2.933806669824790×10− 11 2.032304879939772×10− 12 2.933806669824790×10− 11 2.032304879939772×10− 12

0.8 9.229918426778560×10− 10 8.528888012504510×10− 11 9.229918426778560×10− 10 8.528888012504510×10− 11

1.0 1.337196644298627×10− 8 1.545451835949229×10− 9 1.337196644298627×10− 8 1.5454518359492290×10− 9

Table 4: )e absolute error in ATDM and HAM for Example 4 at ]� 1.

τ Real part [ATDM] Abs. error Img. part [ATDM] Abs. error Real part [HAM] Abs. error Img. part [HAM] Abs. error
0.2 3.794707603699265×10− 16 1.463672932855431× 10− 17 3.794707603699265×10− 16 1.463672932855431× 10− 17

0.4 1.548127132131732×10− 12 1.191737680761306×10− 13 1.548127132131732×10− 12 1.191737680761306×10− 13

0.6 1.994952888051838×10− 10 2.305647122877174×10− 11 1.994952888051838×10− 10 2.305647122877174×10− 11

0.8 6.238188888683330×10− 9 9.625127946185849×10− 10 6.238188888683330×10− 9 9.625127946185849×10− 10

1.0 8.967831111224030×10− 8 1.732387384885186×10− 8 8.967831111224030×10− 8 1.732387384885186×10− 8

Table 5: )e recurrence error of the 5th approximate solution of the real part in Example 1.

τ ]� 0.7 ]� 0.8 ]� 0.9 ]� 1.0
0.1 1.9863230258832510×10− 11 2.480476538225475×10− 13 2.754480547804426×10− 15 2.753540058639898×10− 17

0.2 2.5462310564404910×10− 9 6.356503419032404×10− 11 1.41126628375623×10− 12 2.820907153618413×10− 14

0.3 4.3559264601363860×10− 8 1.630598080005387×10− 9 5.428928326273314×10− 11 1.6274165548755540×10− 12

0.4 3.2669475564040040×10− 7 1.630154704745158×10− 8 7.234972435809250×10− 10 2.8912347348589850×10− 11

0.5 1.5594317330665020×10− 6 9.724388066839424×10− 8 5.393791208135125×10− 9 2.6938949149435820×10− 10

0.6 5.5932228619978110×10− 6 4.184575219876433×10− 7 2.784754999984136×10− 8 1.6687458133498650×10− 9

0.7 1.6470066797307933×10− 5 1.437319768581204×10− 6 1.115745763781643×10− 7 7.7992900939752010×10− 9

0.8 4.1978532985731196×10− 5 4.186076646645796×10− 6 3.713180897405904×10− 7 2.9660020264616400×10− 8

0.9 9.5822726035593689×10− 5 1.0748242434163506×10− 6 1.072429735204339×10− 6 9.6359264875560130×10− 8

1.0 2.0050812724929500×10− 4 2.4986212656296714×10− 5 2.769704199336456×10− 6 2.7648088107301450×10− 7

Table 6: )e recurrence error of the 5th approximate solution of the imaginary part in Example 1.

τ ]� 0.7 ]� 0.8 ]� 0.9 ]� 1.0
0.1 5.729282854280857×10− 14 5.566602532673186×10− 15 9.391428658269753×10− 17 1.127083924407682×10− 18

0.2 6.735588070529998×10− 13 1.29434773662193×10− 13 2.86554558790132×10− 14 8.979209489138208×10− 16

0.3 2.240327760588405×10− 9 2.657335380224294×10− 11 3.928763432275554×10− 13 3.7004114535955×10− 14

0.4 2.415220588436187×10− 8 5.443488739768476×10− 10 3.891048192098205×10− 12 3.947468488238387×10− 13

0.5 1.477344106931362×10− 7 4.825025026815447×10− 9 9.526894455781187×10− 11 1.232929037808270×10− 12

0.6 6.392078149330569×10− 7 2.727397229393246×10− 8 8.267292729705227×10− 10 7.495149197961302×10− 12

0.7 2.187803743850105×10− 6 1.152748324472957×10− 7 4.630213360876863×10− 9 1.0569208657930970×10− 10

0.8 6.320873774992085×10− 6 3.96750649205628×10− 7 1.972744306783386×10− 8 6.7041439426968450×10− 10

0.9 1.606257206934282×10− 5 1.171284786793358×10− 6 6.92782295622906×10− 8 3.0494721017930660×10− 9

1.0 3.691229597776269×10− 5 3.069260602197251× 10− 6 2.103049742344222×10− 7 1.1247880551985750×10− 8
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Table 7: )e recurrence error of the the approximate solution of the real part in Example 2.

τ ]� 0.7 ]� 0.8 ]� 0.9 ]� 1.0
0.1 1.976971658223765×10− 11 2.473641816908283×10− 13 2.750095402344202×10− 15 2.751035891508731× 10− 17

0.2 2.52678613921649×10− 9 6.326039570110015×10− 11 1.407076602719864×10− 12 2.815778619333783×10− 14

0.3 4.311799014005643×10− 8 1.619798972797868×10− 9 5.405728516404219×10− 11 1.622980497927706×10− 12

0.4 3.226514454036917×10− 7 1.616576300475306×10− 8 7.19494314294836×10− 10 2.880731496644064×10− 11

0.5 1.536892238892099×10− 6 9.627636757901811× 10− 8 5.357333694498901× 10− 9 2.681667536373432×10− 10

0.6 5.501465744903981× 10− 6 4.136441235299919×10− 7 2.762589303466765×10− 8 1.659660768720673×10− 9

0.7 1.616936914302743×10− 5 1.418630876198142×10− 6 1.105549182157846×10− 7 7.749774527601226×10− 9

0.8 4.113778074791275×10− 5 4.125554726718593×10− 6 3.674935878917996×10− 7 2.944491394597482×10− 8

0.9 9.374043008389243×10− 5 1.0577612629278684×10− 5 1.060155771139881× 10− 6 9.557343069541972×10− 8

1.0 1.9582134116140592×10− 4 2.45549708950409×10− 5 2.734871750812168×10− 6 2.739767139418478×10− 7

Table 8: )e recurrence error of the 5th approximate solution of the imaginary part in Example 2.

τ ]� 0.7 ]� 0.8 ]� 0.9 ]� 1.0
0.1 1.926007539341256×10− 12 1.922465206587756×10− 14 1.815440978456445×10− 16 1.627499919875739×10− 18

0.2 3.212183277944602×10− 10 6.217126403566797×10− 12 1.123792369482977×10− 13 1.922772907632402×10− 15

0.3 6.577805665150846×10− 9 1.892287752233342×10− 10 5.028971037475495×10− 12 1.256513068851356×10− 13

0.4 5.664659911177431× 10− 8 2.169068535347471× 10− 9 7.610081091968145×10− 11 2.493643660279493×10− 12

0.5 3.026797519340784×10− 7 1.450910885437432×10− 8 6.332736016444167×10− 10 2.566730381652197×10− 11

0.6 1.194404986717049×10− 6 6.891376017773192×10− 8 3.602715131890486×10− 9 1.740543007331589×10− 10

0.7 3.821136878718447×10− 6 2.581914817482758×10− 7 1.574595275095308×10− 8 8.837938438846447×10− 10

0.8 1.0480156108100884×10− 5 8.126788825165077×10− 7 5.66988415843565×10− 8 3.628126275591497×10− 9

0.9 2.5548636246620873×10− 5 2.238467006737139×10− 6 1.759964515566688×10− 7 1.265411208128710×10− 8

1.0 5.674529965660330×10− 5 5.548386062052328×10− 6 4.85763358662764×10− 7 3.879371899481992×10− 8

Table 9: )e recurrence error of the 5th approximate solution of the real part in Example 3.

τ ]� 0.7 ]� 0.8 ]� 0.9 ]� 1.0
0.1 5.718354659335265×10− 11 7.147943324169061× 10− 13 7.942159249076738×10− 15 7.942159249076745×10− 17

0.2 7.319493963949132×10− 9 1.829873490987278×10− 10 4.066385535527289×10− 12 8.132771071054586×10− 14

0.3 1.250604163996619×10− 7 4.689765614987320×10− 9 1.563255204995775×10− 10 4.689765614987315×10− 12

0.4 9.368952273854868×10− 7 4.684476136927436×10− 8 2.081989394189970×10− 9 8.327957576759896×10− 11

0.5 4.467464577605666×10− 6 2.792165361003536×10− 7 1.551202978335300×10− 8 7.756014891676498×10− 10

0.6 1.6007733299156725×10− 5 1.200579997436754×10− 6 8.003866649578365×10− 8 4.802319989747010×10− 9

0.7 4.709310951212926×10− 5 4.120647082311310×10− 6 3.204947730686570×10− 7 2.243463411480599×10− 8

0.8 1.1992258910534259×10− 4 1.1992258910534254×10− 5 1.065978569825267×10− 6 8.527828558602135×10− 8

0.9 2.735071306660605×10− 4 3.076955219993183×10− 5 3.076955219993184×10− 6 2.769259697993865×10− 7

1.0 5.718354659335249×10− 4 7.147943324169061× 10− 5 7.942159249076736×10− 6 7.942159249076734×10− 7

Table 10: )e recurrence error of the 5th approximate solution of the imaginary part in Example 3.

τ ]� 0.7 ]� 0.8 ]� 0.9 ]� 1.0
0.1 4.044352360290241× 10− 12 2.95593353802917×10− 14 1.896521881939167×10− 16 1.083021715783192×10− 18

0.2 8.40968933466814×10− 10 1.317524278577765×10− 11 1.811985904661213×10− 13 2.218028473923979×10− 15

0.3 1.908458178643264×10− 8 4.670482042212528×10− 10 1.003363456757901× 10− 11 1.918540478858446×10− 13

0.4 1.748682320562088×10− 7 3.375983249079892×10− 8 1.731218052350544×10− 10 4.542522314596309×10− 12

0.5 9.748056090119807×10− 7 4.184376006926562×10− 8 1.576742960965881× 10− 9 5.288191971597613×10− 11

0.6 3.968383306108540×10− 7 2.081736075628826×10− 7 9.586393166413172×10− 9 3.929170900702099×10− 10

0.7 1.3004806485065536×10− 5 4.646598110881215×10− 7 4.409897082301801× 10− 8 2.141487801867844×10− 9

0.8 3.636150797676397×10− 5 2.617499157554769×10− 6 1.654050363788450×10− 7 9.303085700293241× 10− 9

0.9 9.005675804590360×10− 5 7.379530772932580×10− 6 5.308339629215292×10− 7 3.398636902083380×10− 8

1.0 2.0269777712677892×10− 4 1.8650679756148277×10− 5 1.506460878596710×10− 6 1.083021715783191× 10− 7
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efficient algorithm for solving fractional-order differential
equations with fewer calculations and iteration steps.

)e following are the 3D graphs for the real and
imaginary parts of the exact solution to Example 2:

)e real and imaginary parts of the exact solution
equation (51) at ] � 1 are shown in Figures 19 and 20 re-
spectively in the intervals τ ∈ [0, 2], and ϖ ∈ [− 2π, 2π].

)e following 2D graphs show the real and imaginary
parts of approximate and exact solutions to Example 3:

Figures 5 and 6 show the behavior of the real and
imaginary parts in the interval τ ∈ [0, 1] between the 5th
step iteration approximate and exact solutions of equation
(60) at several values of ] when ϖ � 0.05. )e approximate
result corresponds with the precise result at ] � 1 and this
proves the effectiveness and precision of the suggested
method.

)e 2D graphs of absolute error for the real and
imaginary parts of the 5th approximation and exact solu-
tions to Example 3 are as follows:

Table 11: )e recurrence error of the 5th approximate solution of the real part in Example 4.

τ ]� 0.7 ]� 0.8 ]� 0.9 ]� 1.0
0.1 1.410899077403071× 10− 10 1.763623846753835×10− 12 1.959582051948707×10− 14 1.959582051948706×10− 16

0.2 1.80595081907593×10− 8 4.514877047689823×10− 10 1.003306010597737×10− 11 2.006612021195475×10− 13

0.3 3.085636282280515×10− 7 1.15711360585519×10− 8 3.857045352850636×10− 10 1.157113605855191× 10− 11

0.4 2.311617048417188×10− 6 1.155808524208595×10− 7 5.136926774260415×10− 9 2.054770709704167×10− 10

0.5 1.1022649042211474×10− 5 6.889155651382168×10− 7 3.827308695212317×10− 8 1.913654347606158×10− 9

0.6 3.949614441319053×10− 5 2.96221083098929×10− 6 1.974807220659528×10− 7 1.184884332395716×10− 8

0.7 1.1619360589017545×10− 4 1.0166940515390365×10− 5 7.907620400859165×10− 7 5.535334280601419×10− 8

0.8 2.958869821974002×10− 4 2.958869821974005×10− 5 0.000002630106508421338 2.104085206737067×10− 7

0.9 6.748286549347473×10− 4 7.591822368015921× 10− 5 7.591822368015916×10− 6 6.832640131214322×10− 7

1.0 1.410899077403069×10− 3 1.7636238467538362×10− 4 1.959582051948707×10− 5 1.959582051948706×10− 6

Table 12: )e recurrence error of the 5th approximate solution of the imaginary part in Example 4.

τ ]� 0.7 ]� 0.8 ]� 0.9 ]� 1.0
0.1 1.663116214880405×10− 11 1.215537262646501× 10− 13 7.79886620339425×10− 16 4.453595572610698×10− 18

0.2 3.458227535246130×10− 9 5.417915641366231× 10− 11 7.451237851492589×10− 13 9.120963732706710×10− 15

0.3 7.847950572968780×10− 8 1.920592896894366×10− 9 4.126025345211919×10− 11 7.889410949012672×10− 13

0.4 7.190921222780890×10− 7 2.414883590902916×10− 8 7.119104761067955×10− 10 1.867973372458334×10− 11

0.5 4.008589930546624×10− 6 1.720696657048121× 10− 7 6.483873192722287×10− 9 2.174607213188817×10− 10

0.6 1.6318762648010684×10− 5 8.560502928660110×10− 7 3.942110997503766×10− 8 1.615751362357795×10− 9

0.7 5.347828925356589×10− 5 3.323770499911620×10− 6 1.813435301914099×10− 7 8.806213628229532×10− 9

0.8 1.495255806774449×10− 4 1.076366474421812×10− 5 6.801776242977975×10− 7 3.825609466794668×10− 8

0.9 3.703308743231145×10− 4 3.0346063333097793×10− 5 2.182892321184059×10− 6 6.832640131214322×10− 7

1.0 8.335326149365687×10− 4 7.669521633561604×10− 5 6.194859624193012×10− 6 4.453595572610698×10− 7
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Figure 17: )e real part of the exact solution to Example 1.
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Figure 18: )e imaginary part of the exact solution to Example 1.
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Figures 11 and 12 demonstrate the 2D graph of real and
imaginary parts of absolute error in the intervals τ ∈ [0, 1]

when ϖ � 0.05 are over the 5th terms approximate and exact
solutions of equation (60) at ] � 1. As for the figures, ap-
proximate and precise solutions are in very good agreement.

Table 3 shows comparisons of the real and imaginary
parts of the absolute error of the 5th approximate solution
obtained by ATDM of Example 3 at ] � 1 with the absolute
error of approximate solutions obtained by HPM [35]. )e
results obtained from the suggested method are extremely
similar to those obtained by HPM.

)e recurrence error |ξ5(ϖ, τ) − ξ4(ϖ, τ)| between the
5th and 4th approximate solution of the real part with
different values of ], when ϖ � 0.05 for Example 3 are
presented as follows:

)e recurrence error |ξ5(ϖ, τ) − ξ4(ϖ, τ)| between the
5th and 4th approximate solution of the imaginary part with

different values of ], when ϖ � 0.05 for Example 3 are
presented as follows:

)e convergence of the ATDM of real and imaginary of
the approximate solution to the exact solution for equation
(60) has been shown numerically as in Tables 9 and 10. )e
results show that the proposed technique is a useful and
efficient algorithm for solving fractional-order differential
equations with fewer calculations and iteration steps.

)e following are 3D graphs for the real and imaginary
parts of the exact solution to Example 3:

)e real and imaginary parts of the exact solution
equation (60) at ] � 1 are shown in Figures 21 and 22, re-
spectively, in the intervals τ ∈ [0, 2],ϖ ∈ [− 3π, 3π].

)e following 2D graphs show the real and imaginary
parts of approximate and exact solutions to Example 4:

Figures 7 and 8 show the behavior of the real and
imaginary parts in the interval τ ∈ [0, 1] between the 5th
step iteration approximate and exact solutions of equation
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Figure 19: )e real part of the exact solution to Example 2.
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Figure 20: )e imaginary part of the exact solution to Example 2.
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Figure 21: )e real part of the exact solution to Example 3.
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Figure 22: )e imaginary part of the exact solution to Example 3.
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(71) at several values of ] when ϖ � 0.05, β � 0.10,

and μ � 0.15. )e approximate result corresponds with the
precise result at ] � 1 and this proves the effectiveness and
precision of the recommended method.

)e 2D graphs of absolute error for the real and
imaginary parts of the 5th approximation and exact solu-
tions to Example 4 are as follows:

Figures 15 and 16 demonstrate the 2D graph of real and
imaginary parts of absolute error in the intervals τ ∈ [0, 1]

when ϖ � 0.05, β � 0.10, and μ � 0.15 are over the 5th
terms approximate and exact solutions of equation (71) at
] � 1. As for the figures, approximate and precise solutions
are in very good agreement.

Table 4 shows comparisons of the real and imaginary
parts of the absolute error of the 5th approximate solution
obtained by ATDM of Example 4 at ] � 1 with the absolute
error of the approximate solution obtained by HAM [43].

)e results obtained from the suggested method are ex-
tremely similar to those obtained by HAM.

)e recurrence error |ξ5(ϖ, β, μ, τ) − ξ4(ϖ, β, μ, τ)| be-
tween the 5th and 4th approximate solution of the real part
with different values of ], when ϖ � 0.05, β � 0.10, and μ �

0.15 for Example 4 are presented.
)e recurrence error |ξ5(ϖ, β, μ, τ) − ξ4(ϖ, β, μ, τ)| be-

tween the 5th and 4th approximate solutions of the imag-
inary part with different values of ], whenϖ � 0.05, β � 0.10,
and μ � 0.15 for Example 4 are presented.

)e convergence of the ATDM of real and imaginary of
the approximate solution to the exact solution for equation
(71) has been shown numerically as in Tables 11 and 12. )e
results show that the proposed technique is a useful and
efficient algorithm for solving fractional-order differential
equations with fewer calculations and iteration steps.

)e following are 3D graphs for the real and imaginary
parts of the exact solution to Example 4:

)e real and imaginary parts of the exact solution
equation (71) at ] � 1 are shown in Figures 23 and 24 re-
spectively in the intervals τ ∈ [0, 2],ϖ ∈ [− 3π, 3π] with β �

0.1 and μ � 0.2.

6. Conclusion

)e Aboodh transform decomposition method is effectively
used in this study to obtain analytical approximate and exact
solutions to time-fractional linear and nonlinear Schro-
dinger equations with zero and nonzero trapping potential
that are regarded in the Caputo sense. )e Aboodh trans-
form is more closely related to the Laplace and Elzaki
transforms. )e Aboodh transform is a useful method for
solving time-domain differential equations. )e recurrence
and absolute error of the four problems are analyzed to
evaluate the efficiency and consistency of the presented
method. In addition, numerical results are also compared
with other methods such as the fractional reduced differ-
ential transform method (FRDTM), the homotopy analysis
method (HAM), and the homotopy perturbation method
(HPM). )e results obtained by the proposed method show
excellent agreement with these methods, which indicates its
effectiveness and reliability. )is method has the advantage
of needing no assumptions regarding minor or important
physical parameters in the problem. As a result, it can solve
both weakly and strongly nonlinear problems, overcoming
some of the drawbacks of traditional perturbation methods.
Only a few computations are required to solve nonlinear
fractional-order differential equations. As a result, it greatly
improves homotopy analysis and homotopy perturbation
techniques. )e ATDM can construct expansion solutions
for linear and nonlinear fractional-order differential equa-
tions without the requirement for perturbation, lineariza-
tion, or discretization, unlike earlier analytic approximation
methods.

)erefore, we concluded that our proposed technique is
simple to apply, accurate, and efficient according to the
results. It is significant to consider that implementing the
ATDM to solve other kinds of ordinary and partial DEs of
noninteger order is actively attainable. For example,
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Figure 23: )e real part of the exact solution to Example 4.
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fractional kdv equations, fractional phi-4 equations, frac-
tional Schrodinger equations, and many more.
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