Hindawi

Journal of Mathematics

Volume 2023, Article ID 1416097, 15 pages
https://doi.org/10.1155/2023/1416097

Research Article

@ Hindawi

Exploring the Analytical Solutions to the Economical Model via

Three Different Methods

M. Raheel,"? Khalid K. Ali ®,> Asim Zafar ©,> Ahmet Bekir ©,* Omar Abu Arqub )

and Marwan Abukhaled ¢

'Department of Mathematics and Statistics, Institute of Southern Punjab, Multan, Pakistan
’Department of Mathematics, CUIL, Vehari Campus, Vehari, Pakistan

3Mathematics Department, Faculty of Science, Al-Azhar University, Nast, Cairo, Egypt
4Neighbourhood of Akcaglan, Imarli Street, Number: 28/4, Eskisehir 26030, Turkey
*Department of Mathematics, Faculty of Science, Al-Balqa Applied University, As-Salt, Jordan
GDepartment of Mathematics and Statistics, American University of Sharjah, Sharjah, UAE

Correspondence should be addressed to Ahmet Bekir; bekirahmet@gmail.com

Received 9 November 2022; Revised 22 January 2023; Accepted 5 April 2023; Published 22 April 2023

Academic Editor: Francisco J. Garcia Pacheco

Copyright © 2023 M. Raheel et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this article, the analytical solutions of economically important model named as the Ivancevic option pricing model (IOPM)
along new definition of derivative have been explored. For this purpose, exp, function, extended sinh-Gordon equation expansion
(EShGEE) and extended (G’/G)-expansion methods have been utilized. The resulting solutions are dark, bright, dark-bright,
periodic, singular, and other kinds of solutions. These solutions are obtained and also verified by a Mathematica tool. Some of the
gained results are explained by 2-D, 3-D, and contour plots.

1. Introduction

Many mathematical models have been developed in many
areas of sciences in the form of nonlinear partial differential
equations (NLPDEs). Numerous techniques are made to
gain exact solutions of NLPDEs such as generalized expo-
nential rational function scheme (GERFS) [1-4],
(m + 1/G)-expansion and Adomian decomposition schemes
[5], new generalized expansion method [6], simplest
equation and Kudryashov’s new function techniques [7],
modified simple equation scheme [8], modified Kudryashov
simple equation technique [9], first integral technique [10],
Backlund transformation scheme [11], extended jacobi el-
liptic function expansion technique [12], and extended
(G/G)-expansion and improved (G'/G)—expansion schemes
[13].

In modern century, one of the most studied fields
from all over the world is the economy or finance.
Therefore, such problems were studied to be explained

and investigated by using scientific norms. Thus, such
works introduce more intellectual ways for the user.
Therefore, to observe financial market is highly impor-
tant. Deeper properties of the modeling of a global fi-
nancial market produce global informative systems.
Especially, these dynamical systems can be used for deep
investigation of the productions. The first step is to
treatment its mathematical models being either complex-
valued or real values with wave function. Therefore, many
models were developed by experts in extracting their
wave distributions in today and future direction. In our
study, we use three methods exp, function, extended
sinh-Gordon equation expansion (EShGEE), and ex-
tended (G'/G)—expansion methods. These methods have
various applications. Likely, some new kind of analytical
results of perturbed Gerdjikov-Ivanov model (pGIM)
have been achieved by using exp, function and extended
tanh function expansion methods in [14]. By applying
exp, function and hyperbolic function methods, various
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types of wave solutions of two nonlinear Schrodinger
equations are gained in [15]. New trigonometry and
hyperbolic function type soliton solutions of (2 + 1)-di-
mensional hyperbolic and cubic-quintic nonlinear
Schrédinger equations are achieved by applying extended
sinh-Gordon equation expansion technique in [16].
Bright, dark, and bright-dark soliton solutions of gen-
eralized nonlinear Schrodinger equation have been de-
termined by utilizing extended sinh-Gordon equation
expansion approach in [17]. Some exact solitons of
(2 +1)-dimensional that improved the Eckhaus equation
are calculated by using extended (G'/G)-expansion
technique in [18]. Different types of exact solitons of
time-fractional parabolic equations are obtained by using
extended (G’/G)—expansion scheme in [19].

Our considering model is one of the important and
interesting economical models, namely, the Ivancevic
option pricing model (IOPM). It can be possible to derive
the Ivancevic option pricing model by using the Brow-
nian movement like the Black-Scholes option pricing
model. The Ivancevic option pricing model is an adaptive-
wave model which is a nonlinear wave alternative for the
standard Black-Scholes option-pricing model, repre-
senting controlled Brownian behavior of financial mar-
kets, which is formally defined by adaptive nonlinear
Schrodinger (NLS) equations, defining the option-pricing
wave function in terms of the stock price and time. In the
literature, few techniques have been used on this model to
get different exact solutions. For example, new solutions
have been achieved in this model by applying the frac-
tionally reduced differential transform technique in [20].
Dark, bright, dark-bright, complex, travelling, periodic,
trigonometric, and hyperbolic function solutions have
been achieved by applying rational sine-Gordon expan-
sion scheme and modified exponential method in [21].
Rogue wave and dark wave solitons of the Ivancevic
option pricing equation have been obtained by using the
trial function method in [22].

The fundamental purpose of the work is to explore
analytical solutions of the truncated M-fractional Ivancevic
option pricing model based on exp,, function, extended sinh-
Gordon equation expansion, and extended (G /G)-expan-
sion methods.

The paper is structured as follows: The brief introduction
of model has been given in Section 2, together with other
useful properties and characterizations. Section 3 contains
the description of methodologies. The mathematical analysis
of model and its analytical solutions have been provided in
Section 4. Section 5 some solutions have been represented
through different types of graphics. Finally, Section 6
contains some discussion about the graphs and conclusion
of our research.

2. Model Description

Scholes and Robert Merton published their now-well-known
option pricing formula which would have an important
effect on the development of quantitative finance. In their
model, typically known as Black-Scholes, the value of an
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option depends on the future volatility of a stock rather than
on its expected return. The Ivancevic option pricing model is
an adaptive-wave model which is a nonlinear wave alter-
native for the standard Black-Scholes option-pricing model,
representing controlled Brownian behavior of financial
markets, which is formally defined by adaptive nonlinear
Schrodinger (NLS) equations, defining the option-
pricing wave.

Let’s assume the M-fractional Ivancevic option pricing
model (IOPM) [22] given as follows:

1)
1D+ DySa+Qqlgl’ =0,0= V-1, (1)
where Dit.q=1lim, _ q(t E, (tt'"%) = q(t)/7,0<
£<1,0>0.

This model was first developed by Ivancevic [23] to fulfill
both behavioral and efficient markets. Here, g =q(s,t)
describes the option price wave profile. While t is time
variable and s is asset price of the model. Parameter §
represents the volatility which shows either stochastic
process itself or only a constant. Where Q = Q (7, w) is called
Landau coeflicient which describes adaptive market potential.
In nonadaptive simplest case, Q2 and r become equal which
shows the interest rate while in adaptive case, Q (7, w) may be
connected to market temperature and it depends on the set of
tractable parameters {W,}. In third term, |q|> shows the
probability density function which denotes the potential field.

3. Description of Methodologies

3.1. Summary of exp, Function Scheme. Here, we will give
complete concept of this scheme.
Assuming the nonlinear partial differential equation
(PDE),
2
G( 42> 0> Gut> D> o - - -) = 0- (2)

Equation (2) transformed into nonlinear partial differ-
ential equation as follows:

A@Q.Q...) =0 3
By using following transformations,

q(x, ,t) =Q((),{ = ax + by + rt. (4)
Considering root of equation (3) is shown in [24-27].

ap +ayd + ..+, d™

c‘ m()dio,l) (5)
Bo+pid +--+p,d

QD) =

where «; and f;(0<i<m) are undetermined. Positive in-
tegral value of m is calculated by utilizing homogenous
balance technique in equation (3). Putting equation (5) into
equation (3) gives

o(d) = £+ 6,d +- 4 £,d° =0 (6)

Taking #; (0<i<t) in equation (6) equal to 0, a set of
algebraic equations is gained which is given as
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¢; = 0,wherei =0,...,t. (7)

By using the got roots, we attain analytical results of
equation (2).

3.2. Detail of Extended Sinh-Gordon Equation Expansion
Method (EShGEEM). Here, we will describe main steps of
this technique.

Step 1:
Let a nonlinear partial differential equation be given
as
Z(f’D(]x\;I}jtfz’fzfx’fy’fyy’fxx’fxy’fxt’ c ) = 0’
(8)
where f = f(x, y,t) denotes the wave function.
Assuming the travelling wave transformation,
F(y+1 @
oy )=F@,E=x—vy+ (ya L) ©)

Inserting equation (9) into equation (8), we attain the
nonlinear ODE given as

z(m), F2(£>F’<£>,F”<f>,---) 0. (10)

Step 2:

Assuming the results of equation (9) in the series form,

F(p)=ag+ Y (Bsinh(p) +acosh(p)).  (11)
i=1

Here, o, o, and f3; (i = 1,2,3,---,m) are unknowns.
Consider a function p of & that satisfies the following
equation:

d

d—if = sinh (p). (12)

Natural number m can be attained with the use of
homogenous balance approach. Equation (12) is gained
from sinh-Gordon equation as shown as

4y = ksinh (v). (13)

By what being present in [28], we get the results of
equation (13) given as follows:

sinhp (&) = xcsch(€) orcosh p(€) =+ coth(£). (14)

In addition,
sinh p (&) = + 1sec h(§) or cosh p () = + tanh (§),
(15)
where 12 = —1.
Step 3:

Using equation (11) with equation (13) into equation
(10), we get the algebraic equations involving

p (Osinh! p  (E)cosh™ p(&) (k=0,1;1=0,1; m =

0,1,2,...). We take the every coefficient of
p (¢ )sinh’ p(Ocosh™ p({) equal to 0, to attain system
of algebraic equations having 7% a5« and
Bi(i=1,2,3,...,m).

Step 4:

By solving the obtained system of algebraic equations,
one may obtain value of v, «, a, ; and ;.

Step 5:

By achieved solutions, equations (14) and (15), we get
the wave solitons of equation (10) shown as

F()=ay+ i (£B;esch (&) + ocicoth(f))i, (16)

i=1

F(&)=ay+ Y (+ifsech() + atanh ().  (17)
i=1

3.3. Explanation of Extended (G /G)—Expansion Method.
Here, we will represent some main steps of method given in

Step 1: Considering the nonlinear PDE,

Z(f DA £ fxo s Fyyps Faw Py Fxn o) = 0,
(18)

where f = f(x, y,t) denotes the wave profile.
Considering the travelling wave transformations:
Step 2:

fle,yt)=F(&),E=x-»y +y (xt™).  (19)

Using equation (19) along equation (18), we attain the
nonlinear ODE as follows:

Z(F<£>,F2 (OF (5),F (),.. ) —0. (20

Step 3:
Assuming the results of equation (20) in the series form
given as
SNEAGAY
F(§) = oc,-(— : (21)
,-;m G(©)
In equation (21), oy and ;, (i = =1, £2,+3,..., +m)

are undetermined and «; #0. Applying homogenous
balance technique into equation (20), natural number
m can be obtained.

Function G = G(&) satisfies the Riccati differential
equation.

" i ! 2
dGG - aG* -bGG - c<G ) =0, (22)

where a, b, ¢, and d are constants.
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Step 4: When b+#0 and b + 4a(d — ¢) >0, then
Considering equation (22) has roots in the form:

G®)_ b
G (&) 2(d-o¢)
\/m Cﬁinh(ﬂ/W/Zd) + Czcosh<£\/m/2d> (23)
+ .
2d-9 clcosh<5\/m /2d> + Czsinh<£\/m /2d>

When b#0 and b* + 4ad — 4ac < 0, then

G@E\_ b
G©® ) 2(d-0)

24
5 [ C, cos| EV4ac - 4ad - b /2d | - C, sin &\4ac - 4ad - b* /2d (24)
N Vdac —4ad - b
2(d - '
(d-c) C, cos(f 4ac - 4ad - b° /Zd) +C, sin(E 4ac - 4ad - b° /2d>
When b+#0 and b + 4a(d — ¢) = 0, then When b =0 and a(d —¢) >0, then
G (9 b dD
— + . 25
<G<£>> 2d-0 ' @-oc-py P
G @\ vad — ac <Clsinh(£\/ad —ac/d)+ C,cosh(é+a(d —c¢) /d)) (26)
G(&) (d-c) \C,cosh(&Vad - ac/d) + C,sinh (évJa(d - c)/d))
When b =0 and a(d - ¢) <0, then
G (&) _Aa(c=d) (C2 cos(éVac —ad /d) — C, sin(é+/a(c —d) /d)) (27)
G d-c C, cos(§Vac —ad /d) + C, sin(§va(c - d) /d) )’
where g, b, ¢, d, C,, and C, are constants. attain a set of algebraic equations involving v, «,
Step 5: a;, (i=0, £1, +2,..., +m), and other parameters.
Putting equation (21) with equation (22) into equation Step 6:
(20) and collecting coefficients of each power of Finding the gain system of equations with the use of

(G ()IG(&)). Taking every coefficient equal to 0, we the tool.



Journal of Mathematics

Step 7:

Putting the attained solutions into the equation (21)
and we gain analytical solutions of equation (18).

F(p+1)

q(s,t) = Q({) x eXP<l<

where Q({) shows the amplitude of wave function while p
and T represent the time velocity. Parameters 4 and A are
obtaining from asset price of the product.
Using equation (28) into equation (1), we gain real part
and imaginary part given as
Real part:
20Q° +V°Q ~ (8 +2p)Q = 0. (29)
Imaginary part:
(Sul + T)Q, =0. (30)

From equation (30), we get the velocity of wave function
given as follows:

(ps +

5
4. Mathematical Treatment of Model
Suppose the travelling wave transform given as
Pte)>>,( _Ile+l) (As® + 7t%), (28)
€

Utilizing the homogenous balance method into equation
(29), we achieve m =1

Now, we will gain the exact solutions of equation (29) by
using three abovementioned methods.

4.1. Analytical Solutions via exp, Function Technique.
Equation (5) changes into the following for m = I:
o+ (xld(
o+ B
Inserting equation (32) into equation (29), a system of

equations is achieved. By solving the system, we obtain
different solution sets given as follows:

QD) (32)

7= -8ul. (31) Set 1:
1B, Vo Aog (d) iB, Vo Alog(d) 1
{%z 0 R L Vo ,p:—ZS(Azlogz(d)+2y2)}. (33)
From equations (28), (32) and (33), we get
~ 1VoMog(d) [ By~ pud’
q($> t) 2\/5 </30 +ﬁ1d(> (34)
X exp(z(yr(e: 1)58 - ES(AZ log” (d) + 24°) @ﬁ)).
Set 2:
Vo Alog(d i,V Alog(d 1
{% _ 1By 2\/ﬁog( )’(X1 _ iB 2\/@"%( ),P _ —Zﬁ(Azlogz(d) +2;42)}. (35)

From equations (28), (32) and (35), we get



q(s,t) =

2V/Q

Where { = AT (o + 1)/e(s® — ut®).

4.2. Exact Solutions through EShGEEM. For m =1, equa-
tions (9), (16) and (17) and become

Q({) = ay + Byesch () + agcoth (0), (37)
Q(0) = ay + 1B;sech ({) + atanh (), (38)
Q(0) = ay + fysinh (p) + a;cosh (p). (39)

Here, ), a;,and 3, are undetermined. Utilizing equation
(39) into equation (29), we attain algebraic equations
containing a, «;,3; and other parameters. By using the
Mathematica tool, we get different solution sets given as

Set 1:
{oco =0,a; = l\/\/—_A Bi=0,p= 8(2/\2 +‘u2)}.
(40)

From equations (28), (37) and (40), we get

4 (st) = x’\/\gcoth(()
con{ (TR L pyre D))
(41)
From equations (28), (38), and (40), we get
B (s,0) = :%tanh(o
con{ (T Lo pyre )
(42)
Set 2:
{ao —0,a, = ”\//—_A B, =0,p= —%a(zﬁ +,ﬁ)}.
(43)

From equations (28), (37), and (43), we get

1oL log(d) <ﬁ0 —B,d°
Bo + ,Bld(

r 1
xexp(t(y (9: )ss—
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(36)

1 T(o+1),
70(¥10g’ (@) + Zyz)yt ))

9 (s,t) = £ f@coth(f)

X eXp< ( F(g+ D s 18(2/12 +y2)7r(9: 1)t€>>.

(44)

From equations (28), (38), and (43), we get

g (s,t) = £ j—_ tanh ()

Xexp(( r(g+1)g_15(u2 )F(g:l)te))

(45)

Set 3:

{ocO:OOcl: [\/\/—_Aﬂlz ;%,p:—;l(?(lz+2yz)}.

(46)
From equations (28), (37), and (46) we get
g, (s,t) =7 \\//—. (coth ({) + csch ({))
X exp<z</4 @56 - }18(12 + 2/42) @f’)).
(47)

From equations (28), (38), and (46), we get

g, (s,1) = F——= \\//___ (¢1sech ({) + tanh ({))

X exp<t<y @se - }18()@ + 2/42)@5)).
(48)

Set 4:

{(xo =0,ay = H/\/__A B = ;\/f(_;\,p = —28(}(2 + ZMZ)}.

From equations (28), (37), and (49), we get



Journal of Mathematics

q, (s, t) = \/\/__ (+coth ({) Fcsch ()

T(p+1), 1 T(p+1),
X exp(t(y — S Z(S()LZ + ZyZ)Tt >>
(50)
From equations (28), (38), and (49), we get

q, (s,t) = \f/—_ (xtanh({) F: sech({))

r 1 1
X exp(t(y Mse - Zé()tz +2u°
€

) F(Q: l)t€>>.

(51)

Set 5:

A A
{ =0, = ’26_ /31:12\/\/—_ —i&(aﬂzyz)}.

(52)
From equations (28), (37), and (52), we get
q,(s,t) =~ \5— (xcoth ({) Fcsch ({))
IF'(e+1), 1 I'(e+1),
X exp(z(ﬂTs - Z(S(AZ + Zyz)Tt >>
(53)
From equations (28), (38), and (52), we get
q, (s,t) = —% (xtanh ({) Frsech ({))
T(p+1), 1 T(p+1),
X exp(t(y — s - Z(S()LZ + 2[42) Tt >>
(54)
Set 6:
VoA VoA 1
*{(XOZO,OCI \/_ ﬁl 2\/— _——6(A2+2‘u2)}.
(55)
From equations (28), (37), and (55), we get
q,(st) = \f/—— (coth ({) + esch (())
IF'(e+1), 1 I'(e+1),
X exp(z(ﬂTs - Z(S(AZ + Zyz)Tt >>
(56)

From equations (28), (38), and (55), we get

q,(s,t) = £ 12\/\/5_% (1sech ({) + tanh ({))
X exp<t</,t HQTmse - :118()L2 + 2[42) @f))‘
(57)

Set 7:

{cxo =0,a,=0,8, = —%,p = %5(}8 —pﬂ)}. (58)

By using equations (28), (37), and (58), we obtain

a0 (s1) = :% csch Q)
x eXp(t(y@se #2004 @t))
(59)
From equations (28), (38) and (58), we get
9 (s:t) = +%sech(()
x eXp(l(yr(Q;— e Lo —,ﬁ)@tf)).
(60)

Set 8:

{oco 0, = 0,p, =%,p =%5(A2 —;f)}. (61)

From equations (28), (37) and (61), we get

q,(s,t) = £ lﬁﬂl csch ({)
X exp(l(y@sE + %8(1\2 - ;f)@tﬂ).
(62)
From equations (28), (38), and (61), we get
q,(s,t) = 1%sech(()

X exp(z(yr(g: 1)56 + %8(/\2 = #2) F(g€+ 1)t€>>,

(63)

where { = AT (o + 1)/e (s — Sp)te.

4.3. Analytical Solutions via Extended (G /G)-Expansion
Technique. Equation (21) changes into following form for
m=1:
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G (0) -1 G 0 Inserting equation (64) along equation (22) into equa-
Q) =a_ (—) 0 <—>, (64) tion (29) and manipulating the set having a_;, &, «; and
G(0) GO other parameters, we gain different sets of solutions given as
where a_,, &y and «, are undetermined. Set 1:

1a Vs A b5 ) 8(4al’ (d - ¢) + B°A* + 2d%y%)
o = . (65)

3 = bl :07 =
dva YT gy Tor ad’

From equations (23), (28), (64), and (65), we get

dvQ d-c)

| V-ac+ dad + b? (C,sinh ({V—4ac + 4ad + b? /2d) + C,cosh ({N—4ac + 4ad + b2 /2d) \
2(d-c) C,cosh ({V-4ac + 4ad + b* /2d) + C,sinh ({ V—4ac + 4ad + b* /2d) (66)

Qs 1) = 1\/_)L< ( b

P+ 1), S(4aX*(d-0+ bV +2d%") 1o+ 1),
xexp| | p P 4d> € ! '

From equations (24), (28), (64), and (65), we get

. VoA (b b
a0 =252\ 2a=9

. Vdac - 4ad - b* [ C, cos({V4ac — 4ad — b* /2d) — C, sin({V4ac — 4ad — b*/2d) -
2(d-o¢) C, cos({V4ac — 4ad - b? /2d) + C, sin ({V4ac — 4ad - b? /2d) (67)

Ple+ 1), (4aV(d-9+bV +2d%) 1o+ 1),
xexp| (| p P 4d? € t ’

From equations (26), (28), (64), and (65), we get

(5.1) = 1aVoA (Vad — ac (C,sinh({Vad - ac /d) + Cycosh ({Vad — ac/d) !
q(st) = o)

(d-c¢) \Cjcosh({Vad - ac/d)+ C,sinh({Vad — ac /d)
(68)
8(4a)*(d - I’
xexp<t<yr(96+ l)se ~ (4a ( 4d62) +2d°u ) F(g€+ 1)t6>>.

From equations (27), (28), (64), and (65), we get
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(5.1) = VoA (Vac—ad (C,cos({Vac—ad/d) - C, sin({Vac - ad /d) !
1= dvQ d-c \C,cos({Vac— ad/d)+ C,sin({Vac —ad /d)
(69)
<< Flo+1), 6(4a)t2(d—c)+2d2y2)r(g+1)e>>
xexp| (| u s - > t .
€ 4d €
Set 2:
_aVed _bVBA (4ar’ (d - o) + B°\* + 2d°y?) 70)
T ava M T v M TP 4d’ '

From equations (23), (28), (64), and (70), we get

( t)_t\/gxl b b
1= 376\ 2" N\ 2 -0

_V—4ac + 4ad + b* (C;sinh ({V-4ac + 4ad + b /2d) + C,cosh ({ V- 4ac + 4ad + b* /2d) -
' 2(d-c¢) C,cosh ({V-4ac + 4ad + b* /2d) + C,sinh ({V—4ac + 4ad + b* /2d) 71

Fe+1) . 0(4al (-0 + b2 +28%)) T(g+ 1),
xexp| | p e S 4d? € ! '

From equations (24), (28), (64), and (70), we get

( t)_t\/g/\ b b
10 =7a\2 "N\ 2a@-o

_Vdac —4ad - b* (C, cos ({V4ac - 4ad - b* /2d) - C, sin ({V4ac — 4ad - b*/2d) -
C o 2(d-o C, cos(¢V4ac — 4ad — b? /2d) + C, sin({V4ac — 4ad — b* /2d) (72)

T(o+1) . 0(4al*(d-c)+b" A +2d°4*) T(p+1) .
Xexp ! ﬂ € s - 4d2 ¢ t .

From equations (26), (28), (64), and (70), we get

q(s,t)

_ 1a\/o) (Vad —ac (Cysinh({Vad — ac/d) + C,cosh ({Vad — ac/d) !
T dva\ d-o C,cosh ({Vad — ac/d) + C,sinh ({Vad — ac /d)

(73)
204 2 2
Xexp<l<#r(g+1)se_5(4aa (d—c)+2d°y’) r(9+1)te>>.

€ 44% €

From equations (27), (28), (64), and (70), we get
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( t)_ta\/&\ Vac —ad [ C,cos({Vac —ad/d) - C, sin({Vac — ad /d) !
70 = dvQ d-c \C,cos({Vac— ad/d)+ C,sin({Vac - ad /d)

Le+D) . d(4aN (=0 + 20 ) T(o+1)
xexp| (| u 65— 4d> et ’

(74)

Set 3:

(75)

VB VBMe-d)  8(4ar’(d - ) + N + 2d°)
a1 =0a = zdm)“l— ava P = 1d’ :

From equations (23), (28), (64), and (75), we get

a(s.t) = —z\/3A<b (zza

dva \2

“dac+sad+ b Clsinh(i —~4ac + 4ad + b’ /Zd) + Czcosh({ ~4ac + 4ad + b’ /2d>
' 2

(76)
Clcosh<( ~4ac + 4ad + b /Zd) + Czsinh(( —4ac + 4ad + b° /2d>

T(o+1), 0(4ar*(d-c)+b°N* +2d°)*) T(o+1) .
xexp| | p e S - 4d? € ! ’

From equations (24), (28), (64), and (75), we get

VoA <b

q(s,t) = ava\z

- 8 /2d ) - C, sin( {\-4ad + 4ac - b*
b +\/:m CzCOS(C 4ad + 4ac b/zd) Clsln<( 4ad + 4ac b/zd)
2(—c+d 2(—c+d
(—c+d) (-c+d) Clcos<( —4ad+4ac—b2/2d>+Czsin<{\/m/2d>

T(o+1), 0(4ad’(d-c)+b°A* +2d%*) T(p+1) .
xexp| | p c s - o . ¢ )

+(-d+¢)

(77)

From equations (26), (28), (64), and (75), we get
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(5.1) = 1(c = d)Vér (\/a(d -c) (Clsinh((\/ad —ac/d) + Cycosh ({Vad - ac/d)))
TSH = dva (d-c) \C,cosh({Vad - ac/d) + C,sinh ({Vad — ac/d)
(78)
8(4a\’ (d - d*u?
xexp(t(yr(e: l)se ~ (4a ( 4;2) +2d°u ) F(g€+ l)t€>>.
From equations (27), (28), (64), and (75), we get
(5.6) = 1(c —d)\Vor (\/ac —ad (C2 cos({Vac —ad /d) - C, sin({Vac - ad/d)))
1= dva d-c \C,cos({Vac-ad/d)+C,sin({Vac - ad /d)
(79)
T(o+1) . O(4ar’(d-c)+2d%)T(o+1).
xexp<1<y (Q: )s - ( ¥e ! ) (Q€+ )t .
Set 4:
o 0V EAe-d) 8(4ar*(d - o) + B°N* + 2d°)”) (30)
RO T T ava P 4d? '
From equations (23), (28), (64), and (80), we get
VoA (b b
1(s0) = d\/§<§+(c_d)<2(d—c)
Voamerad v Clsinh<( ~4ac + 4ad + b /Zd) + Czcosh<( ~4ac + 4ad + b /2d> .
f 81

2(d-
(-0 Clcosh<( ~4ac + 4ad + b* /Zd) + C25inh({ —4ac + 4ad + b* /2d>

T(o+1), 0(4ar*(d-o)+b°N +2d°)" ) T(o+1) .
xexp| | p e T 4d2 € t '

From equations (24), (28), (64), and (80), we get
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FIGURre 1: Structure of (34) for § =0.5,A =0.3,0=0.1,4=2,Q0=0.7,5,=0.1,5, =0.1,d =0.1,e = 1.

VoA (b b
R~ e e

Vg —aad — 1 C, cos(( 4ac — 4ad - b* /Zd) -C, sin<( 4ac — 4ad - b* /2d>
ac — 4ad -

C2(d-
(d=c) C, cos(( ~4ad + 4ac - b° /2d) +C, sin<( —4ad + 4ac - b° /2d)

T(e+1) . 0(4ar’(-c+d)+b°N* +2d%*)r(o+1),
xexpl | p—_—5"~ o — ]

From equations (26), (28), (64), and (80), we get

(5.6) = 1(c - d)Vér (\/ad —ac <Clsinh((\/ad —ac/d) + Cycosh ({Vad — ac /d)))
A dv/a (d-c¢) \Ccosh({Vad - ac/d) + C,sinh ({Vad — ac /d)

(83)
X exP<l<”r(9 - 1)36 - 8(4(1/12 @-ar 2d2pt2) Lo+ l)te>>.

€ 44% €

From equations (27), (28), (64), and (80), we get
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FIGURE 2: Structure of (41) for § =0.5,A =0.1,0=0.5,4=1,Q=0.1,e = 1.
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FIGURE 3: Structure of (66) for § = 0.3,A =0.4,0 = 0.5,y = 6,Q0 =0.4,d =0.17,a = 0.1,¢ = 0.01,b = 0.4,C, = 0.4,C, = 0.5.

(5.1) = l(C—d)\/SA(\/aC —ad <C2 cos({Vac —ad/d) - C, sin((\/ac—ad/d)))
7n»0= dvQ d-c \C,cos({Vac -ad/d)+ C,sin({Vac — ad /d)

(84)

Le+1) . d(4al’(d-c)+2d°%) T(o+1) .
xexpl i\ p— 5 ~ 4d> € ‘ '

Here, {=Al(p+1)/e(s*—0ut?) for all above-
mentioned solutions.
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5. Illustrations with Graphics

In this portion, we will represent some 2-D, 3-D, and
contour structures that help us to classify the type of results.
Figures 1-3 show some of the analytical solutions. In Fig-
ure 1, we apply our technique to represent the plot of (34) for
§=051=030=0Lu=2 Q=07p=0.1p =0.1,
d = 0.1, e = 1. Furthermore, Figure 2 denotes the plot of (41)
8=051=01,0=05u=1,Q=01,e=1. Finaly, the
plot of (66) for § =0.3,A=0.4,0=0.5,u=6,Q=04,d =
0.17,a=0.1,c =0.01,b=04,C, =0.4,C, =0.5 is pre-
sented in Figure 3. We see that the wave retains its shape
over time, moves to the right, and breaks by changing the
value of e.

Through our analysis of the forms presented in the
previous section, we can reach important results as follows:
First, in Figure 1, we apply the exp, function technique to
represent the plot of (34) at § =0.5,1=0.3,0=0.1,4 =2,
0=078,=0.1,3 =0.1,d = 0.1,e = 1. Further, Figure 2
denotes the plot of (41) at § = 0.5, = 0.1,0 = 0.5,y = 1,Q =
0.1,€ = 1 using EShGEE technique. Finally, the plot of (66)
for §=03,1=04,0=0.5uy=6,Q=04,d=0.17,a=0.1,
c=0.01,b6=04,C, =0.4,C, = 0.5 presented in Figure 3
using the extended (G'/G)-expansion technique.

6. Conclusion

In this article, we obtain modernistic analytical
solutions to the Ivancevic option pricing model along M-
fractional derivative by utilizing exp, function, extended
sinh-Gordon equation expansion, and extended
(G,/G)-expansion methods. The achieved results are also
verified and demonstrated with different plots by
Mathematica tool. The obtained results are also explained
graphically by 2-dimensional, 3-dimensional, and con-
tour plots. Finally, it is suggested that to deal with the
other fractional nonlinear PDEs, the exp, function, ex-
tended sinh-Gordon equation expansion, and extended
(G'/G)-expansion methods are very helpful, reliable, and
straight forward. The results achieved in this paper may
be useful for the progress in the supplementary analyzing
of this model.
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