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Several cells and microorganisms, such as bacteria and somatic, have many essential features, one of which can be modeled by the
chemotaxis system, which we consider to be our main interest in this article. More precisely, we studied the hyperbolic system
derived from the chemotaxis model with fractional dissipation, which is a generalization for the hyperbolic system with classical
dissipation. The results of this article are divided into two parts. In the first part, we used energy methods to obtain the existence of
small solutions in the Besov spaces. The second one deals with the optimal decay of perturbed solutions using a refined time-
weighted energy combined with the Littlewood-Paley decomposition technique. To the authors’ best knowledge, this type of
system (with fractional dissipation) has not been studied in the literature.

1. Introduction

This present article aims to study the hyperbolic chemotaxis
system, which is governed by the following Cauchy problem:

0,p + ®A’P = div(pq) if (t,x) € R, x R,

9,q+ Mg =V(p+Aql’) if (tx) eR, xR, (1)
(P, Dy = (Po40)>

where p(t, x) represents the cell density, q(t, x) = —(Vv/v)
with v is the chemical concentration, ® > 0 and A > 0 describe
the cell and chemical diffusion coefficients, respectively, and
the fractional operator A% = (~A)? denotes the fractional
Laplacian operator. In the whole space R¥, the operator A” is
defined via the following Fourier transform:

(A1) (&) 2 & () (©). 2)

Chemotaxis model (1) describes the ability of free-
moving organisms to react to chemical substances or
their concentration differences with specific, directed
movements. On the other hand, the fractional dissipation
has several applications in the molecular biology, we
mention as an example the anomalous diffusion and
chemical attraction to organisms in semiconductor growth,
see for instance [1]. It is well known that the fractional
chemotaxis system (1) is derived from the following ca-
nonical formulation of the famous “Keller-Segel” model
[2, 3]:

0,u = @A u — div(yuV¥ (v)) if (t,x) € R, x RY,
3y = —AAY + f (u,v) if (£, x) € R, xR,

(P> D=0 = (Po>0)>
(3)
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where y is a constant that represents the chemosensitivity;
when the coefficient y > 0, we say that the system is attractive
and in the case when the coefficient y <0, the system is
repulsive. The function ¥ describes the mechanism of signal
detection. In the situation, when the function
¥ (u) = V(A™?u) with o€ (1,2] Biler and Wu [4] in-
vestigated system (3) in the Besov spaces. In particular, they
have established the local existence and uniqueness of so-
lutions. Later, Zhai [5] studied the system in the case when
f (u,v) = u; more precisely, Zhai [5] showed that system (3)
admits a mild solutions. There is a large literature on the
analysis of system (3), we refer the reader to [6-10] and the
references therein. For the case, when A = 0, then system (1)
turns out to be the hyperbolic-parabolic chemotaxis; in this
context, when the fractional Laplacian operator is
substituted by the classical Laplacian operator, Zhang and
Zhu [11] investigated the Cauchy problem for system (1) ¢ =
2,A = 0 with small initial data. Lately, Jun et al. [12] explored
the global existence of system (1) o =2,1 =0 with large
initial data. Recently, Hao [13] showed that system (1) o =
2,A =0 admits a unique solution near to some constant
equilibrium state in the critical hybrid Besov spaces
B4272(R9) x B#?=2412-1 (R9), In their very recent work Nie
and Yuan [14] investigated the well-posedness and the ill-
posednes in the critical Besov spaces
(Rd) B a2 (Rd) For this hyperbolic-parabolic
system there ﬁave been a large number of results con-
cerning the long-time dynamics to the solutions, blow-up
phenomenon, and the existence of global solutions (see for
instance, [15-19]). Here, we focus on the chemically dif-
fusible model corresponding to the case of A > 0. As far as we
know, the results obtained for the Hyperbolic model (1) A > 0
are less compared to Hyperbolic-Parabolic model (1) A = 0.
In the situation, when the fractional Laplacian is changed by
the full Laplacian operator, Tao et al. [20] proved that system
(1) A > 0 is globally well posed; moreover, they have obtained
the long-time behavior, and diffusion limit of one-
dimensional large-amplitude classical solutions on finite
intervals subject to the Neumann-Dirichlet boundary con-
ditions. Thereafter, in [21], Li and Zhao explored the same
issues of [20] but for the Dirichlet-Dirichlet boundary
conditions. Wang et al. [22] investigated the global existence,
asymptotic decay rates, and diffusion convergence rate of
small solutions in the Sobolev framework. Recently, Mar-
tinez et al. [23] proved a set of results, such as, the global
asymptotic stability of constant ground states and the ex-
plicit decay rate of solutions. More recently, Wu and Su [24]
showed that system (1) o = 2 admits global solution and also
they have obtained a decay rate of solutions in the Besov
spaces. For the traveling wave solution of problem (1) with
0 =2 and its nonlinear stability, see the series of papers
[25-28].
Stimulated by the above works, especially with [24], the
main objective of this article is to investigate system (1) with
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the fractional Laplacian operator A, with o € (1,2). To be
more precise, we have the following two outcomes:

Theorem 1. Assume that1<o0<2,d>2andv € [1,00]. Let
u )

(79, 90) € B,,. We assume that there exists a constant € >0

such that

o B, +] 40 g, <6 (4)
where « = d/2 — 0 + 1 and ny = p, — P, for some equilibrium
state p>0. Then, system (1) admits a global unique solution

(P, q) satisfying for any T > 0:

p-pacl(0TB " )al (0Tl )

Remark 1. From the identity B;z ~ H’, then for v=2,
Theorem 1 implies the global well-posedness in the scale of
(homogeneous) Sobolev spaces.

Our existence theorem is based on the energy estimates.
Due to the presence of the terms div(pgq) and V(Iqlz), we
established with the help of Bony’s decomposition (see the
next section) a product estimates, thus we can get the a priori
estimates of our syste/121)1, which leads us to get the global
small solutions in B,

The second result ‘of this artlcle deals with the time decay
rates of strong solutions for system (1), which is given as
follows:

Theorem 2. Let 10< 0<2,d>2 and ve[l,o0]. Let
(Po = P>90) € B5, NB, . There exists a constants € >0 such
that if

[ B 0B +[ao B B, = (6)
where o = (d/2) — o+ 1 and ny = py —

a unique global solution as follows:

m,q € LOO(O,T;BZ(:jl/Z)_UJrl), (7)

D, then system (1) has

where m = p — p. Furthermore, there exists a positive constant
M, such that

)—(d/20)

(|(7r, q)"BE,‘i/Z)'”] <My(l+t (8)

Remark 2. Theorem 2 gives the optlmal decay of solutions
for system (1) due to embedding B aorl _, 2,

Remark 3. In the sequel and for the simplicity we assume
(without loss of generality) A =@ =p = 1.

The content of this article is arranged as follows. We
introduced the notations and some useful definitions and
results in Section 2, then we reformulated system (1) and we
established some useful a priori estimates in section 3.
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Section 4 is devoted to the proof of the existence of solutions.
Finally, we proved Theorem 2 in Section 5.

L.1. Notation. C or M stands for some positive constant and
may represent different values in different lines, the notation
X<Y means that there exist a constant M, >0 such that
X<M,Y, where M; is a constant depending on the
initial data.

2. Preparatory

In this section, we recall some ingredients, such as the fa-
mous Littlewood-Paley operators and Bony decomposition,
also some function spaces will be introduced.

2.1. Littlewood-Paley Theory. We start this section by giving
the definition of the dyadic partition of unity.

Definition 1. There exists (y,y) € D(R?) x D(R?) such
that

and A, as follows:

A_1b2x(0)f,and for all ¢>0,A b2y (27°0)b. (11)

By the definition of localization operators above, we have
some interesting properties as follows:

(1 )The formal Littlewood-Paley decomposition:

b= Ab.forallbes (R). (12)

ceZ

(2 )The quasiorthogonality:
@) If |¢— x| =2, thenAAb 0;
(ii) if |¢ — k| = 5, then A (S bA b) =

The paradifferential calculus plays a key role in the
proof of the existence result, and its given by the
following definition:

(i) Bony decomposition
For a,b € & (R%), we have the following equation:

Forall¢ € Rz,x(E) + Z v (2%) = 1. (9)
N , : :
o ab=Z,b+%,a+R(ab), (13)
For every f € §' (R), we defined the operators A and
S as follows. Let ¢ € Z with
Agbé v (27 0), (10)
Sb2x(27°0)b,
Tb=Y S, 1ah b R(ab) = YAAbwithA, =4, +A +A,,. (14)
q q
L2 1| A
The next result is the famous Bernstein inequality, for "a"BZ,m - sup q€Z<2 "Aqa“Lﬁ) < 00 a7

the proof see [29].

Proposition 1. Let 1<0<9<o0o. Assume H € L?, then for
every 1 € N, there exists constants M, M, such that

supp H  {|€] < 429} =] H] ,, < M, 21TV g,
supp H ¢ {A;27< & < A2} = |H|| o < M, 2% supm=kak||H||Le.
(15)

Now, we recall the definitions of homogeneous and
nonhomogeneous Besov spaces.

Definition 2. For (n,0) ¢ R >< [1,+00] and 1<v<o00. The
homogeneous Besov space B) is defined as the set of all
tempered distributions a € § (Rd) such that:

lall é(zq’?"Aqa Lg)mz)<oo. (16)

Besides, if v = co

Definition 3. For (,0) € R x [1,+00] and 1<v<oo. The
nonhomogeneous Besov space By is defined as the set of all

tempered distributions a € § ' (R%) such that

2 [~
lall, 2 (2" sya],0) . <co. (18)
Besides, if v = co
lalig, = sup (2agal,,) <o 9

qeNu{-1
The following spaces are introduced by Chemin and

Lerner in [30]:

Definition 4. We assume that 7>0 and (>1, the space
L}Bj, is the set of a € &' (RY) such that



HaLngu B ”(2‘1’7 A, “"L")ﬂ@# <00, (20)

and the space IiTBZ,OO is the space a € & (R?) such that

2 <2qn”Aqa“mg>mZ)

As a consequence of the last definition, we have the
following embedding. Let € >0, then we have the following

lall< .,

50,0

< 00. (21)
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The following Lemma is useful in our contribution, for
more details see [31].

Lemma 1. (i) Let v,,v, >0 satisfying max {v;,v,} > 1. Then

>

7 , - ,\ —min {vl,vz}
J <1+T —r) (1+T)_v2dTSle’v2<l+T)
0

equation: 7 >0,
LBl —I'B! Vo=t - (23)
’ ’ 22
LB}, — 1B}, V>0, (ii) Let v,,v, >0 and b € L ((0,00)). Then
v / - Y ,\ —min {v;,7,}
[ (ter=7) Tarorbdrsm,, (147) J Ib(D)del, 7 0. (24)
0

We finished this section by establishing a product
estimate.

Lemma @2)- +12 L?ﬁ/z) € (1,2), I(Jd/éz)[l ?O] and
0" o+.
EB NnB,, .771 uv € B,, and we have

the followmg equation:

IIuvlle(im_m < C< "u”B-Z(j/z)-ml "V”B-;i/zm + ||V||32(f}/z)-a+1 "u"B;i/zm >

Proof. By using the Bony decomposition (13), we split the
term uv as follows:

w=v+ZT,u+R ). (26)

From the property (2) part (ii), we have the following
equation:

(25)
”AK (LW)"L2 = Z .K(S.C—IMA v IVA Lt 2
[¢—xl<4 lg—x|<4
+ Y | (Db )l (27)
l¢>k-3
li<1
Multiplying equation (27) by 2¥((4/2+2-9) and taking the
¢” norm we find out that
HMVB-,z(dV/Z)fMZS |< ((df2)-0+2) C IUA 14 > £°(2)
' le- KI<4 KeZ

K( (d2)-0+2)
l¢— KI<4

<2K( (d/2)-0+2) Z

¢>k—3|i<1

+

2K + K, + K.

C—

\(Awb,v)

1VA u

>K€Z ' (2) (28)

)KGZ
L2

¢°(2)
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For the first term K; we used Holder inequality and
Young inequality and obtained the following equation:
((d/2)-0+2) A A
aq (= 3 fielaol,
K <Kk-2 xezlev (z)
' _ Ly . . 2
< < Z 5 (K=k)(e-1)5x' 1 U)||AK’”||L0<>2K((d/Z)H)HAKV"Lz> (29)
K <2 xezller (z)
< MB;:O V-;i/z)ﬂ.

Similarly, we obtain the following equation:

Taking advantage of Young inequality and the Holder
inequality, it holds that

K, < “u”Bz(fz)“ Ivll e - (30)
K, <[ | 25(@2-on Z [Au] A | cez
¢=xk-3
<1

N

< ||u||B~1—a ”V"B;d/z)ﬂ.
00,00 0

e (d2)- -
By the Besov embedding B;U AR Bog);, we get the

desired result. O

3. Reformulation of System and the
a Priori Estimate

In this paragraph, we reformulated the original system (1),
where we will assume (without loss of generality) that the
equilibrium state p =1 and we set m = p — 1, the system
becomes as follows:

0,7+ A% = div (nq) + divg  if (t,x) € R, x RY,
3,9+ A°q=V(n+lql’) if (t,x) € R, x R%,

(7, Q=0 = (70> 9o)-
(32)

We will study the a priori estimates for linearized system
(32) with general source term as follows:

< Z 2(17 o)ancullez((d/2)+1)(cft) "AC_IV"LZZ((WZ)H* 0)(Kc)>
¢>k-3l <1

@) (31)

xkeZ ¢’ (Z)

om+Am—divg=F if (t,x) € R, x R%,
0,q+AN°q-Vr=H if (t,x) € R, xR%, (33)
(7, Q=0 = (7> q0)-

We note that system (33) is given by the following
equation:

OV+LV=G if (t,x)eR, xR,
(34)
\/n:o =V,
where V(&) = (ﬂ(t),q(t))T,G = (F, H)T and
A° —div
L,= . (35)
-V A’

Next, we prove the A priori estimate for system (32).

3.1. A Priori Estimate

Proposition 2. We assume that (m,q) is a regular solution
for the system (32), then for all t €[0,T),



t
||7T|| S (d/2)-0+1 +||q|| s (d/2)-0+1 + J ||7T(T)|| s (d/2)+1 +||q(‘l')|| ~(d/2)+1dT
By, By, 0 By, By,
< ||7T0||B(d/2)—rr+l + ||q0|IB-(d/Z)—rr+1

+||F|l e +|H||

d/Z —o+1 .

LIB LlB

(36)

Proof. Let k€ Z and we set (ﬂk,qk)— (Akn,Akq) and
(Fy, Hy) = (& (divrg), Ay (V (1))
We observed that (7, q;) solves the following system:
o,y + A'my = divgy + F
{ 7Tk ) k Ak T Tk (37)
atqk + A qix = Vﬂk + Hk'

Taking the L?-scalar product of equation (37), we found
out that

1d o )
5 dr "”k I iZ‘L”A P @l 7 = (divge, m) + (Fj i)

d .
E"%(t)” inf“A 2ac @ = (Vmoqy) + (Hpo gp)-
(38)

1
2

For simplicity, we set XZ*(t)2|m (£l iz + llgx I iz.
According to the identity (Vmy,q) = (divg,m,) and
Bernstein’s Lemma, we get the following equation:

1d o
E EXZ (t) +2 kX2 (t)S(“FkLz‘I'“HkLz)X(t) (39)

Thus,

d

— X () + 27X (t) < |Frpa+|Hypo- (40)

1
2dt
Multiplying equation (40) by 2k((4/2-9*1) and taking the

¢’ norm over k € Z, we obtained the following equation:
1d
2 dt

Zu

<||T[|| < (d/2)-0+1 +||q|| <d/z) a+l) +||7T(t)|| (dr2)+
(41)

+”q(t)”B;dv/2MdTS "F"B';‘Z/Z)’m + ”H"Bé‘im*m'

. d/2)+1 oS C"ﬂﬂqﬂ H“l (d/z)+z o

< C( ”qﬂ ”I;)OBZ/ZPJH

<O (10 ) g an-on

g + [ g
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Integrating the above estimate with respect to time,
hence, we get the desired result. O

4. Existence

For the proof of the existence part, we are going to use the
classical Friedrichs’ regularization method combined with
the energy method. First, we define the spectral cutoff as
follows. Let >0

Ja(w)2 153 (w), (42)

where B, = {x € R/|x]| <up and lB denotes the charac-
teristic function on the ball B,. We define the following
equation:

1’2 {a e L suppa < B(0, ‘u)}. (43)

u
We consider the following approximate system:
oy, + A°m, = F, if (£,x) e R, xR?,

9,q,+A°q, =Vm, +H, if (t,x) e R, xR,

(”wqﬂ)n:o = (J].“T[O’ ‘ﬂﬂqo)’
(44)

where F, = J]y(div(nq)) and H, = J]#(V(Iqlz)).
The usual (Cauchy Lipschitz) theorem guarantees that
system (44) admits a unique regular solution C([0, T;) Li).
Denote

[|(7z, q)"%t(d/z),a £ (72, q)"Lf"BgZ)_M +||(7z, q)”L}Bz('i/ZM' (45)

Let
T, 2sup {T € (0.7;): [(m,00,)] ysoms = M50 0) oo .
(46)

where C>2 and M = (1/2CC ||(7[O,q0)|| e 1), thus we

have T > 0. From Lemma 2.5, we deduce that

(47)

H ”ztl Bg/z)u )

(ﬂwq,,)ll ~1 d/z
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In a similar way,

”H ”"1 jmo = C"qﬂ,, “"1 s
(48)

qH ||~1 (d/2)+1 )

< C(”% “*m (d/z) —o+1

70 q,)| <
|K w Ay g o

Hence,

C(1m0r o) oo + Cl(myp )0 )

(49)

< 8 s ) gon-o ( 1+ C MY |70 @)oo= )

where C>2. We choose ||(7,, qo)llBu/zym <1/4C°C. There-
2,0

fore, 1 + MZCZCII(TIO, qO)IIBéi/z),m <M. Then, for any T<T,,

we have ”(ﬂﬂ,qy)”&»;dlz),a sCM||(nO,q0)||B$z>_a+1 < (1/4). Our

nextaim is to prove that T, = T;; previously, we showed that

”(T[W qﬂ)”f[t(d/z),a < M(~?II(7I0, qo)"B;dU/z)fm for all TI4 < T;. By the

continuity

argument, we can get

||(71#, qH)Ilz e < MC||(11,, qo)II jaz-on, for a sufficiently small
constant 6 > 0 which contradlcts the definition of T Next,

we will show that system (44) admits global solutlons For
this aim, we assumed that T*< +o00, we have

I (s qﬂ)%mm,n <MC|| (r,, qo) - On the other hand, we

7, € L ([0, T7); Bgi’” ort

||(ﬂﬂ,q#)||Lm([0,Tﬂ)vLﬁ) < + 00. By the Cauchy-Lipschitz The-

have ), then we have

orem we can continue the solution beyond the time T7 and
this contradicts the definition of T;. Hence, T, = +00. By
standard arguments, we can show that (7,,q,),, o converges
to the solution (7, q) which solves system (32) and here we
omit the details.

5. Optimal Decay of Solutions

To know more about the asymptotic behavior of the solu-
tions obtained in the previous results, we studied in this
section the opt1ma1 temporal decay of perturbed solution in
terms of Bz'ﬁ/z) “1_ norm, where we will estimate low
frequencies and high frequencies separately. For the low
frequencies, we use the good behavior of the semigroup
d ; (p). Regarding the high frequencies, we make use of the
Fourier localization method.

Wi (< sup (1+0)%%
ye[0,t]

A (YA V| + sup (1+1)

12 yelot]

Whigh (t)S sup (1 + t)d/ZU zzd/Z—oJrl
velod k>0

A (1A,

di2e Jy
0

+ sup (1 + t)d/Zo sz/2—0+1
2 yelot] k=0

Proof of Theorem 2. We assume that V (t) 2 (7t(t),q(1‘))T is
a smooth solution for system (33) and
(F,H)= (div(ﬂq),V(|q|2))T, Then, employing Duhamel’s
principle, we found out that

V) =, oo+ | A BV GNd  (50)

where V, = (no,qO)T,Gn(\/(p)) = (F,H) and ¥, (p) is the

semigroup associated with the LHS of system (33), which is
given by the following equation:

oA, (p)b=F (L“b)

- 1€’ —if)
L = R
o9 <—£T €11,

where I; represents the identity matrix of the d dimension.
For convenience, we denoted the following equation:

(51)
where

(52)

Wlow (t) = Sup (1 + y)dﬂg"A*l\/(y)”L2

Whlgh (t) 2 Sup (1 + y)d/zo' Z 2d/2 o‘+1||A \/(y)llL2>

yeloyt] k>0
(53)
therefore,
IV @l < (1+9)™ (Wi, (1) + Wi (0). - (59)
Since A, coincides with A, for all k>0, then
aufr-v)ao(v(y))]
i (55)

(7= )ag(v(7 )| s




By virtue of [1], Lemma 2.4, we have the following
equation:

"Q{” (t)Ak\/OuLZ = ||(5270 (/t)\Ak\/o)Lz < Ce 2"

v

(56)
We also have the following equation:

7o ®AWVola< Y 7, OAA Vo

k'<0

< Y ||, DAV o

k'<0

(57)

In view of Bernstein’s Lemma, we obtained the following
equation:

Z 2k df2 ,=cot 2ok

k'<0

o (DA Vo2 <

Aol (58)

Multiplying both sides by t%/2

2.35, we concluded that

, according to [1], Lemma

et 08 Vol SOy Y 2 e
Kez
<Clvol,.
(59)
In a similar way, we also get the following equation:

Z Zk di2 —cotZ”k
kK'<o

<[Volls:,

75 ()81 Vo <

Ak \/OIILl

Z 2k dl (60)

k<0
<Clval

Summing up equations (59) and (60), we deduced the
following equation:

[, A Vol ssCO+0 ™ Volp . (61)

For the high frequencies, we have the following equation:

<

J |, (v - )AL, 6(V(2)pdz <

= o

<(

J
I (1+y -2 "I6(V(2)l,dz
<],
1+
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td/20 Z "do(t)Ak\/ouLz <C z td/ZUe- cot2%k Ak\/ouLz
k>0 k>0 (62)
S C"\/O "Bi/fﬂﬂl.

Similarly, we get the following equation:

X lis OANo]:<C Fe | AV
=0 (63)
< c||\/0 I o

Consequently,

kZ: "&f (t)Ak\/OHLZ <C(1+ t)dlza"\/()"Bd/z o+1. (64)
>0

According to Holder inequality, we obtained the fol-
lowing equation:

16l < |div () I +[7(1q1) I
<|Valie|qle: +|me||divg e +]Vq (g -
<Jp+Jd, + Js.
(65)

By using the Besov embedding (B;, — L?) for s >0, we
found that

||q|| -0 <”A \%/1 ||Lz+|| z ANV "B(d/2)>

x>0
(66)
< Do (Il + 1l gmer
|V <||\/||Bg,z>-a+1 +IVl g )

In a similar way, we bound J,,J;. Thus, we get the
following equation:

"@ (\/)Ll < “\/Bg/z)-an ("\/”Bg/z)-an + II\/”Bg/zm ) (67)

According to equations (61) and (64) and Lemma 1, we
infer that

(1+y -2 "IG(V ()l dz

(68)
(1+y-2) % (1+2) %W (y)( (142 7W () + V] oo )dz
y)_d/ZUW(T)H\/HL} g+ (14 Y)W (1)
16 (V (2Dl ggam-s < Idiv (@)l g +[v(1a? } anron

We used equations (47) and (48) with (v = 1) and ob-
tained the following equation:

S”\/”Béﬁm’“] ||\/||B;jil/z)+1 ,
(69)
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Wgﬁzrﬁ L we have used also the embedding
B, R Bz()dl/z)f‘”l. According to equation (64) and
Lemma 1, we found out that
Y k(@) jo It (v = DG (V (2)]| s < jo (1+y =2 NG (V (2D jun-on dz
k=0 1
Y
< j (147 =29 (142 PPW ()Y (@) o dz (70)
0 2,1
<@+ POW @IV @ gamn.
In view of equations (61) and (64), we deduced the
following equation:
Y
WO Clg s+ subyeion [ 81, (- 26 (V@) |L2dz
(71)

y %
+ SUP,e o) Jo Z k()= o+D) Jo ||.szio (y - 2)AG(V (z))“dez.

k=0

Putting equations (68) and (70) into equation (71), we
obtained the following equation:

w (t)S"\/O"Bﬂo,l B + W (t)“VO"BgoJ B +W? ().
(72)

A bootstrapping argument implies that there is € > 0 such
that, if ||\/0||Bn o <6 then for all t >0,
00,1 2,1

W (t) < Mg, (73)

for some positive constant M. Then, the Proof of Theorem 2
is now achieved. O

6. Conclusions

More or less recently, several methodologies have been
proposed to describe behaviors of some complex world
problems emerging in several applications, especially in
molecular biology. The chemotaxis model gains increasing
interest from mathematicians; so far, the problem of exis-
tence and uniqueness of classical solutions to system (1)
(with fractional dissipation A° or classical dissipation —A) in
multidimensions d >1 remains an open problem. In this
work, we were able to give a positive answer regarding the
existence of classical solutions with small initial data lying in
the Besov spaces; also, we managed to get the optimal
temporal decay of strong solutions. In the future direction, it
will be interesting to study the current model on recent
fractional derivatives, then demonstrate the effect of the
fractional order through some simulations.
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