
Research Article
3-Group Divisible Designs with 3 Groups and Block Size 5

Zebene Girma Tefera ,1 Dinesh G. Sarvate,2 and Samuel Asefa Fufa 1

1Department of Mathematics, Addis Ababa University, Addis Ababa, Ethiopia
2College of Charleston, Charleston, S.C., USA

Correspondence should be addressed to Zebene Girma Tefera; zebene.girma@aastu.edu.et

Received 29 March 2023; Revised 9 October 2023; Accepted 19 October 2023; Published 14 November 2023

Academic Editor: Ljubisa Kocinac

Copyright © 2023 Zebene Girma Tefera et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

A 3-GDD (n, 2, k, λ1, λ2) was defned by combining the defnitions of a group divisible design and a t-design. In this paper, we
extend the defnitions to 3 groups and block size 5, and we denote such GDD by 3-GDD (n, 3, 5, μ1, μ2). Some necessary
conditions for the existence of these GDDs are developed, and several new constructions and specifc instances of nonexistence
are given.

1. Introduction

A group divisible design, GDD (n, m, k, λ1, λ2), is an ordered
triple (V , G, B), where V is a mn-set of symbols, G is
a partition of V into m sets called groups of size n each, andB
is a collection of k-subsets called blocks of V , such that each
pair of symbols from the same group occurs in exactly λ1
blocks and each pair of symbols from diferent groups occurs
in exactly λ2 blocks [1–5]. Any two symbols occurring to-
gether in the same group are called frst associates, and pairs
of symbols occurring in diferent groups are called second
associates.

Group divisible designs (GDDs) have been studied for
their usefulness in statistics, coding and for their universal
application to constructions of new designs (for instance
balanced incomplete design, orthogonal arrays, and
transversal designs etc.) [6–8]. Te existence of such GDDs
has been of interest over the years, going back to at least the
work of Bose and Shimamoto in 1952 that began classifying
such designs [9]. GDDs and t-designs have been studied by
many authors [10–13] and the references therein. Recently,
a 3-GDD (n, 2, k, λ1, λ2) was defned by extending the
defnitions of a group divisible designs and a t-design, and
some necessary conditions for its existence were given
[14, 15].

In this paper, these recent works are extended to include
more than two groups. We mainly continue to focus on the

defnition of 3-GDDs, and we explicitly consider the case
when the required designs have three groups of size n each
and block size 5. Troughout this paper, such GDD is
denoted by 3-GDD (n, 3, 5, μ1, μ2). In this work, some
necessary conditions for the existence of such GDDs are
determined, the existence of some GDDs will be proved and
their constructions are produced. Furthermore, several
specifc instances of nonexistence are proved.

Tis work is organized as follows. In Section 2, we
present some well-known defnitions and examples that will
be used to proof the main results. In Section 3, some nec-
essary conditions for the existence of such designs together
with their proofs are given. In Section 4, the proofs of some
constructions especially when μ2 � 0 are presented. Finally,
in Section 5, an infnite families of existences for the 3-GDD
when n � 3 are given.

2. Preliminaries

In this section, we present some well-known defnitions and
concepts which will be used in the subsequent sections.

Defnition 1 (see [14]). A t-(v, k, λ) design, or a t-design is
a pair (X,B), where X is a v-set of points and B is a col-
lection of k-subsets (blocks) of X with the property that
every t-subset of X is contained in exactly λ blocks. Te
parameter λ is called the index of the design.
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A necessary condition for the existence of a t-(v, k, λ)

design is known [13] to be the following equation:

λ.

v − h

t − h

⎛⎝ ⎞⎠

k − h

t − h

⎛⎝ ⎞⎠

� integer, h � 0, 1, 2, 3, . . . , t − 1. (1)

Te problem of determining the values of k, t, and X for
which this condition is also sufcient is not yet solved
completely, and less is known about confgurations with
t � 3.

Example 1. A 3-(8, 4, 1) design on the set X� 1, 2, . . . , 8{ } is
given by the blocks: 1, 2, 5, 6{ }, 3, 4, 7, 8{ }, 1, 3, 5, 7{ },
2, 4, 6, 8{ }, 1, 4, 5, 8{ }, 2, 3, 6, 7{ }, 1, 2, 3, 4{ }, 5, 6, 7, 8{ },
1, 2, 7, 8{ }, 3, 4, 5, 6{ }, 1, 3, 6, 8{ }, 2, 4, 5, 7{ }, 1, 4, 6, 7{ }

and 2, 3, 5, 8{ }.
Te concepts of a GDD and a 3-design can be merged to

defne a 3-GDD as follows.

Defnition 2. A 3′-GDD (n, m, k,Λ1,Λ2), for m> 2, is a setX
of mn symbols partitioned into m parts of size n called
groups together with a collection of k-subsets of X called
blocks, such that

(i) Every 3-subset of each group occurs in Λ1 blocks
(ii) Every mixed 3-subset, meaning either two symbols

are from one group and one symbol from the other
group or all three symbols are from diferent groups,
occurs in Λ2 blocks

Te above mentioned defnition was given in [14, 15], in
which case a 3-subset of X has only two choices, all symbols
from one of the two groups or one symbol from a group and
two symbols from the other group. Such GDD was denoted
by a 3-GDD (n, 2, 4, λ1, λ2).

(i) Te necessary conditions are sufcient for the ex-
istence of a 3-GDD (n, 2, 4, λ1, λ2) for
n ≡ 1, 7, 9(mod 12) [14]

(ii) Except possibly when n ≡ 1, 3(mod 6), n≠ 3, 7, 13,
the necessary conditions are sufcient for the exis-
tence of a 3-GDD (n, 2, 4, λ1, λ2) and λ1 > λ2 [15]

Lemma 3 (see [14]). If a 3-(2n, 4, λ2) and a 3-(2n, 4, λ1 − λ2)
exists, then a 3-GDD (n, 2, 4, λ1, λ2) exists.

Example 2. Here, X� 1, 2, 3, a, b, c{ }, G1 � 1, 2, 3{ } and
G2 � a, b, c{ }, the blocks of a 3-GDD (3, 2, 4, 3, 1) are:
1, 2, 3, a{ }, 1, 2, 3, b{ }, 1, 2, 3, c{ }, a, b, c, 1{ }, a, b, c, 2{ }

and a, b, c, 3{ }.
Following necessary conditions (Table 1, where the

values of λ1 and λ2 are given modulo 6) and the existence
results of a 3-GDD (n, 2, 4, λ1, λ2) are given in [14, 15].

One may relax condition (ii) in Defnition 2 to defne
a 3-PBIBD as follows.

Defnition 4. A 3-PBIBD (partially balanced incomplete
block design), 3-PBIBD (n, m, k, θ1, θ2, θ3) is a collection of
k-subsets of an mn set X, where X is partitioned in to m

groups of order n such that

(i) Every triple formed from symbols of only a single
group occurs in θ1 blocks

(ii) Every triple formed from symbols of only two
groups occurs in θ2 blocks

(iii) Every triple formed from symbols of all three groups
occurs in θ3 blocks

Defnition 5. A 3-GDD (n, m, k, μ1, μ2) is a pair (X, B),
where X is a set of mn elements partitioned into mn-subsets
(groups) and B is a collection of k-subsets (blocks) ofX such
that

(i) Every triple occurs in exactly μ1 blocks if it contains
elements from at most 2 groups

(ii) It occurs in exactly μ2 blocks if it has all three ele-
ments from diferent groups

Defnition 5 is the subject matter of this paper and we
explicitly consider the case in which m � 3 and k � 5. Such
GDD is denoted by 3-GDD (n, 3, 5, μ1, μ2).

Remark 6. A 3-GDD (n, 3, 5, μ1, μ2) is a 3-PBIBD (n, 3, 5, θ1,
θ2, θ3), where θ1 � θ2, denoted by μ1, while θ3 is denoted by
μ2.

When μ1 � μ2, a 3-GDD (n, 3, 5, μ1, μ2) is actually a 3-
(3n, 5, μ1). It follows that a 3-GDD (n, 3, 5, μ1, μ2) exists if
and only if a 3-(3n, 5, μ1) exists.

Te next three sections of this paper discuss our research
fndings.

3. Necessary Conditions

In this section, assuming a 3-GDD (n, 3, 5, μ1, μ2) exists, we
obtain some necessary conditions for the existence of a 3-
GDD (n, 3, 5, μ1, μ2).

Let λ1 (frst associate pair) denote the number of blocks
containing x1, x2􏼈 􏼉, where x1 and x2 are from the same
group, λ2 (second associate pair) denote the number of
blocks containing x, y􏼈 􏼉 where x and y are from diferent
groups, r and b, respectively, denote the replication number
and the number of blocks in a 3-GDD.

Theorem 7. Given a 3-GDD (n, 3, 5, μ1, μ2),

r �
(n − 1)(7n − 2)μ1 + 2n

2μ2
12

, (2)

b �
n

20
(n − 1)(7n − 2)μ1 + 2n

2μ2􏼐 􏼑, (3)

λ1 �
(3n − 2)

3
μ1, (4)

λ2 �
2(n − 1)μ1 + nμ2

3
, (5)
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Proof. Te abovementioned results can be proved as follows:

(1) We count the number of triples containing a fxed
element x in the design in two ways.
First, given an element x, it appears in n − 1

2􏼠 􏼡

triples of the type (3, 0) and in 2n(n − 1)+ 2 n

2􏼠 􏼡

triples of the type (2, 1) (there are 2n(n − 1) triples of
the type (2, 1) where x and an element from the same
group as x appear with an element of another group,

and there are 2 n

2􏼠 􏼡 triples of type (2, 1) where x

appears with two elements from another group). So,

in sum, x is in n − 1
2􏼠 􏼡 + 3n(n − 1)􏼠 􏼡 μ1 triples of

the form (3, 0) or (2, 1) in the design.
Similarly, there are n2 triples of the type (1, 1, 1)

containing x, and are repeated μ2 times.

All together, there are n − 1
2􏼠 􏼡 + 3n(n − 1)􏼠 􏼡 μ1+

n2μ2 triples containing x.
Second, in every block containing x, there are 6
triples containing x and x occurs in r blocks, which
means there are 6r triples containing x in the design.

Hence, 6r �
n − 1
2􏼠 􏼡 + 3n(n − 1)􏼠 􏼡 μ1 + n2μ2, and

r � ((n − 1)(7n − 2)μ1 + 2n2μ2)/12
(2) Again, counting in two ways, in a design with block

size 5 and b blocks, there are b
5
3􏼠 􏼡 � 10b triples. On

the other hand, there must be exactly 3 n

3􏼠 􏼡μ1 triples

of type (3, 0), 3n2(n − 1)μ1 triples of type (2, 1), and
n3μ2 triples of type (1, 1, 1) in the design.

Terefore, 10b � 3 n

3􏼠 􏼡μ1 + 3n2(n − 1)μ1 + n3μ2
gives equation (3).

(3) Let (x1, x2) be a frst associate pair and occurs in λ1
blocks. Te triples containing (x1, x2) can only be of
type (3, 0) or (2, 1). Tere are (n − 2) triples of the
type (3, 0) and 2n triples of the type (2, 1) containing
(x1, x2). Now, since these triples occur μ1 times and

since the block containing a frst associate pair, say
(x1, x2) contains three triples containing (x1, x2), we
have: λ1 � ((3n − 2)/3)μ1.

(4) Let (x, y) be a second associate pair. Tis pair occurs
in triples of the type (2, 1) and (1, 1, 1) only. It occurs
in 2(n − 1)μ1 triples of type (2, 1) and nμ2 triples of
type (1, 1, 1).

Each of the λ2 blocks containing the pair (x, y) has three
triples containing (x, y).

Hence, 3λ2 � 2(n − 1)μ1 + nμ2 and
λ2 � (2(n − 1)μ1 + nμ2)/3. □

As a consequence of Teorem 7, we have the following
corollaries.

Corollary 8. For μ1 ≡ 0(mod 3), a 3-GDD (n, 3, 5, μ1, μ2)
does not exist.

Proof. From equation (3) in Teorem 7, λ1 is not an integer
when μ1 ≡ 0(mod 3). □

Corollary 9. In a 3-GDD (n, 3, 5, μ1, μ2), λ1 ≠ 0.

Proof. As the number of groups is less than the block size,
μ1 ≠ 0. Again from (3) in Teorem 7, λ1 is a multiple of μ1,
and hence λ1 ≠ 0

From the original necessary conditions in Teorem 7,
when μ1 � μ2 � λ, we get 3-(3n, 5, λ), and from (4) and (5),
we must have λ ≡ 0(mod 3). In addition, from (2) and (3) in
Teorem 7, the following result follows. □

Corollary 10. Te necessary conditions for the existence of 3-
(3n, 5, λ) are satisfed only under the following cases:

(i) If n ≡ 2, 7, 10, 14, 15(mod 20), then λ ≡ 0(mod 3)

(ii) If n ≡ 0, 4, 5, 9, 12, 17(mod 20), then λ ≡ 0(mod 6)

(iii) If n ≡ 3, 6, 11, 18(mod 20), then λ ≡ 0(mod 15)

(iv) If n ≡ 1, 8, 13, 16(mod 20), then λ ≡ 0(mod 30)

Theorem 11. Given a 3-GDD (n, 3, 5, μ1, μ2),

(i) μ2 < 3μ1
(ii) b≥ (3n2(n − 1)μ1 + n3μ2)/15

Table 1: Congruence restrictions for 3-GDD (n, 2, 4, λ1, λ2).

λ1/λ2 0 1 2 3 4 5

0 All n n even All n n even All n n even
1 2, 4 (mod 6) 1, 2, 4, 5 (mod 6) 2, 4 (mod 6) 1, 2, 4, 5 (mod 6) 2, 4 (mod 6) 1, 2, 4, 5 (mod 6)

2 1, 2, 4, 5 (mod 6) 2, 4 (mod 6) 1, 2, 4, 5 (mod 6) 2, 4 (mod 6) 1, 2, 4, 5 (mod 6) 2, 4 (mod 6)

3 n even All n n even All n n even All n

4 1, 2, 4, 5 (mod 6) 2, 4 (mod 6) 1, 2, 4, 5 (mod 6) 2, 4 (mod 6) 1, 2, 4, 5 (mod 6) 2, 4 (mod 6)

5 2, 4 (mod 6) 1, 2, 4, 5 (mod 6) 2, 4 (mod 6) 1, 2, 4, 5 (mod 6) 2, 4 (mod 6) 1, 2, 4, 5 (mod 6)
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Proof

(i) In a 3-GDD (n, 3, 5, μ1, μ2), triples of the type (1, 1, 1)

occur in the blocks of type (3, 1, 1) and (2, 2, 1) only.
In each of these blocks which can have a (1, 1, 1)

triples, the number of (2, 1) triples are more than the
number of (1, 1, 1) triples.
Hence, 3n2(n − 1)μ1 > n3μ2, implies μ2 < 3(n − 1)μ2/
n< 3μ1.

(ii) We calculated the value of b � (n/20)((n − 1)(7n −

2) μ1 + 2n2μ2) inTeorem 7, if we do not include the
triples of the form (3, 0), in the calculations, we
obtain the following equation:

b≥
3n

2
(n − 1)μ1 + n

3μ2
15

. (6)
□

Theorem 12. For n≤ 5, a 3-GDD (n, 3, 5, μ1, 0) does
not exist.

Proof. As μ2 � 0, blocks are of confguration (5, 0), (4, 1)

and (3, 2) only.Temaximum number of (2, 1) triples occur
in (3, 2) confguration blocks and ratio is 9 :1 (in each block
of confguration (3, 2), there are nine (2, 1) and one (3, 0)

triples). Counting the number of (2, 1) triples (3n2(n − 1)

μ1) and the number of (3, 0) triples (n(n − 1)(n − 2)/2),
their ratio must be less than or equal to 9.

Tus, 3n2(n − 1)μ1/n(n − 1)(n − 2)/2≤ 9⇒6n/n − 2≤ 9,
which gives n≥ 6.

From (4) and (5) inTeorem 7, the necessary conditions
are satisfed under the following conditions. □

Lemma 13. In regards to

(i) λ1, for every n, μ1 ≡ 0(mod 3) and μ2 is free
(ii) λ2, when

(i) n ≡ 0(mod 3), μ1 ≡ 0(mod 3) and μ2 is free
(ii) n ≡ 1(mod 3), μ1 is and μ2 ≡ 0(mod 3)

(iii) n ≡ 2(mod 3), μ1 + μ2 ≡ 0(mod 3)

As the values of b and r must also be integers, Table 2 is
a table of congruence restrictions for a 3-GDDs with 3 groups
and block size 5 (all values are considered to be in terms of
(mod 60) unless otherwise stated).

where

(i) ⋏1 � 4μ1 + μ2 ≡ 0(mod 5), ⋏2 � μ1 + μ2 ≡ 0(mod
10), ⋏3 � 9μ1 + μ2 ≡ 0(mod 10), ⋏4 � 4μ1 + μ2 ≡ 0
(mod 10), ⋏5 � 5μ1 + μ2 ≡ 0(mod 10), ⋏6 � 8μ1 +

3μ2 ≡ 0(mod 10), ⋏7 � μ1 + μ2 ≡ 0(mod 2), and ⋏8 �

μ1 + μ2 ≡ 0(mod 5)

(ii) ∗1 � 5μ1 + 3μ2 ≡ 0(mod 6), ∗2 � 3μ1 + 2μ2 ≡ 0(mod
6), ∗3 � 3μ1 + μ2 ≡ 0(mod 6), and ∗4 � 2μ1 + 3μ2 ≡ 0
(mod 6).

b, r, λ1, and λ2 must be positive integers for a design to
exist. From Lemma 13 and Table 2, we have more compact
necessary conditions for diferent values of n as follows.

Lemma 14. For

(i) n ≡ 0(mod 10), μ1 and μ2 are free in regards to the
number of blocks b

(ii) n ≡ 0(mod 3) and μ1 ≡ 0(mod 3), λ1&λ2 are in-
tegers for any chosen μ2

(iii) n ≡ 1, 2(mod 3), μ1 ≡ 0(mod 3) and μ2 ≡ 0(mod 3),
λ1 &λ2 are integers

(iv) n ≡ 1, 5(mod 12) and μ2 ≡ 0(mod 6) or
n ≡ 2, 10(mod 12) and μ2 ≡ 0(mod 3), r is an in-
teger for any chosen μ1

(v) n ≡ 1, 2, 4, 7, 10(mod 12) and
n ≡ 5, 17, 41, 53(mod 60), μ2 is multiple of 3

(vi) n ≡ 6(mod 10) and n ≡ 1(mod 20), μ2 is multiple
of 5

Table 2: Congruence restrictions for 3-GDD (n, 3, 5, μ1, μ2).

r r b b

n μ1 μ2 μ1 μ2
0 0 (mod 6) All All All
1, 41 All 0 (mod 6) All 0 (mod 10)

2, 14, 22, 34, 42, 54 All 0 (mod 3) ⋏1 ⋏1
3 ∗1 ∗1 ⋏2 ⋏2
4, 32, 44, 52 ∗2 ∗2 ⋏1 ⋏1
5, 25 All 0 (mod 6) All 0 (mod 2)

6 0 (mod 3) All All 0 (mod 5)

7, 19, 47, 59 ∗3 ∗3 ⋏3 ⋏3
8 ∗2 ∗2 ⋏8 ⋏8
9, 57 ∗4 ∗4 ⋏4 ⋏4
10, 50 All 0 (mod 3) All All
11, 31 ∗3 ∗3 ⋏5 ⋏5
12, 24 0 (mod 6) All ⋏1 ⋏1
13, 53 All 0 (mod 6) ⋏6 ⋏6
15 ∗1 ∗1 ⋏7 ⋏7
16, 56 ∗2 ∗2 All 0 (mod 5)

17, 29, 37, 49 All 0 (mod 6) ⋏4 ⋏4
18 0 (mod 3) All ⋏8 ⋏8
20, 40 ∗2 ∗2 All All
21 ∗4 ∗4 All 0 (mod 10)

23, 43 ∗3 ∗3 ⋏2 ⋏2
26, 46 All 0 (mod 3) All 0 (mod 5)

27, 39 ∗1 ∗1 ⋏3 ⋏3
28 ∗2 ∗2 ⋏7 ⋏7
30 0 (mod 3) All All All
33 ∗4 ∗4 ⋏6 ⋏6
35, 55 ∗3 ∗3 ⋏7 ⋏7
36 0 (mod 6) All All 0 (mod 5)

38, 58 All 0 (mod 3) ⋏8 ⋏8
45 ∗4 ∗4 All 0 (mod 2)

48 0 (mod 6) All ⋏7 ⋏7
51 ∗1 ∗1 ⋏5 ⋏5
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4. Some Constructions When μ2 = 0

In this section, the proofs of some constructions when μ2 � 0
are given.

Theorem 1 
(a) All blocks of a design are of type (3, 2) constitute

a 3-PBIBD (n, 3, 5, n(n − 1), 3(n − 1)(n − 2)/2, 0),
where the number of blocks of such design is

6 n

3􏼠 􏼡
n

2􏼠 􏼡

(b) Tere exists a 3-PBIBD (n, 3, 5, (n − 3)(n − 4)/2, 0, 0)

Proof
(a) When all blocks are of type (3, 2), the number of

blocks of such design is 6 n

3􏼠 􏼡
n

2􏼠 􏼡, where 3 n

3􏼠 􏼡

gives the number of 3-subsets of 3 groups and 2 n

2􏼠 􏼡

gives the number of 2-subsets for each choice of a 3-
subset. Tis also tells the number of blocks con-

taining every (3, 0) triple is 2 n

2􏼠 􏼡 � n(n − 1).

Similarly, let a, b, x{ } be (2, 1) triple, where the pair
a, b{ } is from say G1 and the element x is from G2.
Tere are (n − 2)(n − 1) triples containing a, b, x{ }

(one element each from G1 and G2) or there are
n − 1
2􏼠 􏼡 triples containing a, b, x{ } (3-subsets of

G2), and hence in total there are 3(n − 1)(n − 2)/2
blocks of size fve containing a, b, x{ }.

(b) When all blocks are of type (5, 0), the number of
blocks containing every (3, 0) triple is

n − 3
2􏼠 􏼡 � (n − 3)(n − 4)/2. □

Example 3. A 3-GDD (6, 3, 5, 30, 0) exists.
In Teorem 15 (a), if n � 6, then,

θ1 � θ2 � n(n − 1) � 3(n − 1)(n − 2)/2 � 30.
Blocks are of type (4, 1) if there are four elements from

a single group and one element from other group.

Theorem 16. If all the blocks are of type (4, 1), then a 3-GDD
(n, 3, 5, μ1, 0) does not exist.

Proof. when all blocks are of type (4, 1), a fxed (3, 0) triple
occurs in 2n(n − 3) and a fxed (2, 1) triple occurs in

n − 2
2􏼠 􏼡 blocks.

Hence, 2n(n − 3) �
n − 2
2􏼠 􏼡, which is true only for

3n � −2, which is impossible.

In Teorem 12, a 3-GDD (n, 3, 5, μ1, 0) does not exist
when n≤ 5. But, when n≥ 6, a 3-GDD (n, 3, 5, μ1, 0) exists for
some μ1. □

Theorem 17. For n≥ 6, a 3-GDD (n, 3, 5,
3(n − 1)(n − 2)(n − 3)(n − 4)/4, 0) exists.

Proof. When n≥ 6, taking n − 3
2􏼠 􏼡 � (n − 3)(n − 4)/2

copies of the blocks of Teorem 15(a) together with
3(n − 1)(n − 2)/2 − n(n − 1) � (n − 1)(n − 6)/2 copies of the
blocks of Teorem 15(b) give the blocks of 3-GDD (n, 3, 5,
3(n − 1)(n − 2)(n − 3)(n − 4)/4, 0). □

Example 4. By Teorem 17, the following 3-GDDs exist:

3-GDD (6, 3, 5, 90, 0), 3-GDD (7, 3, 5, 270, 0), 3-GDD
(8, 3, 5, 630, 0)
3-GDD (9, 3, 5, 1260, 0), 3-GDD (10, 3, 5, 2268, 0), 3-
GDD (11, 3, 5, 3780, 0)
3-GDD (12, 3, 5, 5940, 0), etc.

Theorem 18. Tere exists a 3-GDD (n, 3, 5,
(n − 1)(n − 2)(n − 3)(n − 4)/4, 0) for n≥ 6 and
n ≡ 2(mod 3).

Proof. If n ≡ 2(mod 3) and n≥ 6, then both (n − 1)(n − 6)/2
and (n − 3)(n − 4)/2 are divisible by 3. Joining (n − 3)(n −

4)/6 copies of the blocks of Teorem 15(a) together with
(n − 1)(n − 6)/6 copies of the blocks of Teorem 15(b) give
the blocks of 3-GDD (n, 3, 5, (n − 1)(n − 2)(n − 3)(n − 4)/4,
0). □

Example 5. By Teorem 18 above, the following 3-GDDs
exist:

3-GDD (6, 3, 5, 30, 0), 3-GDD (7, 3, 5, 90, 0), 3-GDD (9,
3, 5, 420, 0)
3-GDD (10, 3, 5, 756, 0), 3-GDD (12, 3, 5, 1980, 0), 3-
GDD (13, 3, 5, 2970, 0)
3-GDD (15, 3, 5, 6006, 0), etc.

5. 3-GDD (3, 3, 5, μ1, μ2)

In this section, we give some families of existences along with
several examples of the 3-GDD when n � 3. In addition,
some relationship between 3′-GDD (n, m, k, Λ1, Λ2)(Def-
inition 2) and 3-PBIBD (n, m, k, θ1, θ2, θ3) (Defnition 4) is
designed. We begin with the following three examples
(Examples 1–3) of a 3-PBIBD (3, 3, 5, θ1, θ2, θ3).
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Example 6. A 3-PBIBD (3, 3, 5, 0, 3, 4) with G1 � 1, 2, 3{ },
G2 � a, b, c{ }, G3 � x, y, z􏼈 􏼉 exists and the blocks (written
vertically) of this design are as follows.

1 1 1 1 1 1 2 2 2 3 1 2 1 2 3 2 3 1 1 1 2 1 1 2 1 1 2
2 2 2 3 3 3 3 3 3 a a a a a a b b b 2 3 3 2 3 3 2 3 3
a a b a a b a a b b b b c c c c c c a b c b c a c a b
b c c b c c b c c x x y x x y x x y x x x x x x y y y
y z x z x y x y z y z z y z z y z z y y y z z z z z z

Example 7. A 3-PBIBD (3, 3, 5, 6, 3, 0) exists and the blocks
of this design are obtained by union of every Gi with every
two element set of Gj for i≠ j, where i, j � 1, 2, 3.

Example 8. 3-PBIBD (3, 3, 5, 9, 3, 3) exists. Its blocks are
obtained by union of every group with each singleton set of
both remaining groups.

Remark 19. When n � 3, from the original necessary con-
ditions in Teorem 7; r, b, λ1 and λ2, respectively, are in-
tegers if ∗1: μ1 +3 μ2 ≡ (mod 6), ∗2: μ1 + μ2 ≡ (mod 10),
μ1 ≡ 0 (mod 3), and μ1 ≡ 0 (mod 3).

Tus, the values of μ1 and μ1 satisfying the necessary
conditions are as follows: μ1 ≡ 0(mod 3)∩∗1 ∩∗2 and
μ2 ≡ ∗1 ∩∗2.

For n � 3, taking all the possible combinations, the
original necessary conditions are satisfed when

(1) μ1 ≡ 3(mod 30) and μ2 ≡ 7(mod 10)

(2) μ1 ≡ 9(mod 30) and μ2 ≡ 1(mod 10)

(3) μ1 ≡ 15(mod 30) and μ2 ≡ 5(mod 10)

(4) μ1 ≡ 21(mod 30) and μ2 ≡ 9(mod 10)

(5) μ1 ≡ 27(mod 30) and μ2 ≡ 3(mod 10)

(6) μ1 ≡ 0(mod 30) and μ2 ≡ 0(mod 10)

(7) μ1 ≡ 6(mod 30) and μ2 ≡ 4(mod 10)

(8) μ1 ≡ 12(mod 30) and μ2 ≡ 8(mod 10)

(9) μ1 ≡ 18(mod 30) and μ2 ≡ 2(mod 10)

(10) μ1 ≡ 24(mod 30) and μ2 ≡ 6(mod 10)

Example 9. 3-GDD (3, 3, 5, 9, 11) exists and its blocks are
obtained by combining the blocks of Example 3 with two
copies of the blocks of Example 6.

Example 10. 3-GDD (3, 3, 5, 6, 4) exists and its blocks are
obtained by joining blocks of Examples 6 and 7.

Hence, we have 3-GDD (3, 3, 5, 6t, 4t), for t≥ 1.

Theorem 20. Tere exists a 3-GDD (3, 3, 5, 9q + 3p,
11q − 3p) for p≤ q.

Proof. Blocks of the design are obtained by taking p copies
of 3-GDD (3, 3, 5, 12, 8) together with q − p copies of
Example 9. □

Corollary 21. Tere exists a 3-GDD (3, 3, 5, 9q + 3p + 6,
11q − 3p + 4) for p≤ q.

Proof. Taking blocks of 3-GDD (3, 3, 5, 9q + 3p, 11q − 3p)
together with blocks of Example 10 give 3-GDD (3, 3, 5,
9q + 3p + 6, 11q − 3p + 4). □

Corollary 22. For all p≥ 1, 3-(9, 5, 30p) exists.

Proof. Blocks of such design are obtained by taking p-copies
of 3-GDD (3, 3, 5, 12, 8) together with 2p-copies of Example
9. □

Corollary 23. Tere exists a 3-(9, 5, 30p + 15) for all p≥ 0.

Proof. For p≥ 0, blocks of 3-(9, 5, 30p + 15) are obtained by
joining p-copies of blocks of 3-GDD (3, 3, 5, 12, 8),
2p + 1-copies of blocks of Example 9 and blocks of Example
10.

Te next Teorem discusses the situation in which the
existence of a 3′-GDD (Defnition 2) guarantees the exis-
tence of 3-PBIBD (Defnition 4). □

Theorem 24 (Block Complementation). Let k≤mn − 3. If
a 3′-GDD (n, m, k, Λ1, Λ2) exists, then a 3-PBIBD (n, m,
nm − k, θ1, θ2, θ3) also exists, where θ1 � b − 3r + 3λ1 −Λ1,
θ2 � b − 3r + λ1 + 2λ2 − Λ2, θ3 � b − 3r + 3λ2 − Λ2. r, and
λ1&λ2, respectively, are the replication number, number of
frst associate pairs, and number of second associate pairs in
the 3′-GDD.

Proof. Suppose a 3′-GDD (n, m, k, Λ1, Λ2) exists.
Let (X, B) is a 3-GDD (n, m, k, Λ1, Λ2), where X is a mn

set of points partitioned in to m groups of size n each, and B

is a collection of k-subsets (blocks) of X.
To Show (X,{X/β: β ∈ B}) is a 3-PBIBD (n, m, mn − k, θ1,

θ2, θ3).
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Tis design has mn points partitioned in to m-parts
(groups) of size n, and every block contains mn − k≥ 3
symbols.

To show every triple of type,

(i) (3, 0) occurs in θ1 � b − 3r + 3λ1 − Λ1 blocks
(ii) (2, 1) occurs in θ2 � b − 3r + λ1 + 2λ1 − Λ2 blocks
(iii) (1, 1, 1) occurs in θ3 � b − 3r + 3λ2 − Λ2 blocks

(1) To show every triple of type (3, 0) occurs in
θ1 � b − 3r + 3λ1 − Λ1 blocks,
Let (x, y, z) is triple of type (3, 0) in (X, B).
Tere are 3r − 3λ1 + Λ1 blocks containing x or y

or z (containing at least one of them), which
means b − 3r + 3λ1 − Λ1 blocks in (X, B) do not
contain any one of the three elements.
Terefore, in (X, {X/β: β ∈ B}), and (x, y, z)

occurs in θ1 � b − 3r + 3λ1 − Λ1 blocks.
(2) To show every triple of type (2, 1) occurs in

θ2 � b − 3r + λ1 + 2λ2 − Λ2 blocks. Let (x, y, z)

is triple of type (2, 1) in (X, B). Tere are 3r −

λ1 − 2λ2 + Λ2 blocks containing x or y or z

(each block containing (x, y, z) contains one
frst and two second associate pairs).
Tus, in (X, {X/β: β ∈ B}), there are
θ2 � b − 3r + λ1 + 2λ1 − Λ2 blocks containing x,
y, and z.

(3) Similarly, if (x, y, z) is triple of type (1, 1, 1) in
(X, B), there are 3r − 3λ2 + Λ2 blocks con-
taining x or y or z (and each block containing
(x, y, z) contains three second associate pairs),
and as a result there are θ3 � b − 3r + 3λ2 − Λ2
blocks not containing the triple.

Tus, in (X, {X/β: β ∈ B}), there are
θ3 � b − 3r + 3λ2 − Λ2 blocks containing x, y and z. □

Corollary 2 
(1) If a 3′-GDD (3, 3, 4, Λ1, Λ2) exists then 3-GDD (3, 3, 5,

(9Λ2 + Λ1)/4, (11Λ2 − Λ1)/4) exists
(2) If a 3-GDD (3, 3, 5, μ1, μ2) exists, then 3′-GDD (3, 3, 4,

(11μ1 − 9μ2)/5, (μ1 + μ2)/5) exists

Proof
(a) Suppose 3′-GDD (3, 3, 4, Λ1, Λ2) exists

By Teorem 24, when m � 3 and k � 4, a 3-PBIBD
(3, 3, 5, θ1, θ2, θ3) exists, and n � 3 yields
θ1 � θ2 � (9Λ2 + Λ1)/4 and θ3 � (11Λ2 − Λ1)/4.

(b) If a 3-GDD (3, 3, 5, μ1, and μ2) exists, then taking the
complement of its blocks gives a 3-PBIBD (3, 3, 4, β1,
β2, β3), where β1 � (11μ1 − 9μ2)/5, β2 � β3 � (μ1+
μ2)/5.

As a result of Corollary 25(b), we have the following
examples of a 3′-GDDs when k � 4. □

Example 11. A 3′-GDD (3, 3, 4, 6, 2) exists and its blocks are
obtained by taking the complement of the blocks of
Example 10.

Example 12. A 3-(9, 4, 6) exists. Its blocks are obtained by
combining the complements of the blocks of Examples 9
and 10.

In general, taking the complements of the blocks of
Corollary 23, the following result follows.

Corollary 26. For all p≥ 0, a 3–(9, 4, 12p + 6) exists.

6. Conclusions

Both GDDs and t-designs have been studied and have
important applications in the feld of Combinatorics. Tese
two concepts have been combined to defne a 3-GDD. Tis
new defnition has the potential to raise many more gen-
eralizations and challenging existence problems.

In this paper, we mainly used Defnition 5 to study
a special type of combinatorial design called a 3-GDD with
three groups and block size fve, denoted by 3-GDD (n, 3, 5,
μ1, μ2). In this work, we have established some necessary
conditions for the existence of such designs (Teorems 7 and
11), proved the nonexistence of a 3-GDD (n, 3, 5, μ1, 0) when
n≤ 5 (Teorem 12), and when n≥ 6, we have shown several
existence cases for 3-GDD (n, 3, 5, μ1, 0) (Teorems 17 and
18). In addition, the relationship between 3′-GDD (n, m,
k,Λ1,Λ2) (Defnition 2) and 3-PBIBD is explained in Te-
orem 24, and when n � 3, Corollary 25 shows the existence
of a 3′-GDD (n, 3, 4, Λ1, Λ2) guarantees the existence of 3-
GDD(3, 3, 5, (9Λ2 + Λ1)/4, (11Λ2 − Λ1)/4), while the ex-
istence of 3-GDD (3, 3, 5, μ1, μ2) shows the existence of
3′-GDD (3, 3, 4, (11μ1 − 9μ2)/5, (μ1 + μ2)/5). Lastly, we have
presented many families of existences for the 3-GDD when
n � 3.

6.1. Future Work

(1) Tis research work covers more possibilities for
further studies and applications. For example, we can
consider a t-GDD instead of only t � 3.
We are also thankful to a referee for suggesting
future direction for this study as follows.

(2) To increase the importance of such designs, overall
efciency for a 3-GDD should be defned.

(3) A GDD with parameters: v � mn, b, r, k, μ1 � 0, μ2 �

1 is applicable in the construction of earlier regular
low-density parity-check (LDPC) codes free of
4−cycles [16]. Is a 3-GDD under certain conditions
also applicable in LDPC codes?

(4) Discuss the resolvability of 3-GDDs.
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