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In this paper, we consider the dual Toeplitz operators on the orthogonal complement of the Fock–Sobolev space and characterize
their boundedness and compactness. It turns out that the dual Toeplitz operator Sf is bounded if and only if f ∈ L∞, and
‖Sf‖ � ‖f‖∞. We also obtain that the dual Toeplitz operator with L∞ symbol on orthogonal complement of the Fock–Sobolev
space is compact if and only if the corresponding symbol is equal to zero almost everywhere.

1. Introduction

Let C denote the set of complex numbers and fx a positive
integer n. Let

C
n

� C × · · · × C. (1)

denote the Euclidean space of dimension n. For
z � (z1, . . . , zn) and w � (w1, . . . , wn) in Cn, we write

z · w � < z, w> � z1 · w1 + · · · + zn · wn,

|z|
2

� < z, z> � z1



2

+ · · · + zn



2
.

(2)

Let dv be the Lebesgue measure on Cn and dvα(z) �

(α/π)n · e− α|z|2dv(z) be the Gaussian measure on Cn, where
α> 0. Let Bn(w, s) � {z ∈ Cn: |z − w|< s} be the ball with
center w with radius s. Let H(Cn) be the set of the hol-
omorphic functions on Cn.

Te Fock space F2
α consists of all entire functions f onCn

such that

f(z) · e
−
α
2

|z|
2

∈ L
2
C

n
, dυ( ,

(3)

or equivalently, F2
α � L2(Cn, dυ)∩H(Cn), with the norm

‖f‖2 � 
Cn

|f(z)|
2
dυα(z) 

1/2
. (4)

Ten, F2
α is a Hilbert space with the inner product

〈f, g〉α � 
Cn

f(z)g(z)dυα(z). (5)

For any multi-index c � (c1, . . . , cn) ∈ Nn, write
|c| � c1 + · · · + cn, c! � c1! · · · cn!, and zc � z

c1
1 · · · z

cn
n . For

m ∈ N, the Fock–Sobolev space of order m is defned by

F
2,m
α � f ∈ H C

n
( : D

c
f(z) ∈ F

2
α for|c|≤m , (6)

where Dcf(z) � zc1
z1

· · · zcn
zn

f.
Te Fock–Sobolev space was introduced in [1], where

they proved that f ∈ F2,m
α if and only if the function zcf(z)

is in F2
α for all multi-indexes c with |c| � m. Tis shows that

the Fock–Sobolev space can also be equivalently defned as

F
2,m
α � f ∈ H C

n
( : z

c
f(z) ∈ F

2
α for|c| � m , (7)

with the norm

‖f‖α,2,m � c(α, 2, m)
Cn

z
m

f(z)e
−
α
2

|z|
2





2�����������
dυ(z)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

1/2

,

(8)
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where c(α, 2, m) � 1/|c|�mm!/αm(π/α)n.
Moreover, F2,m

α is a Hilbert space with the corresponding
inner product

〈f, g〉F2,m
α

�
α
π

 
n αm+n− 1

(m + n − 1)!

Cn

|z|
2m

f(z)g(z)e
− α|z|2

dυ(z)

�
αm+n− 1

(m + n − 1)!

Cn

|z|
2m

f(z)g(z)dυα(z).

(9)

Write L2(Cn, |z|2mdυα) as the L2-integrable space under
the measure |z|2mdυα on Cn, with the norm

‖f‖L2 �
αm+n− 1

(m + n − 1)!

Cn

|f(z)|
2
|z|

2m
dυα(z) 

1/2

, (10)

for f ∈ L2(Cn, |z|2mdυα). Obviously, F2,m
α is a closed sub-

space of L2(Cn, |z|mdυα).
It is not difcult to check that

ek(z) �

�����������������������

α|k|
(m + n − 1)!(n + |k| − 1)!

k!(n − 1)!(m + n + |k| − 1)!



· z
k (11)

forms an orthonormal basis for F2,m
α , where k � (k1, . . . , kn)

runs over all multi-indexes of nonnegative integers (see
[2, 3] for more details). Direct calculation reveals that the
reproducing kernel of F2,m

α is

K
α
(z, w) � 

k

ek(z)ek(w)

�
(m + n − 1)!

(n − 1)!


k∈Nn

(n +|k| − 1)!(αzw)
k

k!(m + n +|k| − 1)!

�
(m + n − 1)!

(n − 1)!
·

d
n− 1

dλn− 1
e
αzw

− Pn− 1+m(αzw)

(αzw)
m

⎧⎨

⎩

⎫⎬

⎭

�
(m + n − 1)!

(n − 1)!
Dmk

α
z(w),

(12)

where Pn− 1+m(αzw) is the Taylor polynomial of eαzw of order
n − 1 + m and kα

z(w) is the normalized reproducing kernel
at z.

Let Pα be the orthogonal projection from
L2(Cn, | · |2mdυα)⟶ F2,m

α , that is,

Pαf(z) �〈f, K
α
z〉F2,m

α
�

αm+n− 1

(m + n − 1)!

Cn

|z|
2m

f(z)K
α
z(w)dυα(z).

(13)

For f ∈ L∞, the Toeplitz operator with symbol f from
F2,m
α ⟶ F2,m

α is defned by

Tfg � Pα(fg). (14)

Te Hankel operator with symbol f from
F2,m
α ⟶ (F2,m

α )⊥ is defned by

Hfg � Qα(fg) � I − Pα( (fg), (15)

where Qα is the orthogonal projection from
L2(Cn, dυα)⟶ (F2,m

α )⊥ and for arbitrary u ∈ (F2,m
α )⊥,

H
∗
f

 u(z) � 〈H∗
f

u, K
α
z〉F2,m

α

� 〈u, H
f

K
α
z〉F2,m

α

�
α
π

 
n αm+n− 1

(m + n − 1)!

Cn

|w|
2m

u(w)H
f

K
α
z(w)e

− α|w|2
dυ(w)

�
α
π

 
n αm+n− 1

(m + n − 1)!

Cn

|w|
2m

u(w) I − Pα(  fK
α
z (w)e

− α|w|2
dυ(w)
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�
α
π

 
n αm+n− 1

(m + n − 1)!

Cn

|w|
2m

u(w) fK
α
z − Pα fK

α
z  (w)e

− α|w|2
dυ(w)

�
α
π

 
n αm+n− 1

(m + n − 1)!

Cn

|w|
2m

u(w)f(w)K
α
z(w)e

− α|w|2
dυ(w)

− 〈u, Pα fK
α
z 〉F2,m

α

�
α
π

 
n αm+n− 1

(m + n − 1)!

Cn

|w|
2m

u(w)f(w)K
α
z(w)e

− α|w|2
dυ(w)

�
αm+n− 1

(m + n − 1)!

Cn

|w|
2m

u(w)f(w)K
α
z(w)dυα(w). (16)

Te dual Toeplitz operator with symbol f from
(F2,m

α )⊥ ⟶ (F2,m
α )⊥ is defned by

Sfu � Qα(fu) � I − Pα( (fu). (17)

As we know, operator theory has developed rapidly since
the beginning of the last century. It is closely related to
function theory, topology, and other mathematical branches
on function space. Te application of operator theory is also
gradually widespread, and it has been deeply applied into the
feld of other disciplines, such as quantum physics. Te
Toeplitz operators, dual Toeplitz operators, Hankel opera-
tors, and dual Hankel operators are widely studied classes of
operators on function spaces, which have profound infu-
ence on operator theory, operator algebra, and complex
analysis. For example, see [4–11].

In recent decades, the dual Toeplitz operators on the or-
thogonal complement of classical analytic function spaces have
received much attention and have been well studied. On the
setting of the orthogonal complement of the Bergman space,
Stroethof and Zheng [12] frst characterized (semi-)com-
muting dual Toeplitz operators on the unit disk and their
results were extended to the unit ball or unit polydisk as in
[7, 13–16] and reference therein. Later, the corresponding
problems have been studied on the Dirichlet spaces and
Hardy–Sobolev spaces of the unit disk or unit ball as in [17–21].

Motivated by these results, we in this paper focus on the
dual Toeplitz operators on the orthogonal complement of
the Fock–Sobolev space and characterize their boundedness
and compactness. We obtain that the dual Toeplitz operator
Sf is bounded if and only if f ∈ L∞ with ‖Sf‖ � ‖f‖∞, and
Sf with L∞ symbol is compact if and only if the corre-
sponding symbol is equal to zero almost everywhere. Te
results of the dual Toeplitz operator on Fock space of the
complex plane are extended and generalized.

2. The Proof of Main Result

For f, g ∈ L∞(Cn), it is well known that

Tfg � TfTg + H
∗
f

Hg,

Hfg � HfTg + SfHg,

Sfg � SfSg + HfH
∗
g.

(18)

For w � (w1, . . . , wn) ∈ Cn and z � (z1, . . . , zn) ∈ Cn,
0< s< 1, we defne

gw,s(z) � z1 − w1( e
α|z|2χBn

(w, s)(z)|z|
− m

, (19)

where χBn
(w, s)(z) is the characteristic function onBn(w, s).

To get the main proofs, we still need to prove some
lemmas at frst.

Lemma 1. For w ∈ Cn, gw,s(z) ∈ (F2,m
α )⊥.

Proof. Suppose z ∈ Cn, and j is a nonnegative multi-index;
then,

〈zj
, gw,s〉F2,m

α
�

αm+n− 1

(m + n − 1)!

Cn

|z|
2m

z
j
gw,s(z)dυα(z)

�
αm+n− 1

(m + n − 1)!

Bn(w,s)

|z|
2m

z
j

[middot] z1 − w1( e
α|z|2

|z|
− m

dυα(z)

�
αm+2n− 1

πn
(m + n − 1)!


Bn(w,s)

z
j

z1 − w1( |z|
m

dυ(z)

�
αm+2n− 1

πn
(m + n − 1)!


|z|<s

(z + w)
j
z1|z + w|

m
dυ(z)

� 0.

(20)

Tis indicates zj⊥gw,s, which implies that
gw,s ∈ (F2,m

α )⊥. □

Lemma 2. For arbitrary m ∈ N and z ∈ Cn, we have

K
α
z

����
����
2
α,2,m
≈

e
α|z|2

1 + αm
|z|

2m
. (21)

Proof. Te following results can be obtained by using similar
methods in Lemma 2.6 in [22].

We suppose that λ � α|z|2 ≥ 0.Put
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Pm(λ) � 
∞

j�n− 1+m

λj− m

j!
�

e
λ

− Qn− 1+m(λ)

λm ,

P
(n− 1)
m (λ) �

d
n− 1

dλn− 1
e
λ

− Qn− 1+m(λ)

λm ,

(22)

where Q0 � 0 and Qj is the Taylor polynomial of eλ of order
j − 1 for j≥ 1. Ten, P(n− 1)

m (λ) is a power series with positive
coefcient. So, it is monotonically increasing, that is, for each
λ≥ 0, we have

P
(n− 1)
m (λ)≥P

(n− 1)
m (0) �

(n − 1)!

(n − 1 + m)!
. (23)

When 0≤ λ≤M, we have

P
(n− 1)
m (λ)



 ≈
e
λ

1 + λm
(24)

When λ> 0,we have

Pm(λ) �
e
λ

λm − 
n+m− 2

l�0

λl− m

l!
, (25)

So,

P
(n− 1)
m (λ) �

e
λ

λm + 
n− 1

j�1

e
λ

λm ·
cj

λj

+ 
n+m− 1

j�n

cj

λj

, (26)

where cj represents the real coefcient.
Tus,

P
(n− 1)
m (λ)



 ≈
e
λ

1 + λm
(27)

as λ> 0 and λ is big enough.
According to the above analysis, for arbitrary λ≥ 0,

|Pn− 1
m (λ)| ≈ eλ/1 + λm,that is,

Km(z, .)
����

����
2
α,2,m

� Km(z, z) �
(m + n − 1)!

(n − 1)!
P

(n− 1)
m α|z|

2
  ≈

e
α|z|2

1 + αm
|z|

2m
. (28)

□

For arbitrary z � (z1, . . . , zn) ∈ Cn and w � (w1, . . . ,

wn) ∈ Cn, 0< s< 1, we defne

ϕw,s(z) �
gw,s(z)

gw,s

����
����L2

, (29)

where ‖gw,s‖L2 is the norm on L2(Cn, | · |2mdυα).

Lemma 3. If f ∈ L2(Cn, | · |2mdυα), w ∈ Cn, then

lim
s⟶ 0

H
∗
f
ϕw,s

�����

�����α,2,m
� 0. (30)

Proof. Since

H
∗
f
ϕw,s(z)



 �
αm+n− 1

(m + n − 1)!

Cn

|w|
2mϕw,s(w)f(w)K

α
z(w)dυα(w)

≤
αm+n− 1

(m + n − 1)!


Bn(w,s)
|w|

2mϕw,s(w)f(w)K
α
z(w)



dυα(w)

≤ ϕw,s

����
����L2

����������

αm+n− 1

(m + n − 1)!




Bn(w,s)

|w|
2m

|f(w)|
2

K
α
z(w)



2
dυα(w) 

1/2

�

����������

αm+n− 1

(m + n − 1)!




Bn(w,s)

|w|
2m

|f(w)|
2

K
α
z(w)



2
dυα(w) 

1/2

,

(31)

we have
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H
∗
f
ϕw,s

�����

�����
2

α,2,m
�

αm+n− 1

(m + n − 1)!

Cn

H
∗
f
ϕw,s(z)





2
|z|

2m
dυα(z)

≤
α2(m+n− 1)

[(m + n − 1)!]
2

Cn


Bn(w,s)

|w|
2m

|f(w)|
2

K
α
z(w)



2
dυα(w)|z|

2m
dυα(z)

�
α2(m+n− 1)

[(m + n − 1)!]
2

Bn(w,s)

|w|
2m

|f(w)|
2
dυα(w)

Cn
K

α
z(w)



2
|z|

2m
dυα(z)

�
αm+n− 1

(m + n − 1)!
‖K

α
w‖

2
α,2,m

Bn(w,s)

|w|
2m

|f(w)|
2
dυα(w)

≤
αm+n− 1

(m + n − 1)!

e
α|z|2

1 + αm
|z|

2m


Bn(w,s)

|w|
2m

|f(w)|
2
dυα(w),

(32)

where the last inequality follows from Lemma 2.
Notice that

lim
s⟶ 0


Bn(w,s)

|w|
2m

|f(w)|
2
dυα(w) � 0. (33)

When Bn(w, s) is small enough by the absolute conti-
nuity of the integral, we get the desired result. □

Lemma 4. If f ∈ L2(Cn, | · |2mdυα), w ∈ Cn, then

|f(w)| � lim
s⟶ 0

Sfϕw,s

�����

�����L2. (34)

Proof. For the multiplication operator Mf, it is obvious that

Mf ϕw,s  � Sf ϕw,s  + H
∗
f
ϕw,s , (35)

where Sf(ϕw,s)⊥H∗f(ϕw,s).Ten,

Mfϕw,s‖
2
L2 � Sfϕw,s‖

2
L2+

�����

�����H
∗
f
ϕw,s ‖

2
α,2,m,

����� (36)

and Lemma 3 gives that

lim
s⟶ 0

Mfϕw,s‖
2
L2 � lim

s⟶ 0

������

������Sfϕw,s‖
2
L2 . (37)

Notice that

‖Mfϕw,s‖
2
L2 �


|z− w|<s|f(z)|

2
z1 − w1



2
e
2α|z|2

dυα(z)


|z− w|<s z1 − w1



2
e
2α|z|2

dυα(z)
,

(38)

and we just need to show

lim
s⟶ 0


|z− w|<s|f(z)|

2
z1 − w1



2
e
2α|z|2

dυα(z)


|z− w|<s z1 − w1



2
e
2α|z|2

dυα(z)
� |f(w)|

2
.

(39)

Direct calculation indicates


|z− w|<s|f(z)|

2
z1 − w1



2
e
2α|z|2

dυα(z)


|z− w|<s z1 − w1



2
e
2α|z|2

dυα(z)
− |f(w)|

2





�


|z− w|<s |f(z)|
2

− |f(w)|
2

  z1 − w1



2
e
2α|z|2

dυα(z)


|z− w|<s z1 − w1



2
e
2α|z|2

dυα(z)




.

(40)

For 0< s< 1, assume L � inf e− α|z|2 ∣ z ∈ Bn(w, s) .
Clearly, L> 0. Set M � 1/L. Ten, eα|z|2 ∈ [1, M] for arbi-
trary z ∈ Bn(w, s), which implies that


|z− w|<s

z1 − w1


e
2α|z|2

dυα(z)

�
αn

πn
|z− w|<s

z1 − w1


e
α|z|2

dυ(z)

≥
αn

πn
|z− w|<s

z1 − w1


dυ(z)

�
αn

πns
2n+2


|z|<1

|z|
2
dυ(z) �

αn
s
2n+2

(n + 1)!

�
αn

s
2
s
2n

(n + 1)n!
�

αn
s
2

πn
(n + 1)

V Bn(w, s)( ,

(41)

and


|z− w|<s

f(z)
2
 − |f(w)|

2
  z1 − w1



2
e
2α|z|2

dυα(z)

≤
αn

πn
|z− w|<s

|f(z)|
2

− |f(w)|
2
���� z1 − w1



2
e
α|z|2

dυ(z)

≤
αn

Ms
2

πn 
|z− w|<s

|f(z)|
2

− |f(w)|
2
dυ(z).

(42)

By combining the inequalities (41) and (42), we have
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|z− w|<s|f(z)|

2
z1 − w1



2
e
2α|z|2

dυα(z)


|z− w|<s z1 − w1



2
e
2α|z|2

dυα(z)
− |f(w)|

2





≤
(n + 1)M

V Bn(w, s)( 

Bn(w,s)

|f(z)|
2

− |f(w)|
2
dυ(z)

⟶ 0,

(43)

as s⟶ 0 by using Teorem 8.8 in [23]. Tis ends
the proof. □

Theorem 1. Suppose f ∈ L2(Cn, | · |2mdυα); then, dual
Toeplitz operator Sf is bounded if and only if f ∈ L∞, and
‖Sf‖ � ‖f‖∞.

Proof. If f ∈ L∞, then for arbitrary u ∈ (F2,m
α )⊥, we have

Sf(u)
�����

�����L2 � I − Pα( uf‖L2 ≤
����

����uf
�����L2 ≤ f‖∞

����
����u

�����L2. (44)

Tis implies that Sf is bounded and

Sf‖≤ ‖f
�����

�����∞
. (45)

Conversely, if Sf is bounded, then (45) holds and

Sfϕw,s

�����

�����L2 ≤ Sf

�����

�����. (46)

Lemma 4 shows that |f(w)| � lim
s⟶ 0

‖Sfϕw,s‖L2 and then

|f(w)|≤ Sf

�����

�����. (47)

Taking the upper bound of the above equation indicates

‖f‖∞ ≤ Sf

�����

�����. (48)

By combining (45) and (48), we get

Sf‖ � ‖f
�����

�����∞
. (49)

□

Lemma  . For w ∈ Cn, ϕw,s is weakly convergent to 0 on
(F2,m

α )⊥ as s⟶ 0.

Proof. Suppose w ∈ Cn; for arbitrary f ∈ (F2,m
α )⊥, H€olde r

inequality implies that

〈ϕw,s, f〉L2


 �

αm+n− 1

(m + n − 1)!

Cn

|z|
2mϕw,s(z)f(z)dυα(z)





�
αm+n− 1

(m + n − 1)!

Bn(w,s)

|z|
2mϕw,s(z)f(z)dυα(z)





≤
αm+n− 1

(m + n − 1)!

Bn(w,s)

|z|
2m ϕw,s(z)



2
dυα(z) 

1/2

·
αm+n− 1

(m + n − 1)!

Bn(w,s)

|z|
2m

|f(z)|
2
dυα(z) 

1/2

� ϕw,s

����
����L2 ·

αm+n− 1

(m + n − 1)!

Bn(w,s)

|z|
2m

|f(z)|
2
dυα(z) 

1/2

�
αm+n− 1

(m + n − 1)!

Bn(w,s)

|z|
2m

|f(z)|
2
dυα(z) 

1/2

.

(50)

Note that f ∈ L2(Cn, | · |2mdυα), and we have

αm+n− 1

(m + n − 1)!

Bn(w,s)

|z|
2m

|f(z)|
2
dυα(z) 

1/2

⟶ 0 (51)

as s⟶ 0. Tis shows that |〈ϕw,s, f〉L2|⟶ 0 for arbitrary
f ∈ (F2,m

α )⊥, and then ϕw,s is weakly convergent to 0 on
(F2,m

α )⊥. □

Theorem 2. If f ∈ L∞, then Sf is compact if and only if
‖f‖∞ � 0.

Proof. If ‖f‖∞ � 0, thenTeorem 1 gives that Sf is bounded
and ‖Sf‖ � ‖f‖∞ � 0. Tus, Sf � 0 must be compact.

Conversely, if Sf is compact, then

f(w) � lim
s⟶ 0

Sfϕw,s

�����

�����2
� 0 (52)

by Lemma 4. Tus, ‖f‖∞ � 0. Tis completes the proof. □
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