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Let G and H be graphs. A mapping f from V(G) to V(H) is called a weak homomorphism from G to H if f(x) � f(y) or
f(x), f(y)  ∈ E(H) whenever x, y  ∈ E(G). A ladder graph is the Cartesian product of two paths, where one of the paths has
only one edge. A stacked prism graph is the Cartesian product of a path and a cycle. In this paper, we provide a formula to
determine the number of weak homomorphisms from paths to ladder graphs and a formula to determine the number of weak
homomorphisms from paths to stacked prism graphs.

1. Introduction

Let G and H be graphs. A mapping f: V(G)⟶ V(H) is
a homomorphism from G to H if f preserves the edges, i.e., if
f(x), f(y)  ∈ E(H), whenever x, y  ∈ E(G). We denote
the set of homomorphisms from G to H by Hom(G, H). Let
Pn denote a path of order n such thatV(Pn) � 0, 1, . . . , n − 1{ }

and E(Pn) � i, i + 1{ } | i � 0, 1, . . . , n − 2{ }. Let Cn denote
a cycle of order n (n⩾3) such that V(Cn) � 0, 1, . . . , n − 1{ }

and E(Cn) � i, i + 1{ } | i � 0, 1, . . . , n − 1{ }, where + is the
addition modulo n. Furthermore, we will refer to [1, 2] for
more information about graphs and algebraic graphs.

Te formula for the number of homomorphism from Pn

to Pn itself, End(Pn), was stated by Arworn [3] in 2009.
Arworn [3] transformed the problem into counting the
numbers of shortest paths from the point (0, 0) to any point
(i, j) in an r-ladder square lattice and obtained a concise
formula.

In general, a homomorphism from G to G itself is
called an endomorphism on G. Clearly, the set of endo-
morphisms on G forms a monoid under a composition of
mappings.

For a mapping f: V(G)⟶ V(H), we say that f

contracts an edge x, y  ∈ E(G) if f(x) � f(y). A mapping
f: V(G)⟶ V(H) is called a weak homomorphism from
a graph G to a graph H (also called an egamorphism) if f

contracts or preserves the edges; i.e., if x, y  ∈ E(G), then
f(x) � f(y) or f(x), f(y)  ∈ E(H). A weak homomor-
phism from G to G itself is called a weak endomorphism on
G. We denote the set of weak homomorphisms from G to H

by WHom(G, H) and the set of weak endomorphisms on G

by WEnd(G). Clearly, WEnd(G) forms a monoid under
a composition of mappings.

Te composition of (weak) homomorphisms is also
a (weak) homomorphism. When we have a collection of
objects and morphisms between them, satisfying certain
properties such as composition and identity, we can defne
a category. In this context, the category consists of graphs as
objects and (weak) homomorphisms as morphisms, where
the composition of (weak) homomorphisms and the identity
(weak) homomorphism for each graph form the necessary
structure [1]. It provides a structured way to study and
analyze relationships between graphs, allowing for a wide
range of applications, including graph database querying,
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graph theory research, and network analysis. Te choice
between strong (graph) homomorphisms and weak graph
homomorphisms in the category can lead to diferent ways
of capturing and studying relationships between graphs,
depending on the specifc requirements of the problem
at hand.

Given a graph product ⊛, the cancellation problem for
the product is the conditions under which G⊛K � H⊛K

implies G � H. Te problem is simple when ⊛ is the
Cartesian product □. Consequently, we assert that can-
cellation holds for the Cartesian product. It is much more
complicated for the direct product × and the strong
product ⊠. In the case of the direct product of graphs,
if there exist homomorphisms from G to K and from H

to K, then G � H [4]. By utilizing the fact that
∣WHom(X, A⊠B)∣ � ∣WHom(X, A)‖WHom(X, B)∣ for all
fnite simple graphs A and B, and for all fnite graphs X

where loops are admitted, cancellation also holds for the
strong product of graphs [4].

In 2010, Sirisathianwatthana and Pipattanajinda [5] pro-
vided the number of weak homomorphisms of cycles WHom
(Cm, Cn) in terms of the collection of WHomi

j(Pm− 1, Cn)
where WHomi

j(Pm− 1, Cn) is a set of weak homomorphisms
from Pm− 1 to Cn, where f(0) � i and f(m − 1) � j.

Motivated by Arworn’s work [3], in 2018, Knauer and
Pipattanajinda [6] used a cubic lattice and an r-ladder cubic
lattice to construct the number of weak endomorphisms on
paths WEnd(Pn). Moreover, they provided formulas for the
number of shortest paths from the point (0, 0, 0) to any point
(i, j, k), as in Proposition 1. Figures 1 and 2 represent the
cubic lattice and the 2-ladder cubic lattice when i � 6, j � 4,
and k � 4, respectively.

Proposition 1 (see [6]). The numbers M(i, j, k) and Mr(i,

j, k) of the shortest paths from the point (0, 0, 0) to any point
(i, j, k) in the cubic lattice and in the r-ladder cubic lattice are
as follows:

M(i, j, k) �
i + j + k

i, j, k
 ,

Mr(i, j, k) �
i + j + k

i, j, k
  −

i + j + k

j − r − 1, i + r + 1, k
  ,

(1)

respectively.

For any two graphs G1 and G2, the Cartesian product of
G1 and G2 is the graph G1□G2 with vertices V(G1□G2) �

V(G1) × V(G2), for which (a, u), (b, v){ } is an edge if a � b

and u, v{ } ∈ E(G2), or a, b{ } ∈ E(G1) and u � v. Te ladder
graph Ln is the Cartesian product of Pn and P2. Te stacked
prism graph Yn,m is the Cartesian product of Pn and Cm.

We see that a mapping f: V(Pn)⟶ V(G1□G2) is
a homomorphism if and only if f(0), f(1), . . . , f(n − 1) is
a walk in G1□G2. We thus get a one-one correspondence
between the set of homomorphisms f: Pn⟶ G1□G2 and
the set of walks of n vertices in G1□G2. In the same manner,
we can see that there is a one-one correspondence between
the set WHom (Pn, G1□G2) and the set of partial walks of n

vertices in G1□G2, where the partial walk is a sequence
obtained by joining q walks W1, W2, . . . , Wq for some q with
the ending vertex of Wi being the starting vertex of Wi+1 for
all i � 1, 2, . . . , q − 1.

In this paper, we are interested in fnding the number of
weak homomorphisms from paths to ladder graphs, WHom
(Pn, Ln), and from paths to stacked prism graphs, WHom
(Pn, Yn,m). Tese give the numbers of partial walks of n

vertices in Ln andYn,m. Here, we generalize the original cubic
lattice by adding double edges and triple edges in the
backward directions and obtain a double-bridge cubic lattice
and a triple-bridge cubic lattice as in Figures 3 and 4, re-
spectively. Similarly, we obtain an r-ladder double-bridge
cubic lattice and an r-ladder triple-bridge cubic lattice (see
Figures 5 and 6).

Te number of shortest paths from the point (0, 0, 0) to
any point (i, j, k) in a double-bridge cubic lattice and in an
r-ladder double-bridge cubic lattice is as follows.

Proposition 2. Te numbers M2(i, j, k) and M2
r(i, j, k) of

shortest paths from the point (0, 0, 0) to any point (i, j, k) in
the double-bridge cubic lattice and in the r-ladder double-
bridge cubic lattice are as follows:

M
2
(i, j, k) � 2k

i + j + k

i, j, k
 ,

M
2
r(i, j, k) � 2k

i + j + k

i, j, k
  −

i + j + k

j − r − 1, i + r + 1, k
  ,

(2)

respectively.

Proof. To obtain the shortest path, at any instance, from the
point (x, y, z), one can only go to (x + 1, y, z), (x, y + 1, z),
or (x, y, z + 1). Since there are double bridges, there are two
possible ways to visit (x, y, z + 1), namely, through the
dashed line and through the dotted arc. We denote the move
to the right by R, the move up by U, the move to the back
through the dashed line by B1, and the move to the back
through the dotted arc by B2. Te number of shortest paths
from the point (0, 0, 0) to any point (i, j, k) in the double-
bridge cubic lattice is equal to the number of diferent ar-
rangements of iR’s, jU’s, uB1’s, and vB2’s, where u + v � k.
Tus,
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(0, 0, 0)
(6, 0, 0)(0, 0, 4)

(6, 4, 4)
(6, 4, 0)(0, 4, 4)

Figure 1: Cubic lattice.

(0, 0, 0)
(6, 0, 0)(0, 0, 4)

(6, 4, 4)
(6, 4, 0)

(0, 2, 4)

Figure 2: 2-ladder cubic lattice.

(0, 0, 0)
(6, 0, 0)(0, 0, 4)

(6, 4, 4)
(6, 4, 0)(0, 4, 4)

Figure 3: Double-bridge cubic lattice.

(0, 0, 0)
(6, 0, 0)(0, 0, 4)

(6, 4, 4)
(6, 4, 0)(0, 4, 4)

Figure 4: Triple-bridge cubic lattice.

(0, 0, 0)
(6, 0, 0)(0, 0, 4)

(6, 4, 4)
(6, 4, 0)

(0, 2, 4)

Figure 5: 2-ladder double-bridge cubic lattice.
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M
2
(i, j, k) �

(i + j + u + v)!

i!j!u!v!

� 
k

v�0
(i + j + k)!

i!j!(k − v)!v!

�
(i + j + k)!

i!j!k!


k

v�0
k!

(k − v)!v!

�
i + j + k

i, j, k

⎛⎝ ⎞⎠
k

v�0

k

v

⎛⎝ ⎞⎠

� 2k
i + j + k

i, j, k

⎛⎝ ⎞⎠.

While the number of shortest paths from the point (0, 0, 0)

to any point (i, j, k) in the r-ladder double-bridge cubic
lattice is equal to the number of diferent arrangements of
iR’s, jU’s, uB 1’s, and vB 2’s, where u + v � k, and tth R
always appears before (r + t)th U. Terefore,

M
2
r(i, j, k) �

(i + j + u + v)!

i!j!u!v!
−

(i + j + u + v)!

(i + r+1)!(j − r− 1)!u!v!

� 
k

v�0
(i + j + k)!

i!j!(k − v)!v!
−

(i + j + k)!

(i + r+1)!(j − r− 1)!(k − v)!v!
 

�
(i + j + k)!

i!j!k!
−

(i + j + k)!

(i + r+1)!(j − r− 1)!k!
 

k

v�0
k!

(k − v)!v!

�
(i + j + k)!

i!j!k!
−

(i + j + k)!

(i + r+1)!(j − r− 1)!k!
 

k

v�0

k

v

⎛⎝ ⎞⎠

� 2k (i + j + k)!

i!j!k!
−

(i + j + k)!

(i + r+1)!(j − r− 1)!k!
 .

Similarly, in a triple-bridge cubic lattice, there are three
possible ways to move from the point (x, y, z) to the point
(x, y, z + 1). Tus, we obtain the following proposition
analogously. □

Proposition 3. Te numbers M3(i, j, k) and M3
r(i, j, k) of

the shortest paths from the point (0, 0, 0) to any point (i, j, k)

in the triple-bridge cubic lattice and in the r-ladder triple-
bridge cubic lattice are as follows:

(0, 0, 0)
(6, 0, 0)(0, 0, 4)

(6, 4, 4)
(6, 4, 0)

(0, 2, 4)

Figure 6: 2-ladder triple-bridge cubic lattice.
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M
3
(i, j, k) � 3k

i + j + k

i, j, k
 ,

M
3
r(i, j, k) � 3k

i + j + k

i, j, k
  −

i + j + k

j − r − 1, i + r + 1, k
  ,

(3)

respectively.

2. The Number ofWeak Homomorphisms from
Paths to Ladder Graphs

In this section, we provide the formula for fnding the
number of weak homomorphisms from paths Pn to ladder
graphs Ln. We denote the set of weak homomorphisms from
Pn to Ln, which maps 0 to (j, i) by WHomji(Pn, Ln). By the
symmetry of Ln, we obtain the following lemma.

Lemma 4. Let j and n be integers such that 0≤ j< n.

(1) |WHomj0(Pn, Ln)| � |WHom(n− j− 1)0(Pn, Ln)| �

|WHomj1(Pn, Ln)| � |WHom(n− j− 1)1(Pn, Ln)|.
(2) |WHom(P2n, L2n)| � 4

n− 1
j�0 |WHomj0(P2n, L2n)|.

(3) |WHom(P2n+1, L2n+1)| � 4
n− 1
j�0 |WHomj0(P2n+1, L2n+1)| +

2|WHomn0(P2n+1, L2n+1)|.

To gain insight into the main theorem, we begin by
observing a simple example. In this step, we aim to vi-
sualize weak homomorphisms. Figure 7 shows the

possible weak homomorphisms from P4 to L4, which map
0 to (0, 0). Te numbers on the top are elements of the
domain set V(P4), and the tuples on the left are elements
of the image set V(L4).

Te mapping f1, f2 ∈WHom00(P4, L4) with f1(0) �

(0, 0), f1(1) � (0, 1), f1(2) � (0, 0), f1(3) � (0, 1) and
f2(0) � (0, 0), f2(1) � (1, 0), f2(2) � (2, 0), f2(3) � (3, 0)

is represented by the dotted arcs on the top and black line
(see Figure 8). We noted that normal lines represent the
change in the frst coordinate, dotted arcs represent the
change in the second coordinate, and dashed lines indicate
no change in coordinates.

Figure 9 visualizes weak homomorphisms using the
double-bridge cubic lattice. Tere are multiple cases to be
considered. First, f(x + 1) � f(x) + (1, 0) correspond to
moving from (i, j, k) to (i + 1, j, k). Second,
f(x + 1) � f(x) − (1, 0) correspond to moving from
(i, j, k) to (i, j + 1, k). For the remaining cases, f(x + 1) �

f(x) ± (0, 1) correspond tomoving from (i, j, k) to (i, j, k +

1) through the dotted arc and f(x + 1) � f(x) correspond
to moving from (i, j, k) to (i, j, k + 1) through the dashed
line. Terefore, the mapping f1, f2 is represented by
a shortest path from (0, 0, 0) to (0, 0, 3) and (3, 0, 0) in the 0-
ladder double-bridge cubic lattice, respectively.

Cardinality |WHom00(P4, L4)| is the summation of
M2(i, j, k) and M2

0(i, j, k), where i + j + k � 3 (large black
points). Based on Figure 10, if j≤ 0 and i≤ 3, we use
M2(i, j, k); otherwise, M2

0(i, j, k):

WHom00
P4, L4( 


 � M

2
(3, 0, 0) + M

2
0(2, 1, 0) + M

2
(2, 0, 1) + M

2
0(1, 1, 1)

+ M
2
(1, 0, 2) + M

2
(0, 0, 3)

� 20
3

3, 0, 0
  + 20

3

2, 1, 0
  −

3

0, 3, 0
   + 21

3

2, 0, 1
 

+ 21
3

1, 1, 1
  −

3

0, 2, 1
   + 22

3

1, 0, 2
  + 23

3

0, 0, 3
 

� 35.

(4)

Similar to the above example, Figure 11 visualizes all
possible weak homomorphisms of the path P4 to L4 that map
0 to (1, 0).
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Cardinality |WHom10(P4, L4)| is the summation of
M2(i, j, k) and M2

1(i, j, k), where i + j + k � 3 (large black
points). Based on Figure 12, if j≤ 1 and i≤ 2, we use
M2(i, j, k); otherwise, M2

1(i, j, k):

WHom10
P4, L4( 


 � M

2
(2, 1, 0) + M

2
1(1, 2, 0) + M

2
(2, 0, 1) + M

2
(1, 1, 1)

+ M
2
(1, 0, 2) + M

2
(0, 1, 2) + M

2
(0, 0, 3)

� 20
3

2, 1, 0
  + 20

3

1, 2, 0
  −

3

0, 3, 0
   + 21

3

2, 0, 1
 

+ 21
3

1, 1, 1
  + 22

3

1, 0, 2
  + 22

3

0, 1, 2
  + 23

3

0, 0, 3
 

� 55.

(5)

In general, to fnd |Whomr0(Pn, Ln)|, we use M2
r(i, j, k)

to compute the number of shortest paths from (0, 0, 0) to
(i, j, k) when j> r, and we use M2

n− r− 1(j, i, k) when
i> n − r − 1; otherwise, we use M2(i, j, k).

Theorem  . Let n be a positive integer and j be a nonnegative
integer such that j< n/2 − 1. It follows that

WHomj0
Pn, Ln( 



 � 
i

i0�0


j

j0�0
2i0+j0

n − 1

i − i0, j − j0, i0 + j0
 

+ 

⌊i/2⌋

s�1


i− 2s

i0�0
2i0

n − 1

i − s − i0, j + s, i0
  −

n − 1

s − 1, n − s − i0, i0
  

+ 

⌊j/2⌋

s�1


j− 2s

j0�0
2j0

n − 1

j − s − j0, i + s, j0
  −

n − 1

s − 1, n − s − j0, j0
  ,

(6)

where n − 1 � i + j.

Proof. Let i � n − j − 1. To fnd |WHomj0(Pn, Ln)|, we
count the number of shortest paths from the point
(0, 0, 0) to any point (i0, j0, k0), where i0 + j0 + k0 � n − 1
in the j-ladder double-bridge cubic lattice. We consider
the following three cases corresponding to the value
of j0. □

If j0 > j, then for each j0 � j + t, there are


i− t
i0�tM

2
j(i0, j0, k0) shortest paths. Figure 13 displays possible

end points (i0, j0 � j + t, k0) when t � 1 by big circles, while
small circles stand for all possible origins of dashed lines
with an end point (i0, j0, k0).

Since t≤ i/2, we obtain the following equation:



⌊i/2⌋

t�1


i− t

i0�t

M
2
j i0, j + t, k0(  � 

⌊i/2⌋

t�1


i− t

i0�t

2k0
n − 1

i0, j + t, k0
  −

n − 1

i0 + j + 1, t − 1, k0
  . (7)

We replace t and i0 with s and i − i0 − s, respectively, and
the total number of shortest paths is as follows:



⌊i/2⌋

s�1


i− 2s

i0�0
2i0

n − 1

i − s − i0, j + s, i0
  −

n − 1

s − 1, n − s − i0, i0
  . (8)

If j0 ≤ j and i0 ≤ i, then for each i0, j0, there are
M2(i0, j0, k0) shortest paths.

Tis contributes 
i
i0�0

j

j0�0M
2(i0, j0, k0) �


i
i0�0

j
j0�02k0

n − 1
i0, j0, k0

 . Figure 14 displays a possible end

point (i0, j0, k0) by the big circle, while small circles stand for
all possible origins of dashed lines with an end point
(i0, j0, k0).

We replace i0 and j0 with i − i0 and j − j0, respectively,
and the total number of shortest paths is as follows:
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(0, 0)

(1, 0)

(2, 0)

(3, 0)

(0, 1)

(1, 1)

(2, 1)

(3, 1)

0 1 2 3

f1

f2

Figure 8: Graphical presentation of the domain and image of f1 and f2.

0 1 2 3

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(0, 1)

(1, 1)

(2, 1)

(3, 1)

Figure 7: Graphical presentation of the domain and image of all possible weak homomorphisms f: P4⟶ L4, where f(0) � (0, 0).

(2, 0, 1)

(1, 0, 2)

(0, 0, 0)

(3, 0, 0)(0, 0, 3)
(2, 1, 0)(1, 1, 1)

Figure 9: Double-bridge cubic lattice presentation of all possible weak homomorphisms f: P4⟶ L4, where f(0) � (0, 0).

(0, 0, 0)

(3, 0, 0)
(0, 0, 3)

f1 f2

Figure 10: Double-bridge cubic lattice presentation of f1 and f2.

0 1 2 3

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(0, 1)

(1, 1)

(2, 1)

(3, 1)

Figure 11: Graphical presentation of the domain and image of all possible weak homomorphisms f: P4⟶ L4, where f(0) � (1, 0).

(2, 0, 1)(0, 0, 0)

(0, 0, 3)
(2, 1, 0)(1, 1, 1)(0, 1, 2)

(1, 2, 0)(1, 0, 2)

Figure 12: Double-bridge cubic lattice presentation of all possible weak homomorphisms f: P4⟶ L4, where f(0) � (1, 0).
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i

i0�0


j

j0�0
2i0+j0

n − 1
i − i0, i − j0, i0 + j0

 . (9)

If j0 ≤ j and i0 ≥ i + 1, then for each i0 � i + t′, there are


j− t′

j0�t′
M2

i (j0, i0, k0) shortest paths. Tis can be obtained by

fipping the cubic lattice diagonally. Figure 15 displays
possible end points (i0 � i + t′, j0, k0) when t′ � 1 by big
circles, while small circles stand for all possible origins of
dashed lines with an end point (i0, j0, k0).

Since t′ ≤ j/2, we obtain the following equation:



⌊j/2⌋

t′�1



j− t′

j0�t′

M
2
i j0, i + t

′
, k0  � 

⌊j/2⌋

t′�1



j− t′

j0�t′

2k0
n − 1

j0, i + t
′
, k0

  −
n − 1

j0 + i + 1, t
′
− 1, k0

  . (10)

We replace t′ and j0 with s and j − j0 − s, respectively,
and the total number of shortest paths is as follows:



⌊j/2⌋

s�1


j− 2s

j0�0
2j0

n − 1

j − s − j0, i + s, j0
  −

n − 1

s − 1, n − s − j0, j0
  .

(11)

Adding up over all cases, |WHomj0(Pn, Ln)| is as desired.

3. The Number ofWeak Homomorphisms from
Paths to Stacked Prism Graphs

In this section, we provide the formula for fnding the number
of weak homomorphisms from paths Pn to stacked prism
graphs Yn,m. We denote the set of weak homomorphisms
fromPn toYn,m, whichmaps 0 to (j, i) byWHomji(Pn, Yn,m).
By the symmetry of Yn,m, we obtain the following lemma.

Lemma 6. Let i and n be integers such that 0≤ j< n, and let
m> 2 be a positive integer.

(1) |WHomj0(Pn, Yn,m)| � |WHom(n− j− 1)0(Pn, Yn,m)| �

|WHomji(Pn, Yn,m)| � |WHom(n− j− 1)i(Pn, Yn,m)|, for
all i ∈ 0, 1, . . . , m − 1{ }.

(2) |WHom(P2n, Y2n,m)|�2m
n− 1
j�0 |WHomj0(P2n, Y2n,m)|.

(3) |WHom(P2n+1, Y2n+1,m)| � 2m
n− 1
j�0 |WHomj0(P2n+1,

Y2n+1,m)| +m|WHomn0(P2n+1, Y2n+1,m)|.

Similar to the previous section, we provide some insight
via examples. Figure 16 shows all the possible weak ho-
momorphisms from P4 to Y4,3, which map 0 to (0, 0). Te
numbers on the top are elements of the domain set V(P4),

and the tuples on the left are elements of the image set
V(Y4,3). Figure 17 visualizes weak homomorphisms using
the triple-bridge cubic lattice, where the move from (i, j, k)

to the next point is depicted as follows:

(1) To (i + 1, j, k), if f(x + 1) � f(x) + (1, 0).
(2) To (i, j + 1, k), if f(x + 1) � f(x) − (1, 0).

(3) To (i, j, k + 1) through the dashed line, if
f(x) � f(x).

(4) To (i, j, k + 1) through the dotted upper arc, if
f(x + 1) � f(x) + (0, 1).

(5) To (i, j, k + 1) through the dotted lower arc, if
f(x + 1) � f(x) − (0, 1).

Note that + is the addition modulo m for the second
coordinate of images. Again, normal lines in Figure 16
represent the change in the frst coordinate, dotted arcs
represent the change in the second coordinate, and dashed
lines indicate no change in coordinates.

Terefore, the mappings f3, f4 ∈WHom00(P4, Y4,3)

with f3(0) � (0, 0), f3(1) � (0, 1), f3(2) � (0, 0), f3(3) �

(0, 1), and f4(0) � (0, 0), f4(1) � (1, 0), f4(2) � (2, 0),

f4(3) � (3, 0) are represented by the dotted arcs on the top
and black line, respectively (see Figure 18). Te mapping
f3, f4 is represented by the shortest path from (0, 0, 0) to
(0, 0, 3) and (3, 0, 0) in the 0-ladder triple-bridge cubic
lattice, respectively (see Figure 19).

Cardinality |WHom00(P4, Y4,3)| is the summation of
M3(i, j, k) and M3

0(i, j, k), where i + j + k � 3 (large black
points). Based on Figure 17, if j≤ 0 and i≤ 3, we use
M3(i, j, k); otherwise, M3

0(i, j, k):

(0, 0, 0)

(i, 0, 0)

(i, j, 0)

(0, j, 0)

j0 = j + t

Figure 13: Possible end points in the j-ladder double-bridge cubic lattice when j0 > j.
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WHom00
P4, Y4,3 



 � M
3
(3, 0, 0) + M

3
0(2, 1, 0) + M

3
(2, 0, 1)

+ M
3
0(1, 1, 1) + M

3
(1, 0, 2) + M

3
(0, 0, 3)

� 30
3

3, 0, 0
  + 30

3

2, 1, 0
  −

3

0, 3, 0
   + 31

3

2, 0, 1
 

+ 31
3

1, 1, 1
  −

3

0, 2, 1
   + 32

3

1, 0, 2
  + 33

3

0, 0, 3
 

� 75.

(12)

Similar to the abovementioned example, Figures 20 and
21 visualize the possible weak homomorphisms of the path
P4 to Y4,3, which map 0 to (1, 0). We then use the 1-ladder
cubic lattice, since f(0) � (1, i) for some
i ∈ 0, 1, . . . , m − 1{ }.

Cardinality |WHom10(P4, Y4,3)| is the summation of
M3(i, j, k) and M3

1(i, j, k), where i + j + k � 3 (large black
points). Based on Figure 21, if j≤ 1 and i≤ 2, we use
M3(i, j, k); otherwise, M3

1(i, j, k):

WHom10
P4, Y4,3 



 � M
3
(2, 1, 0) + M

3
1(1, 2, 0) + M

3
(2, 0, 1) + M

3
(1, 1, 1)

+ M
3
(1, 0, 2) + M

3
(0, 1, 2) + M

3
(0, 0, 3)

� 30
3

2, 1, 0
  + 30

3

1, 2, 0
  −

3

0, 3, 0
   + 31

3

2, 0, 1
  + 31

3

1, 1, 1
 

+ 32
3

1, 0, 2
  + 32

3

0, 1, 2
  + 33

3

0, 0, 3
 

� 113.

(13)

(0, 0, 0)

(i, 0, 0)

(i, j, 0)

(0, j, 0)

i0 ≤ i, j0 ≤ j

Figure 14: Possible end points in the j-ladder double-bridge cubic lattice when j0 ≤ j and i0 ≤ i.

(0, 0, 0)

(i, 0, 0) i0 = i + t′

(i, j, 0)

(0, j, 0)

Figure 15: Possible end points in the j-ladder double-bridge cubic lattice when j0 ≤ j and i0 > i.

Journal of Mathematics 9



In general, to fnd |Whomr0(Pn, Yn,m)|, we use
M3

r(i, j, k) to compute the number of shortest paths from (0,
0, 0) to (i, j, k) when j> r, and we use M3

n− r− 1(j, i, k) when
i> n − r − 1; otherwise, we use M3(i, j, k).

Theorem 7. Let m, n be positive integers and j be a non-
negative integer such that m≥ 3 and j< n/2 − 1. It follows
that

WHomj0
Pn, Yn,m 



 � 
i

i0�0


j

j0�0
3i0+j0

n − 1

i − i0, j − j0, i0 + j0
 

+ 

⌊i/2⌋

s�1


i− 2s

i0�0
3i0

n − 1

i − s − i0, j + s, i0
  −

n − 1

s − 1, n − s − i0, i0
  

+ 

⌊j/2⌋

s�1


j− 2s

j0�0
3j0

n − 1

j − s − j0, i + s, j0
  −

n − 1

s − 1, n − s − j0, j0
  ,

(14)

where n − 1 � i + j.

Proof. Analogously to the proof of Teorem 5, we replace
M2(i0, j0, k0) and M2

j(i0, j0, k0) with M3(i0, j0, k0) and
M3

j(i0, j0, k0), respectively. Te theorem is proved. □

4. Main Results

From Lemma 4 and Teorem 5, we obtain the theorem as
follows.

Theorem 8. Te cardinalities |WHom(Pn, Ln)| of weak
homomorphisms from undirected paths Pn to ladder graphs
Ln are as follows:

WHom Pn, Ln( 


 � 4 

⌊n/2⌋− 1

j�0
WHomj0

Pn, Ln( 




+ 1 − (− 1)
n

  WHom⌊n/2⌋0
Pn, Ln( 



,

(15)

where

WHomj0
Pn, Ln( 



 � 
i

i0�0


j

j0�0
2i0+j0

n − 1

i − i0, j − j0, i0 + j0
 

+ 

⌊i/2⌋

s�1


i− 2s

i0�0
2i0

n − 1

i − s − i0, j + s, i0
  −

n − 1

s − 1, n − s − i0, i0
  

+ 

⌊j/2⌋

s�1


j− 2s

j0�0
2j0

n − 1

j − s − j0, i + s, j0
  −

n − 1

s − 1, n − s − j0, j0
  ,

(16)

with i � n − 1 − j.

From Lemma 6 andTeorem 7, we obtain the theorem as
follows.

Theorem 9. Te cardinalities |WHom(Pn, Yn,m)| of weak
homomorphisms from undirected paths Pn to stacked prism
graphs Yn,m are as follows:

WHom Pn, Yn,m 


 � 2m 

⌊n/2⌋− 1

j�0
WHomj0

Pn, Yn,m 




+
m

2
1 − (− 1)

n
  WHom⌊n/2⌋0

Pn, Yn,m 


,

(17)

where
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0 1 2 3

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(0, 2)

(1, 2)

(2, 2)

(3, 2)

Figure 16: Graphical presentation of the domain and image of all possible weak homomorphisms f: P4⟶ Y4,3, where f(0) � (0, 0).

(2, 0, 1)

(1, 0, 2)

(0, 0, 0)

(3, 0, 0)(0, 0, 3)
(2, 1, 0)(1, 1, 1)

Figure 17: Triple-bridge cubic lattice presentation of all possible weak homomorphisms f: P4⟶ Y4,3, where f(0) � (0, 0).

0 1 2 3

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(0, 2)

(1, 2)

(2, 2)

(3, 2)
f4

f3

Figure 18: Graphical presentation of the domain and image of f3 and f4.

(0, 0, 0)

(3, 0, 0)(0, 0, 3)

f4f3

Figure 19: Triple-bridge cubic lattice presentation of f3 and f4.

0 1 2 3

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(0, 2)

(1, 2)

(2, 2)

(3, 2)

Figure 20: Graphical presentation of the domain and image of all possible weak homomorphisms f: P4⟶ Y4,3, where f(0) � (1, 0).

(2, 0, 1)(0, 0, 0)

(0, 0, 3)
(2, 1, 0)(1, 1, 1)(0, 1, 2)

(1, 2, 0)(1, 0, 2)

Figure 21: Triple-bridge cubic lattice presentation of all possible weak homomorphisms f: P4⟶ Y4,3, where f(0) � (1, 0).
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WHomj0
Pn, Yn,m 



 � 
i

i0�0


j

j0�0
3i0+j0

n − 1

i − i0, j − j0, i0 + j0
 

+ 

⌊i/2⌋

s�1


i− 2s

i0�0
3i0

n − 1

i − s − i0, j + s, i0
  −

n − 1

s − 1, n − s − i0, i0
  

+ 

⌊j/2⌋

s�1


j− 2s

j0�0
3j0

n − 1

j − s − j0, i + s, j0
  −

n − 1

s − 1, n − s − j0, j0
  ,

(18)

with i � n − 1 − j.

Te algorithmic complexity of the evaluation of the
formulas is O(n4) for memoryless computation. Tis
complexity can be toned down to O(n3) using linear
space memory. Te computed |WHom(Pn, Ln)| and
|WHom(Pn, Yn,m)| for 2≤ n≤ 19 and 3≤m≤ 4 on a loga-
rithmic scale are presented in Figure 22. Although the
number of weak homomorphisms from paths to ladder
graphs and stacked prism graphs is not bounded, one can
conjecture that the asymptotic behaviour of the formulas,
depending on n, is in exponential form.
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Figure 22: Te size of |WHom(Pn, G)| on a logarithmic scale for 2≤ n≤ 19. (a) G � Ln. (b) G � Yn,3. (c) G � Yn,4.
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