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Several cells and microorganisms, such as bacteria and somatic, have many essential features, one of which can be modeled by the
chemotaxis system, which we consider to be our main interest in this article. More precisely, we studied the hyperbolic system
derived from the chemotaxis model with fractional dissipation, which is a generalization for the hyperbolic system with classical
dissipation.Te results of this article are divided into two parts. In the frst part, we used energy methods to obtain the existence of
small solutions in the Besov spaces. Te second one deals with the optimal decay of perturbed solutions using a refned time-
weighted energy combined with the Littlewood-Paley decomposition technique. To the authors’ best knowledge, this type of
system (with fractional dissipation) has not been studied in the literature.

1. Introduction

Tis present article aims to study the hyperbolic chemotaxis
system, which is governed by the following Cauchy problem:

zt
􏽥p + ϖΛσ 􏽥p � div(􏽥pq) if (t, x) ∈ R+ × R

d
,

ztq + λΛσq � ∇ 􏽥p + λ|q|
2

􏼐 􏼑 if (t, x) ∈ R+ × R
d
,

(􏽥p, q)|t�0 � 􏽥p0, q0( 􏼁,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where 􏽥p(t, x) represents the cell density, q(t, x) � − (∇v/v)

with v is the chemical concentration,ϖ> 0 and λ≥ 0 describe
the cell and chemical difusion coefcients, respectively, and
the fractional operator Λσ � (− ∆)σ/2 denotes the fractional
Laplacian operator. In the whole spaceRd, the operatorΛσ is
defned via the following Fourier transform:

􏽤Λσf( 􏼁(ξ)≜ |ξ|
σ 􏽣(f)(ξ). (2)

Chemotaxis model (1) describes the ability of free-
moving organisms to react to chemical substances or
their concentration diferences with specifc, directed
movements. On the other hand, the fractional dissipation
has several applications in the molecular biology, we
mention as an example the anomalous difusion and
chemical attraction to organisms in semiconductor growth,
see for instance [1]. It is well known that the fractional
chemotaxis system (1) is derived from the following ca-
nonical formulation of the famous “Keller-Segel” model
[2, 3]:

ztu � − ϖΛσu − div(χu∇Ψ(v)) if (t, x) ∈ R+ × R
d
,

ztv � − λΛσv + f(u, v) if (t, x) ∈ R+ × R
d
,

(p, q)|t�0 � p0, q0( 􏼁,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)
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where χ is a constant that represents the chemosensitivity;
when the coefcient χ > 0, we say that the system is attractive
and in the case when the coefcient χ < 0, the system is
repulsive. Te function Ψ describes the mechanism of signal
detection. In the situation, when the function
Ψ(u) � ∇(Λ− σ/2u) with σ ∈ (1,2] Biler and Wu [4] in-
vestigated system (3) in the Besov spaces. In particular, they
have established the local existence and uniqueness of so-
lutions. Later, Zhai [5] studied the system in the case when
f(u, v) � u; more precisely, Zhai [5] showed that system (3)
admits a mild solutions. Tere is a large literature on the
analysis of system (3), we refer the reader to [6–10] and the
references therein. For the case, when λ � 0, then system (1)
turns out to be the hyperbolic-parabolic chemotaxis; in this
context, when the fractional Laplacian operator is
substituted by the classical Laplacian operator, Zhang and
Zhu [11] investigated the Cauchy problem for system (1) σ �

2, λ � 0 with small initial data. Lately, Jun et al. [12] explored
the global existence of system (1) σ � 2, λ � 0 with large
initial data. Recently, Hao [13] showed that system (1) σ �

2, λ � 0 admits a unique solution near to some constant
equilibrium state in the critical hybrid Besov spaces
Bd/2− 2(Rd) × Bd/2− 2,d/2− 1(Rd). In their very recent work Nie
and Yuan [14] investigated the well-posedness and the ill-
posednes in the critical Besov spaces
_B
d/2− 2
p,q (Rd) × _B

d/2− 1
p,q (Rd). For this hyperbolic-parabolic

system, there have been a large number of results con-
cerning the long-time dynamics to the solutions, blow-up
phenomenon, and the existence of global solutions (see for
instance, [15–19]). Here, we focus on the chemically dif-
fusible model corresponding to the case of λ> 0. As far as we
know, the results obtained for the Hyperbolic model (1) λ> 0
are less compared to Hyperbolic-Parabolic model (1) λ � 0.
In the situation, when the fractional Laplacian is changed by
the full Laplacian operator, Tao et al. [20] proved that system
(1) λ> 0 is globally well posed; moreover, they have obtained
the long-time behavior, and difusion limit of one-
dimensional large-amplitude classical solutions on fnite
intervals subject to the Neumann-Dirichlet boundary con-
ditions. Tereafter, in [21], Li and Zhao explored the same
issues of [20] but for the Dirichlet-Dirichlet boundary
conditions.Wang et al. [22] investigated the global existence,
asymptotic decay rates, and difusion convergence rate of
small solutions in the Sobolev framework. Recently, Mar-
tinez et al. [23] proved a set of results, such as, the global
asymptotic stability of constant ground states and the ex-
plicit decay rate of solutions. More recently, Wu and Su [24]
showed that system (1) σ � 2 admits global solution and also
they have obtained a decay rate of solutions in the Besov
spaces. For the traveling wave solution of problem (1) with
σ � 2 and its nonlinear stability, see the series of papers
[25–28].

Stimulated by the above works, especially with [24], the
main objective of this article is to investigate system (1) with

the fractional Laplacian operator Λσ , with σ ∈ (1, 2). To be
more precise, we have the following two outcomes:

Theorem 1. Assume that 1< σ < 2, d≥ 2 and υ ∈ [1,∞]. Let
(π0, q0) ∈ _B

α
2,υ. We assume that there exists a constant ϵ> 0

such that

π0
����

���� _B
α
2,υ

+ q0
����

���� _B
α
2,υ
≤ ϵ, (4)

where α � d/2 − σ + 1 and π0 � 􏽥p0 − p, for some equilibrium
state p> 0. Ten, system (1) admits a global unique solution
(􏽥p, q) satisfying for any T> 0:

􏽥p − p, q ∈ L
∞ 0, T; _B

(d/2)− σ+1
2,υ􏼒 􏼓∩ L

1 0, T; _B
(d/2)+1
2,υ􏼒 􏼓. (5)

Remark 1. From the identity _B
s

2,2 ≈ _H
s, then for υ � 2,

Teorem 1 implies the global well-posedness in the scale of
(homogeneous) Sobolev spaces.

Our existence theorem is based on the energy estimates.
Due to the presence of the terms div(􏽥pq) and ∇(|q|2), we
established with the help of Bony’s decomposition (see the
next section) a product estimates, thus we can get the a priori
estimates of our system, which leads us to get the global
small solutions in _B

(d/2)− σ+1
2,υ .

Te second result of this article deals with the time decay
rates of strong solutions for system (1), which is given as
follows:

Theorem 2. Let 1< σ < 2, d≥ 2 and υ ∈ [1,∞]. Let
(􏽥p0 − p, q0) ∈ Bα

2,1 ∩ _B
0
1,∞. Tere exists a constants ϵ> 0 such

that if

π0
����

����
Bα
2,1 ∩ _B

0
1,∞

+ q0
����

����
Bα
2,1 ∩ _B

0
1,∞
≤ ϵ, (6)

where α � (d/2) − σ + 1 and π0 � 􏽥p0 − p, then system (1) has
a unique global solution as follows:

π, q ∈ L
∞ 0, T; B

(d/2)− σ+1
2,1􏼐 􏼑, (7)

where π � 􏽥p − p. Furthermore, there exists a positive constant
M0 such that

‖(π, q)‖
B

(d/2)− σ+1
2,1
≤M0(1 + t)

− (d/2σ)
. (8)

Remark 2. Teorem 2 gives the optimal decay of solutions
for system (1) due to embedding B

(d/2)− σ+1
2,1 ⟶ L2.

Remark 3. In the sequel and for the simplicity we assume
(without loss of generality) λ � ϖ � p � 1.

Te content of this article is arranged as follows. We
introduced the notations and some useful defnitions and
results in Section 2, then we reformulated system (1) and we
established some useful a priori estimates in section 3.
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Section 4 is devoted to the proof of the existence of solutions.
Finally, we proved Teorem 2 in Section 5.

1.1. Notation. C or M stands for some positive constant and
may represent diferent values in diferent lines, the notation
X≲Y means that there exist a constant M0 > 0 such that
X≤M0Y, where M0 is a constant depending on the
initial data.

2. Preparatory

In this section, we recall some ingredients, such as the fa-
mous Littlewood–Paley operators and Bony decomposition,
also some function spaces will be introduced.

2.1. Littlewood–PaleyTeory. We start this section by giving
the defnition of the dyadic partition of unity.

Defnition 1. Tere exists (χ,ψ) ∈ D(R2) × D(R2
∗) such

that

For all ξ ∈ R2
, χ(ξ) + 􏽘

q∈N
ψ 2qξ( 􏼁 � 1.

(9)

For every f ∈ S′(Rd), we defned the operators _∆ς, and
_Sς as follows. Let ς ∈ Z

_∆ςb≜ψ 2− ς
z( 􏼁b,

_Sςb≜ χ 2− ς
z( 􏼁b,

(10)

and ∆ς as follows:

∆− 1b≜ χ(z)f, and  for all  ς≥ 0,∆ςb≜ψ 2− ς
z( 􏼁b. (11)

By the defnition of localization operators above, we have
some interesting properties as follows:

(1 )Te formal Littlewood–Paley decomposition:

b � 􏽘
ς∈Z

_∆ςb, for all b ∈ S′ Rd
􏼐 􏼑. (12)

(2 )Te quasiorthogonality:

(i) If |ς − κ|≥ 2, then _∆κ _∆ςb � 0;
(ii) if |ς − κ|≥ 5, then _∆κ( _Sςb

_∆ςb) � 0.

Te paradiferential calculus plays a key role in the
proof of the existence result, and its given by the
following defnition:

(i) Bony decomposition
For a, b ∈ S′(Rd), we have the following equation:

ab � T
.

ab + T
.

ba + R
.

(a, b), (13)

with

_Tab � 􏽘
q

_Sq− 1a
_∆qb,R

.

(a, b) � 􏽘
q

_∆q
􏽥_∆qb with  􏽥_∆q � _∆q− 1 + _∆q + _∆q+1. (14)

Te next result is the famous Bernstein inequality, for
the proof see [29].

Proposition 1. Let 1≤ θ≤ ϑ≤∞. Assume H ∈ Lθ, then for
every ι ∈ Nd, there exists constants M1, M2 such that

supp 􏽢H ⊂ |ξ|≤A02
q

􏼈 􏼉⇒ z
ι
H

����
����Lϑ ≤M12

q(|ι|+d(1/θ− 1/ϑ)
‖H‖Lθ ,

supp 􏽢H ⊂ A12
q ≤ |ξ|≤A02

q
􏼈 􏼉⇒‖H‖Lθ ≤M22

− qk sup|ι|�kz
k
‖H‖Lθ .

(15)

Now, we recall the defnitions of homogeneous and
nonhomogeneous Besov spaces.

Defnition 2. For (η, θ) ∈ R × [1, +∞] and 1≤ υ<∞. Te
homogeneous Besov space _B

η
θ,υ is defned as the set of all

tempered distributions a ∈ S′(Rd) such that:

‖a‖ _B
η
θ,υ
≜ 2qη _∆qa

�����

�����Lθ􏼒 􏼓
lυ(Z)
<∞. (16)

Besides, if υ �∞

‖a‖ _B
η
θ,∞
≜ supq∈Z 2qη _∆qa

�����

�����Lθ􏼒 􏼓<∞. (17)

Defnition 3. For (η, θ) ∈ R × [1, +∞] and 1≤ υ<∞. Te
nonhomogeneous Besov space B

η
θ,υ is defned as the set of all

tempered distributions a ∈ S′(Rd) such that

‖a‖B
η
θ,υ
≜ 2qη ∆qa

�����

�����Lθ􏼒 􏼓
lυ(Z)
<∞. (18)

Besides, if υ �∞

‖a‖B
η
θ,∞
≜ sup

q∈N∪ − 1{ }

2qη ∆qa
�����

�����Lθ􏼒 􏼓<∞. (19)

Te following spaces are introduced by Chemin and
Lerner in [30]:

Defnition 4. We assume that τ > 0 and ζ ≥ 1, the space
L
ζ
TB

η
θ,υ is the set of a ∈ S′(Rd) such that
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a
L
ζ
τ _B

η
θ,υ
≜

������

������ 2qη _∆qa
�����

�����Lθ􏼒 􏼓
lr(Z)

L
ζ
τ
<∞, (20)

and the space 􏽥L
ζ
τ

_B
η
θ,∞ is the space a ∈ S′(Rd) such that

‖a‖
􏽥L
ζ
τ

_B
η
θ,υ

≜ 2qη _∆qa
�����

�����L
ζ
τLθ􏼒 􏼓

lr(Z)
<∞. (21)

As a consequence of the last defnition, we have the
following embedding. Let ϵ> 0, then we have the following
equation:

L
ζ
τB

η
θ,υ→ 􏽥L

ζ
τ

_B
η
θ,υ,∀υ≥ ζ,

􏽥L
ζ
τ

_B
η
θ,υ→ L

ζ
τ

_B
η
θ,υ,∀ζ ≥ υ.

(22)

Te following Lemma is useful in our contribution, for
more details see [31].

Lemma 1. (i) Let ]1, ]2 > 0 satisfying max ]1, ]2􏼈 􏼉> 1. Ten

􏽚
τ′

0
1 + τ′ − τ􏼒 􏼓

− ]1
(1 + τ)

− ]2dτ ≤M]1 ,]2 1 + τ′􏼒 􏼓
− min ]1 ,]2{ }

,

τ′ > 0.

(23)

(ii) Let ]1, ]2 > 0 and b ∈ L∞((0,∞)). Ten

􏽚
τ′

0
1 + τ′ − τ􏼒 􏼓

− ]1
(1 + τ)

− ]2b(τ)dτ ≤M]1 ,]2 1 + τ′􏼒 􏼓
− min ]1 ,]2{ }

􏽚
τ′

0
|b(τ)dτ|, τ′ > 0. (24)

We fnished this section by establishing a product
estimate.

Lemma 2. Let σ ∈ (1, 2), υ ∈ [1,∞] and
u, v ∈ _B

(d/2)− σ+1
2,υ ∩ _B

(d/2)+1
2,υ . Ten uv ∈ _B

(d/2)− σ+2
2,υ and we have

the following equation:

‖uv‖ _B
(d/2)− σ+2
2,υ
≤C ‖u‖ _B

(d/2)− σ+1
2,υ

‖v‖ _B
(d/2)+1
2,υ

+‖v‖ _B
(d/2)− σ+1
2,υ

‖u‖ _B
(d/2)+1
2,υ

􏼒 􏼓.

(25)

Proof. By using the Bony decomposition (13), we split the
term uv as follows:

uv � T
.

uv + T
.

vu + R
.

(u, v). (26)

From the property (2) part (ii), we have the following
equation:

_∆κ(uv)
����

����L2 � 􏽘
|ς− κ|≤ 4

_∆κ _Sς− 1u
_∆ςv􏼐 􏼑

�����

�����L2 + 􏽘
|ς− κ|≤4

_∆κ _Sς− 1v
_∆ςu􏼐 􏼑

�����

�����L2

+ 􏽘

lς≥κ− 3
|ι|≤1

_∆κ _∆ςu _∆ς− ιv)‖L2.􏼐
�����

(27)

Multiplying equation (27) by 2κ((d/2)+2− σ) and taking the
l] norm we fnd out that

uv _B
(d/2)− σ+2
2,]
≤

������

������ 2k((d/2)− σ+2)
􏽘

|ς− κ|≤4

_∆κ _Sς− 1u
_∆ςv􏼐 􏼑

�����

�����L2⎛⎝ ⎞⎠

κ∈Z
lυ(Z)

+ 2κ((d/2)− σ+2)
􏽘

|ς− κ|≤4

_∆κ _Sς− 1v
_∆ςu􏼐 􏼑

�����

�����L2⎛⎝ ⎞⎠

κ ∈ Z

����������

����������lυ(Z)

+ 2κ((d/2)− σ+2)
􏽘

ς≥κ− 3|ι|≤1

_∆κ _∆ςu _∆ς− ιv􏼐 􏼑
�����

�����L2
⎛⎝ ⎞⎠κ ∈ Z

����������

����������lυ(Z)

≜K1 + K2 + K3.

(28)
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For the frst term K1 we used Hölder inequality and
Young inequality and obtained the following equation:

K1≲ 2κ((d/2)− σ+2)
􏽘

κ′≤κ− 2

_∆κ′u
����

����L∞
_∆κv

����
����L2

⎛⎝ ⎞⎠

κ∈Z

����������

����������
lυ(Z)

≤ 􏽘

κ′≤κ− 2

2 κ′− κ( )(σ− 1)2κ
′(1− σ) _∆κ′u

����
����L∞

2κ((d/2)+1) _∆κv
����

����L2
⎛⎝ ⎞⎠

κ∈Z

����������

����������
lυ(Z)

≤ u _B
1− σ
∞,∞

������

������v _B
(d/2)+1
2,υ

.

(29)

Similarly, we obtain the following equation:

K2 ≲ ‖u‖ _B
(d/2)+1
2,υ

‖v‖ _B
1− σ
∞,∞

. (30)

Taking advantage of Young inequality and the Hölder
inequality, it holds that

K3 ≲ 2κ((d/2)− σ+2)
􏽘

ς≥ κ− 3
|ι|≤ 1

_∆ςu
����

����L∞
_∆ς− ιv

����
����L2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
κ∈Z

�������������������

�������������������
lυ(Z)

≲ 􏽘
ς≥ κ− 3|ι|≤ 1

2(1− σ)ς _∆ςu
����

����L∞
2((d/2)+1)(ς− ι) _∆ς− ιv

����
����L22((d/2)+2− σ)(κ− ς)⎛⎝ ⎞⎠

κ∈Z

����������

����������lυ(Z)

≲ ‖u‖ _B
1− σ
∞,∞

‖v‖ _B
(d/2)+1
2,υ

.

(31)

By the Besov embedding _B
(d/2)− σ+1
2,υ → _B

− σ+1
∞,∞, we get the

desired result. □

3. Reformulation of System and the
a Priori Estimate

In this paragraph, we reformulated the original system (1),
where we will assume (without loss of generality) that the
equilibrium state p � 1 and we set π � 􏽥p − 1, the system
becomes as follows:

ztπ + Λσπ � div(πq) + divq if (t, x) ∈ R+ × R
d
,

ztq + Λσq � ∇ π +|q|
2

􏼐 􏼑 if (t, x) ∈ R+ × R
d
,

(π, q)|t�0 � π0, q0( 􏼁.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(32)

We will study the a priori estimates for linearized system
(32) with general source term as follows:

ztπ + Λσπ − divq � F if (t, x) ∈ R+ × R
d
,

ztq + Λσq − ∇π � H if (t, x) ∈ R+ × R
d
,

(π, q)|t�0 � π0, q0( 􏼁.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(33)

We note that system (33) is given by the following
equation:

ztV + LσV � G if (t, x) ∈ R+ × R
d
,

V |t�0 � V0,

⎧⎨

⎩ (34)

where V(t) � (π(t), q(t))T,G � (F, H)T and

Lσ �
Λσ − div

− ∇ ∆σ
􏼠 􏼡. (35)

Next, we prove the A priori estimate for system (32).

3.1. A Priori Estimate

Proposition 2. We assume that (π, q) is a regular solution
for the system (32), then for all t ∈[0,T),

Journal of Mathematics 5



‖π‖ _B
(d/2)− σ+1
2,υ

+‖q‖ _B
(d/2)− σ+1
2,υ

+ 􏽚
t

0
‖π(τ)‖ _B

(d/2)+1
2,υ

+‖q(τ)‖ _B
(d/2)+1
2,υ

dτ

≲ π0
����

���� _B
(d/2)− σ+1
2,υ

+ q0
����

���� _B
(d/2)− σ+1
2,υ

+‖F‖
L1

t
_B
(d/2)− σ+1
2,υ

+‖H‖
L1

t
_B
(d/2)− σ+1
2,υ

.

(36)

Proof. Let k ∈ Z and we set (πk, qk) � ( _∆kπ, _∆kq) and
(Fk, Hk) � ( _∆k(divπq), _∆k(∇(|q|2)).

We observed that (πk, qk) solves the following system:

ztπk + Λσπk � divqk + Fk

ztqk + Λσqk � ∇πk + Hk.
􏼨 (37)

Taking the L2-scalar product of equation (37), we found
out that

1
2

d

dt
πk(t)‖

2
L2+

����
����Λσ/2πk(t)‖

2
L2 � divqk, πk( 􏼁 + Fk, πk( 􏼁

1
2

d

dt
qk(t)‖

2
L2+

����
����Λσ/2qk(t)‖

2
L2 � ∇πk, qk( 􏼁 + Hk, qk( 􏼁.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(38)

For simplicity, we set X2(t)≜ ‖πk(t)‖ 2
L2 + ‖qk(t)‖ 2

L2 .
According to the identity (∇πk, qk) � (divqk, πk) and
Bernstein’s Lemma, we get the following equation:

1
2

d

dt
X

2
(t) + 2σk

X
2
(t)≤ FkL2+

����
����HkL2􏼐 􏼑X(t). (39)

Tus,

1
2

d

dt
X(t) + 2σk

X(t)≤ FkL2+
����

����HkL2 . (40)

Multiplying equation (40) by 2k((d/2)− σ+1) and taking the
lυ norm over k ∈ Z, we obtained the following equation:

1
2

d

dt
‖π‖ _B

(d/2)− σ+1
2,υ

+‖q‖ _B
(d/2)− σ+1
2,υ

􏼒 􏼓 +‖π(t)‖ _B
(d/2)+1
2,υ

+‖q(t)‖ _B
(d/2)+1
2,υ

dτ ≲ ‖F‖ _B
(d/2)− σ+1
2,υ

+‖H‖ _B
(d/2)− σ+1
2,υ

.

(41)

Integrating the above estimate with respect to time,
hence, we get the desired result. □

4. Existence

For the proof of the existence part, we are going to use the
classical Friedrichs’ regularization method combined with
the energy method. First, we defne the spectral cutof as
follows. Let μ> 0

􏽢Jμa(ω)≜ 1Bμ
􏽢a(ω), (42)

where Bμ � x ∈ Rd/|x|≤ μ􏽮 􏽯 and 1Bμ
denotes the charac-

teristic function on the ball Bμ. We defne the following
equation:

L
2
μ ≜ a ∈ L

2
: supp􏽢a ⊂ B(0, μ)􏽮 􏽯. (43)

We consider the following approximate system:

ztπμ + Λσπμ � Fμ if (t, x) ∈ R+ × R
d
,

ztqμ + Λσqμ � ∇πμ + Hμ if (t, x) ∈ R+ × R
d
,

πμ, qμ􏼐 􏼑
|t�0 � Jμπ0, Jμq0􏼐 􏼑,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(44)

where Fμ � Jμ(div(πq)) and Hμ � Jμ(∇(|q|2)).
Te usual (Cauchy Lipschitz) theorem guarantees that

system (44) admits a unique regular solution C([0, T∗μ) L2
μ).

Denote

‖(π, q)‖
X

(d/2),σ
t
≜ ‖(π, q)‖

L∞t
_B
(d/2)− σ+1
2,υ

+‖(π, q)‖
L1

t
_B
(d/2)+1
2,υ

. (45)

Let

Tμ ≜ sup T ∈ 0, T
∗
μ􏼐 􏼑: πμ, qμ􏼐 􏼑

�����

�����X(d/2),σ
t

≤M􏽥C π0, q0( 􏼁
����

���� _B
(d/2)− σ+1
2,υ

􏼚 􏼛,

(46)

where 􏽥C≥ 2 and M � (1/2C􏽥C
2
‖(π0, q0)‖ _B

(d/2)− σ+1
2,υ

), thus we
have Tμ > 0. From Lemma 2.5, we deduce that

Fμ

�����

�����􏽥L
1
t

_B
(d/2)+1− σ
2,υ
≤C πμqμ

�����

�����􏽥L
1
t

_B
(d/2)+2− σ
2,υ

≤C qμ ‖􏽥L
∞
t

_B
(d/2)− σ+1
2,υ

������

������πμ ‖􏽥L
1
t

_B
(d/2)+1
2,υ

+ πμ ‖􏽥L
∞
t

_B
(d/2)− σ+1
2,υ

������

������qμ ‖􏽥L
1
t

_B
(d/2)+1
2,υ

􏼠 􏼡

≤C πμ, qμ􏼐 􏼑 ‖􏽥L
∞
t

_B
(d/2)− σ+1
2,υ

������

������ πμ, qμ􏼐 􏼑 ‖􏽥L
1
t

_B
(d/2)+1
2,υ

.

(47)
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In a similar way,

Hμ

�����

�����􏽥L
1
t

_B
(d/2)+1− σ
2,υ
≤C qμqμ

�����

�����􏽥L
1
t

_B
(d/2)+2− σ
2,υ

≤C qμ

�����

�����􏽥L
∞
t

_B
(d/2)− σ+1
2,υ

qμ

�����

�����􏽥L
1
1

_B
(d/2)+1
2,υ

􏼠 􏼡.

(48)

Hence,

πμ, qμ􏼐 􏼑
�����

�����X(d/2),σ
t

≤ 􏽥C π0, q0( 􏼁
����

���� _B
(d/2)− σ+1
2,υ

+ C πη, qη􏼐 􏼑
�����

�����
2

X
(d/2),σ
t

􏼒 􏼓

≤ 􏽥C π0, q0( 􏼁
����

���� _B
(d/2)− σ+1
2,υ

1 + C(M􏽥C)
2 π0, q0( 􏼁
����

���� _B
(d/2)− σ+1
2,υ

􏼒 􏼓,

(49)

where C≥ 2. We choose ‖(π0, q0)‖ _B
(d/2)− σ+1
2,υ
< 1/4􏽥C

2
C. Tere-

fore, 1 + M2 􏽥C
2
C‖(π0, q0)‖ _B

(d/2)− σ+1
2,υ
<M. Ten, for any T<Tμ,

we have ‖(πμ, qμ)‖
X

(d/2),σ
t
≤ 􏽥CM‖(π0, q0)‖ _B

(d/2)− σ+1
2,υ
≤ (1/4). Our

next aim is to prove thatTμ � T⋆μ ; previously, we showed that
‖(πμ, qμ)‖

X
(d/2),σ
t
≤M􏽥C‖(π0, q0)‖ _B

(d/2)− σ+1
2,υ

for all Tμ <T⋆μ . By the
continuity argument, we can get
‖(πμ, qμ)‖

X
(d/2),σ
t+δ
≤M􏽥C‖(π0, q0)‖ _B

(d/2)− σ+1
2,υ

, for a sufciently small
constant δ > 0, which contradicts the defnition of Tμ. Next,
we will show that system (44) admits global solutions. For
this aim, we assumed that T⋆ < +∞, we have
‖(πμ, qμ)

X
(d/2),σ
t
≤M􏽥C‖(π0, q0) _B

(d/2)− σ+1
2,υ

. On the other hand, we

have πμ, qμ ∈ 􏽥L
∞

([0, T⋆μ ); _B
(d/2)− σ+1
2,υ ), then we have

‖(πμ, qμ)‖L∞([0,T⋆μ );L2
μ)< +∞. By the Cauchy-Lipschitz Te-

orem we can continue the solution beyond the time T⋆μ and
this contradicts the defnition of T⋆μ . Hence, T⋆μ � +∞. By
standard arguments, we can show that (πμ, qμ)μ> 0 converges
to the solution (π, q) which solves system (32) and here we
omit the details.

5. Optimal Decay of Solutions

To know more about the asymptotic behavior of the solu-
tions obtained in the previous results, we studied in this
section the optimal temporal decay of perturbed solution in
terms of B

(d/2)− σ+1
2,1 − norm, where we will estimate low

frequencies and high frequencies separately. For the low
frequencies, we use the good behavior of the semigroup
Aσ(ρ). Regarding the high frequencies, we make use of the
Fourier localization method.

Proof of Teorem 2. We assume that V(t)≜ (π(t), q(t))T is
a smooth solution for system (33) and
(F, H)≜ (div(πq),∇(|q|2))T, Ten, employing Duhamel’s
principle, we found out that

V(ρ) � Aσ(ρ)V0 + 􏽚
ρ

0
Aσ(ρ)G(V(c))dc, (50)

where V0 � (π0, q0)
T,G(V(ρ)) � (F, H) and Aσ(ρ) is the

semigroup associated with the LHS of system (33), which is
given by the following equation:

Aσ(ρ)b � F
− 1

e
􏽢Lσ(ξ)􏽢b􏼒 􏼓, (51)

where

􏽢Lσ(ξ) �
|ξ|

σ
− iξ

− ξT |ξ|
σ
Id

􏼠 􏼡, (52)

where Id represents the identity matrix of the d dimension.
For convenience, we denoted the following equation:

Wlow(t)≜ sup
c∈[0,t]

(1 + c)
d/2σ ∆− 1V(c)

����
����L2

Whigh(t)≜ sup
c∈[0,t]

(1 + c)
d/2σ

􏽘
k≥ 0

2d/2− σ+1 ∆kV(c)
����

����L2,

(53)

therefore,

‖V(t)‖
B

(d/2)− σ+1
2,1
≤ (1 + c)

− d/2σ
Wlow(t) + Whigh(t)􏼐 􏼑. (54)

Since ∆k coincides with _∆k for all k≥ 0, then

Wlow(t)≤ sup
c∈[0,t]

(1 + t)
d/2σ

���������
Aσ(c)∆− 1V0

���������L2

+ sup
c∈[0,t]

(1 + t)
d/2σ

􏽚
c

0

���������
Aσ c − c

′
􏼒 􏼓∆− 1G V c

′
􏼒 􏼓􏼒 􏼓

���������
L2

,

Whigh(t)≤ sup
c∈[0,t]

(1 + t)
d/2σ

􏽘
k≥0

2d/2− σ+1
Aσ(τ) _∆kV0

���������L2

+ sup
c∈[0,t]

(1 + t)
d/2σ

􏽘
k≥0

2d/2− σ+1

���������
Aσ τ − τ′􏼒 􏼓 _∆kG V τ′􏼒 􏼓􏼒 􏼓

���������
L2 .

���������

(55)
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By virtue of [1], Lemma 2.4, we have the following
equation:

Aσ(t) _∆kV0
����

����L2 �
􏽤

Aσ(t) _∆kV0􏼐 􏼑L2 ≤Ce
− c0t2σk

������

������
_∆kV0

������L2
.

(56)

We also have the following equation:

Aσ(t)∆− 1V0
����

����L2 ≤ 􏽘

k′≤0

Aσ(t) _∆k′∆− 1V0
����

����L2

≤ 􏽘

k′≤0

Aσ(t) _∆k′V0
����

����L2.
(57)

In view of Bernstein’s Lemma, we obtained the following
equation:

Aσ(t)∆− 1V0
����

����L2 ≤ 􏽘

k′≤0

2k′d/2
e

− c0t2σk′
_∆k′V0

����
����L1. (58)

Multiplying both sides by td/2σ , according to [1], Lemma
2.35, we concluded that

t
d/2σ

Aσ(t)∆− 1V0
����

����L2 ≤C V0
����

���� _B
1
1,∞

􏽘

k′∈Z

t
d/2σ2k′d/2

e
− c0t2σk′

≤C V0
����

���� _B
1
1,∞

.

(59)

In a similar way, we also get the following equation:

Aσ(t)∆− 1V0
����

����L2 ≤ 􏽘

k′ ≤ 0

2k′d/2
e

− c0t2σk′
_∆k′V0

����
����L1

≤ V0
����

���� _B
1
1,∞

􏽘

k′≤0

2k′d/2

≤C V0
����

���� _B
1
1,∞

.

(60)

Summing up equations (59) and (60), we deduced the
following equation:

Aσ(t)∆− 1V0
����

����L2 ≤C(1 + t)
− d/2σ

V0
����

���� _B
0
1,∞

. (61)

For the high frequencies, we have the following equation:

t
d/2σ

􏽘
k≥0

Aσ(t) _∆kV0
����

����L2 ≤C 􏽘
k≥0

t
d/2σ

e
− c0t2σk

_∆kV0
����

����L2

≤C V0
����

���� _B
d/2− σ+1
2,1

.

(62)

Similarly, we get the following equation:

􏽘
k≥0

Aσ(t) _∆kV0
����

����L2 ≤C 􏽘
k≥0

e
− c0t2σk

_∆kV0
����

����L2

≤C V0
����

���� _B
d/2− σ+1
2,1

.

(63)

Consequently,

􏽘
k≥0

Aσ(t) _∆kV0
����

����L2 ≤C(1 + t)
d/2σ

V0
����

���� _B
d/2− σ+1
2,1

. (64)

According to Hölder inequality, we obtained the fol-
lowing equation:

‖G(V)‖L1 ≤ div(πq) ‖L1+
����

����∇ |q|
2

􏼐 􏼑 ‖L1

≤ ∇π ‖L2

����
����q ‖L2 + πL2

����
����divq ‖L2 + ∇q ‖L2

����
����q ‖L2

≤ J1 + J2 + J3.

(65)

By using the Besov embedding (Bs
2,1⟶ L2) for s≥ 0, we

found that

J1 ≤ ‖q‖ _B
(d/2)− σ+1
2,1

∆− 1∇π ‖L2+
����

���� 􏽘
κ≥0
∆κ∇π ‖

B
(d/2)
2,1

⎛⎝ ⎞⎠

≤ ‖q‖
B

(d/2)− σ+1
2,1

‖π‖
B

(d/2)− σ+1
2,1

+‖π‖ _B
(d/2)+1
2,1

􏼒 􏼓

≤ ‖V‖
B

(d/2)− σ+1
2,1

‖V‖
B

(d/2)− σ+1
2,1

+‖V‖ _B
(d/2)+1
2,1

􏼒 􏼓.

(66)

In a similar way, we bound J2, J3. Tus, we get the
following equation:

G(V)L1 ≤
����

����VB
(d/2)− σ+1
2,1

‖V‖
B

(d/2)− σ+1
2,1

+‖V‖ _B
(d/2)+1
2,1

􏼒 􏼓. (67)

According to equations (61) and (64) and Lemma 1, we
infer that

􏽚
c

0
Aσ

���� (c − z)∆− 1G(V(z))L2dz≤ 􏽚
c

0
(1 + c − z)

− d/2σ
‖G(V(z))‖ _B

0
∞,1

dz

≤ 􏽚
c

0
(1 + c − z)

− d/2σ
‖G(V(z))‖L1dz

≤ 􏽚
c

0
(1 + c − z)

− d/2σ
(1 + z)

− d/2σ
W(c) (1 + z)

− d/2σ
W(τ) +‖V‖ _B

d/2+1
2,1

􏼒 􏼓dz

≲(1 + c)
− d/2σ

W(τ)‖V‖
L1

t
_B
d/2+1
2,1

+(1 + c)
− d/2σ

W
2
(τ).

(68)

We used equations (47) and (48) with (υ � 1) and ob-
tained the following equation:

‖G(V(z))‖ _B
(d/2)− σ+1
2,1
≤ ‖div(πq)‖ _B

(d/2)− σ+1
2,1

+ ∇ |q|
2

􏼐 􏼑
�����

����� _B
(d/2)− σ+1
2,1

≲‖V‖
B

(d/2)− σ+1
2,1

‖V‖ _B
(d/2)+1
2,1

,

(69)
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where we have used also the embedding
_B
(d/2)− σ+1
2,1 ⟶ B

(d/2)− σ+1
2,1 . According to equation (64) and

Lemma 1, we found out that

􏽘
k≥0

2k((d/2)− σ+1)
􏽚

c

0
Aσ(c − z)∆kG(V(z))

����
����L2ds≤ 􏽚

c

0
(1 + c − z)

− (d/2σ)
‖G(V(z))‖ _B

(d/2)− σ+1
2,1

dz

≤ 􏽚
c

0
(1 + c − z)

− (d/2σ)
(1 + z)

− (d/2σ)
W(c)‖V(z)‖ _B

(d/2)+1
2,1

dz

≤ (1 + c)
− (d/2σ)

W(c)‖V(z)‖
L1

t
_B
(d/2)+1
2,1

.

(70)

In view of equations (61) and (64), we deduced the
following equation:

W(t)≤C V0
����

���� _B
0
∞,1 ∩ _B

(d/2)− σ+1
2,1

+ supc∈[0,t] 􏽚
c

0
∆− 1Aσ

���� (c − z)G(V(z))

�������L2
dz

+ supc∈[0,t] 􏽚
c

0
􏽘
k≥ 0

2k((d/2)− σ+1)
􏽚

c

0
Aσ(c − z)∆kG(V(z))

����
����L2dz.

(71)

Putting equations (68) and (70) into equation (71), we
obtained the following equation:

W(t)≲ V0
����

���� _B
0
∞,1 ∩ _B

(d/2)− σ+1
2,1

+ W(t) V0
����

���� _B
0
∞,1 ∩ _B

(d/2)− σ+1
2,1

+ W
2
(t).

(72)

A bootstrapping argument implies that there is ϵ> 0 such
that, if ‖V0‖ _B

0
∞,1 ∩ _B

(d/2)− σ+1
2,1
< ϵ, then for all t≥ 0,

W(t)≤M0ϵ, (73)

for some positive constant M0.Ten, the Proof ofTeorem 2
is now achieved. □

6. Conclusions

More or less recently, several methodologies have been
proposed to describe behaviors of some complex world
problems emerging in several applications, especially in
molecular biology. Te chemotaxis model gains increasing
interest from mathematicians; so far, the problem of exis-
tence and uniqueness of classical solutions to system (1)
(with fractional dissipation Λσ or classical dissipation − ∆) in
multidimensions d> 1 remains an open problem. In this
work, we were able to give a positive answer regarding the
existence of classical solutions with small initial data lying in
the Besov spaces; also, we managed to get the optimal
temporal decay of strong solutions. In the future direction, it
will be interesting to study the current model on recent
fractional derivatives, then demonstrate the efect of the
fractional order through some simulations.
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