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Te main objective of this article is to propose two novel parallel methods for solving common variational inclusion and common
fxed point problems in a real Hilbert space. Strong convergence theorems of both methods are established by allowing for some
mild conditions. Moreover, numerical studies of the signal recovery problem consisting of various blurred flters demonstrate the
computational behavior of the proposed methods and other existing methods.

1. Introduction

Troughout this article, a real Hilbert space is denoted byH
with inner product 〈·, ·〉 and associated norm ‖·‖. It is defned
that [K] :� 1, 2, . . . , K{ } is the index set for any positive
integer K. Let R and N be the sets of real numbers and
nonnegative integers, respectively. Te problem of identi-
fying a point v ∈H such that

0 ∈ Fi + Gi( v, (1)

is called the common variational inclusion problem (CVIP),
where Fi: H⟶H is a single valued mapping and
Gi: H⟶2H is a multivalued mapping for all i ∈ [K]. If
[K] � 1{ }, then the CVIP (1) becomes the variational in-
clusion problem (VIP). Te VIP is widely acknowledged as
a fundamental aspect of nonlinear analysis, and it plays
a pivotal role in numerous mathematical models, such as

composite minimization problems, variational inequality
problems, split feasibility problems, and convex pro-
gramming. Its broad range of applications extends to various
areas, including machine learning, signal and image re-
covery, and beyond (see [1–7]). To solve the VIP, several
splitting algorithms have been created and refned; one of the
most prominent splitting algorithms is the forward-
backward splitting method (see [8, 9] for more in-
formation). Chen and Rockafellar [10] used this method in
1997 to obtain a weak convergence result. Later, Tseng [11]
created a modifcation of the forward-backward splitting
method, known as the forward-backward-forward method
or Tseng’s method. Tis approach makes use of an adaptive
line-search rule and relaxes the assumptions of [10] in order
to prove weak convergence. In 1964, Polyak [12] introduced
the inertial extrapolation technique as a means to expedite
the convergence of iterative algorithms, commonly known
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as the heavy ball method. Tis powerful optimization al-
gorithm has since demonstrated its efcacy in accelerating
the rate of convergence of the classical gradient descent
method and found applications in various felds, such as
machine learning, computer vision, and control theory.
Padcharoen et al. [13] recently presented a splitting method
for solving the VIP inH, which was developed from Tseng’s
method with the inertial extrapolation technique. Weak
convergence of this method was established under usual
assumptions.Tis method also solved the problems of image
deblurring and image recovery. Some recent results for the
VIP and related problems are stated in the studies of [14–25].
In order to solve the VIP when both the operators are
multivalued maximal monotone mappings, two of the most
often used splitting algorithms include the Peace-
man–Rachford splitting algorithm [26] and the Dou-
glas–Rachford splitting algorithm [27]. Tese splitting
algorithms have been extensively studied, see [28–30].

In many practical situations, it is necessary to identify
a solution that satisfes multiple constraints. Such con-
straints can be expressed in terms of a nonlinear functional
model. In this paper, our focus is on the investigation of
common variational inclusion and common fxed point
problems. Te motivation for this study arises from their
potential utility in addressing real-world challenges, such as
signal and image recovery problems, wherein a diverse set of
blur flters may be present, see [31, 32]. Furthermore, in
Section 4, we demonstrate the applicability of our proposed
method in solving signal recovery problems using a variety
of blurred flters. Tis problem consists of fnding a point
x ∈H such that

0 ∈ Fi + Gi( x andx � Six, (2)

where Gi: H⟶2H is a multivalued mapping and Fi, Si are
single valued mappings on H for all i ∈ [K]. Suantai et al.
[31] proposed a parallel algorithm based on the shrinking
projection method of a fnite family of G-nonexpansive
mappings in H with directed graphs to identify a common
fxed point. Tis approach has been applied to solve signal
recovery problems in scenarios where the noise type is
unknown. Similarly, Suparatulatorn and Chaichana [32]
investigated the problem of image recovery using CVIP (1)
as the mathematical model, specifcally for multiple blurred
flters. Chang et al. [33] introduced an algorithm based on
the viscosity approximating scheme to obtain strong con-
vergence for solving CVIP in a uniformly convex and
q-uniformly smooth Banach space. In a recent study,
Mouktonglang et al. [34] proposed a parallel algorithm that
utilizes the inertial Mann iteration process to demonstrate
a weak convergence result for solving problem (2) subject to
certain control conditions in H. Numerous intriguing
fndings have been reported in the literature concerning
problem (2) and related problems. For further details, see
[35–39].

Motivated by these results, we develop two parallel al-
gorithms based on Tseng’s method, the viscosity approxi-
mating scheme, and the inertial extrapolation technique for
solving the problem (2) inH. Strong convergence results of

the proposed methods are provided under standard and
mild conditions. As applications, we apply our algorithms in
order to solve the signal recovery problem using a variety of
blurred flters.

2. Preliminaries

We refer to⇀ and⟶, respectively, as weak and strong
convergence. We then gather the defnitions and lemmas re-
quired to support our key results. Let C be a nonempty, closed,
and convex subset of a real Hilbert space H. Te metric pro-
jection PC fromH onto C is defned by the following equation:

PCz ≔ argmin
w∈C

‖z − w‖, (3)

for all z ∈H. From this defnition, it follows that

〈z − PCz, w − PCz〉 ≤ 0, (4)

for any z ∈H and w ∈ C. It is important to mention that the
following equalities and inequality hold true in inner
product spaces. Assume z, w ∈H,

‖z + w‖
2

� ‖z‖
2

+ 2〈z, w〉 +‖w‖
2
, (5)

‖z + w‖
2 ≤ ‖z‖

2
+ 2〈w, z + w〉, (6)

‖az +(1 − a)w‖
2

� a‖z‖
2

+(1 − a)‖w‖
2
− a(1 − a)‖z − w‖

2
,

(7)

for any a ∈ R. Assume that G: H⟶2H is a multivalued
mapping and S: H⟶H is a self-mapping.

Defnition 1. S is considered to be

(i) L-Lipschitz continuous if there is L> 0 such that
for all z, w ∈H,

‖Sz − Sw‖≤L‖z − w‖. (8)

(ii) nonexpansive if S is 1-Lipschitz continuous,
(iii) μ-demicontractive [40, 41] if Fix(S)≠∅ and there is
µ μ ∈ (0, 1) such that for all p ∈ Fix(S) and all
z ∈H,

‖Sz − p‖
2 ≤ ‖z − p‖

2
+ μ‖z − Sz‖

2
. (9)

Defnition 2. G is considered to be

(i) monotone if for all (x, z), (y, w) ∈ graph(G) (the
graph of mapping G), 〈z − w, x − y〉≥ 0,

(ii) maximal monotone if for every (x, z) ∈H × H,
〈z − w, x − y〉≥ 0 for all (y, w) ∈ graph(G) if and
only if (x, z) ∈ graph(G).

Defnition 3 (See [42]). Suppose that Fix(S)≠∅. Ten, I − S

is considered to be demiclosed at zero if for any vk  ⊂H,
the following statement is valid:

(I − S)vk⟶0 and vk⇀v⟹ v∈ Fix(S). (10)
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Lemma 4 (See [43]). S + G is maximal monotone mapping,
where S is a Lipschitz continuous and monotone mapping,
and G is a maximal monotone mapping.

Lemma 5 (See [44]). Let G be a maximal monotone map-
ping. If Tc :� (I + cG)− 1(I − cS) and c> 0, then
Fix(Tc) � (S + G)− 1(0).

Lemma 6 (See [45]). Suppose that S is a μ-demicontractive
mapping with Fix(S)≠∅ and let Sα � αI + (1 − α)S, where
α ∈ (μ, 1). Ten ‖Sλz − p‖2 ≤ ‖z − p‖2 − (1 − α)(α − μ)

‖Sz − z‖2 for all p ∈ Fix(S) and all z ∈H.

Lemma 7 (See [46]). Let bk  denote a sequence of real
numbers such that lim supk⟶∞bk ≤ 0, and let ak  and ck  be
nonnegative sequences of real numbers such that 

∞
k�1ck <∞.

If for any k ∈ N such that

ak+1 ≤ 1 − ck( ak + ckbk + ck, (11)

where ck  is a sequence in (0, 1) such that 
∞
k�1ck �∞, then

limk⟶∞ak � 0.

Lemma 8. (See [47]) Let Γk  denote a sequence of real

numbers such that there exists a subsequence Γkq
 

q∈N
of Γk 

satisfying Γkq
< Γkq+1 for all q ∈ N. Suppose ψ(k) k≥k∗ is

a sequence of integers defned by

ψ(k) ≔ max n≤ k: Γn <Γn+1 . (12)

Ten, ψ(k) k≥k∗ is a nondecreasing sequence such that
limk⟶∞ψ(k) �∞, and for all k≥ k∗, we have that
Γψ(k) ≤Γψ(k)+1 and Γk ≤Γψ(k)+1.

3. Convergence Analysis

Tis section aims at presenting Algorithms 1 and 2 for
coping with the problem (2). Let us begin by introducing
some assumptions that will be required for the ensuing
convergence analysis, for all i ∈ [K].

Assumption 9. Fi: H⟶H isLi-Lipschitz continuous and
monotone mapping.

Assumption 10. Gi: H⟶2H is maximal monotone
mapping.

Assumption 11. Si: H⟶H is μi-demicontractive map-
ping and ϕ: H⟶R is a diferentiable function.

Assumption 12. Ψ: � ∩ i∈[K](Fi + Gi)
− 1(0)∩ ∩ i∈[K]Fix(Si)

is nonempty.

Assumption 13. θk  ⊂ (0, 1), ξk  ⊂ (0,∞) and
αi

k  ⊂ (μi, αi) ⊂ (0, 1), for some αi > 0.

Assumption 14. τi
k  ⊂ [τi, τi] ⊂ (0, 1/Li), for some

τi, τi > 0.

Assumption 15. I − Si is demiclosed at zero.

Assumption 16. limk⟶∞θk � limk⟶∞ ξk/θk‖vk − vk− 1‖ �

0, 
∞
k�1θk �∞ and Φ: � ∇ϕ is contraction with constant

ρ ∈ (0, 1), where vk  is defned in Algorithms 1 and 2.

Lemma 17. Let Si: H⟶H be a mapping and
Fi: H⟶H be a Li-Lipschitz continuous mapping for all
i ∈ [K]. If Assumption 10 holds, τi

k > 0 and ρk � hi
k � Sij

i
k for

all i ∈ [K] in Algorithms 1, then ρk ∈ Ψ.

Proof. From ρk � hi
k, we have that, for all i ∈ [K],

ρk � I + τi
kGi 

− 1
I − τi

kFi ρk. (13)

Using Lemma 5, we get that ρk ∈ ∩ i∈[K](Fi + Gi)
− 1(0).

Because of the Lipschitz condition of Fi, it is evident that, for
all i ∈ [K],

h
i
k − j

i
k

����
����≤ τi

kLi ρk − h
i
k

����
����. (14)

Since τi
kLi > 0 and ρk � hi

k, it follows that hi
k � ji

k and so
ρk � hi

k � ji
k � Sij

i
k for all i ∈ [K]. Tat is,

ρk ∈ ∩ i∈[K]Fix(Si). Terefore, ρk ∈ Ψ. □

Lemma 18. Assume that Assumptions 9–14 are satisfed.
Ten, we have

u
i
k − v

����
����
2

+ 1 − αi
k  αi

k − μi  Sij
i
k − j

i
k

����
����
2

+ 1 − τiLi( 
2

  ρk − h
i
k

����
����
2
≤ ρk − v

����
����
2
, (15)

j
i
k − ρk

����
����≤ 1 + τiLi(  ρk − h

i
k

����
����, (16)
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for all v ∈ Ψ and i ∈ [K]. Proof. Let v ∈ Ψ. Using (5) with the conditions of τi
k and Fi,

it follows that, for all i ∈ [K],

j
i
k − v

����
����
2

� h
i
k − v

����
����
2

− 2τi
k〈h

i
k − v, Fih

i
k − Fiρk〉 + τi

k 
2

Fih
i
k − Fiρk

����
����
2

� h
i
k − ρk

����
����
2

− 2〈hi
k − ρk, h

i
k − ρk〉 + 2〈hi

k − ρk, h
i
k − v〉 + ρk − v

����
����
2

− 2τi
k〈h

i
k − v, Fih

i
k − Fiρk〉 + τiLi( 

2
h

i
k − ρk

����
����
2

≤ ρk − v
����

����
2

− 1 − τiLi( 
2

  ρk − h
i
k

����
����
2

− 2〈hi
k − v, ρk − h

i
k − τi

k Fiρk − Fih
i
k 〉.

(17)

Te defnition of hi
k implies that for all i ∈ [K],

I − τi
kFi ρk ∈ I + τi

kGi h
i
k. (18)

Tis implies that there is gi
k ∈ Gih

i
k such that

g
i
k �

1
τi

k

ρk − h
i
k − τi

kFiρk , (19)

for all i ∈ [K]. Te maximally monotonic nature of Fi + Gi

leads us to the conclusion that for all i ∈ [K],

〈Fih
i
k + g

i
k, h

i
k − v〉 ≥ 0, (20)

implying that for all i ∈ [K],

〈hi
k − v, ρk − h

i
k − τi

k Fiρk − Fih
i
k 〉 ≥ 0. (21)

Tis combined with (17) yields that for all i ∈ [K],

j
i
k − v

����
����
2
≤ ρk − v

����
����
2

− 1 − τiLi( 
2

  ρk − h
i
k

����
����
2
. (22)

Tis follows from Lemma 6 that for all i ∈ [K],

u
i
k − v

����
����
2
≤ j

i
k − v

����
����
2

− 1 − αi
k  αi

k − μi  Sij
i
k − j

i
k

����
����
2

≤ ρk − v
����

����
2

− 1 − τiLi( 
2

  ρk − h
i
k

����
2

− 1 − αi
k  αi

k − μi 
�����

�����Sij
i
k − j

i
k

�����
2
.

(23)

Furthermore, using the inequality (14) with the condi-
tion of τi

k and triangle inequality, we derive that inequality
(16) is true. □

Lemma 19. Assume that Assumptions 9–15 hold. If there is
a subsequence ρkm

  of ρk  such that ρkm
⇀ r∈H and

limm⟶∞‖ρkm
− hi

km
‖ � limm⟶∞‖Sij

i
km

− ji
km

‖ � 0 for all
i ∈ [K]. Ten, r∈ Ψ.

Proof. Applying the inequality (16) with
limm⟶∞‖ρkm

− hi
km

‖ � 0 for all i ∈ [K], we get that
limm⟶∞‖ρkm

− ji
km

‖ � 0 for all i ∈ [K]. It follows that
ji

km
⇀ r for all i ∈ [K], which together with limm⟶∞‖Sij

i
km

−

ji
km

‖ � 0 and Assumption 15 indicates that r∈ ∩ i∈[K]Fix(Si).
Next, we exhibit r∈ ∩ i∈[K](Fi + Gi)

− 1(0). For all i ∈ [K], let
(vi, ui) ∈ graph(Fi + Gi) be equivalent to ui − Fivi ∈ Givi.
Tis implies, based on the defnition of hi

k, that 1/τ
i
km

(ρkm
−

Initialization: Select arbitrary elements v0, v1 ∈H and set k :� 1.
Iterative Steps: Create vk  through the following process:
Step 1. Set
ρk � vk + θk(Φ(vk) − vk) + ξk(vk − vk− 1)

and calculate, for all i ∈ [K],
hi

k � (I + τi
kGi)

− 1(I − τi
kFi)ρk.

Step 2. Compute, for all i ∈ [K],
ji

k � hi
k − τi

k(Fih
i
k − Fiρk) andui

k � Sij
i
k − αi

k(Sij
i
k − ji

k).

If ρk � hi
k � Sij

i
k for all i ∈ [K], then stop and ρk ∈ Ψ. Otherwise, go to Step 3.

Step 3. Evaluate
vk+1 � argmax ‖ui

k − ρk‖: i ∈ [K] .

Replace k by k + 1 and go back to Step 1.

ALGORITHM 1: Inertial Tseng Mann parallel algorithm 1.
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hi
km

− τi
km

Fiρkm
) ∈ Gih

i
km

for all i ∈ [K]. By the maximal
monotonicity of Gi, we have that, for all i ∈ [K],

〈vi − h
i
km

, ui − Fivi −
1
τi

km

ρkm
− h

i
km

− τi
km

Fiρkm
 〉≥ 0.

(24)

So, for all i ∈ [K],

〈vi − h
i
km

, ui〉 ≥ 〈vi − h
i
km

, Fivi +
1
τi

km

ρkm
− h

i
km

− τi
km

Fiρkm
 〉

�〈vi − h
i
km

, Fivi − Fih
i
km
〉 +〈vi − h

i
km

, Fih
i
km

− Fiρkm
〉

+
1
τi

km

〈vi − h
i
km

, ρkm
− h

i
km
〉

≥ 〈vi − h
i
km

, Fih
i
km

− Fiρkm
〉 +

1
τi

km

〈vi − h
i
km

, ρkm
− h

i
km
〉.

(25)

Tis can be deduced from the Lipschitz continuity of Fi,
limm⟶∞‖ρkm

− hi
km

‖ � 0 and τi
km
∈ [τi, τi] that

〈vi − r, ui〉 � lim
m⟶∞
〈vi − h

i
km

, ui〉 ≥ 0, (26)

For all i ∈ [K], when considered together with the
maximal monotonicity of Fi + Gi, leads to the conclusion
that 0 ∈ (Fi + Gi)r for all i ∈ [K], is equivalent to
r∈ ∩ i∈[K](Fi + Gi)

− 1(0). As a result, r ∈ Ψ. □

Theorem 2 . If Assumptions 9–16 hold, then the sequence
vk  generated by Algorithms 1 converges strongly to
υ :� (PΨ ∘Φ)υ.

Proof. Let p ∈ Ψ. From limk⟶∞ξk/θk‖vk − vk− 1‖ � 0, we
obtain the following equation:

ξk vk − vk− 1
����

����≤ θkR1, (27)

for some R1 > 0. Since Φ is contraction with constant ρ ∈ [0,
1) and using (27), we have to compute the following
expression:

ρk − p
����

���� � vk + θk Φ vk(  − vk(  + ξk vk − vk− 1(  − p
����

����

≤ θk Φ vk(  − p
����

���� + 1 − θk(  vk − p
����

���� + ξk vk − vk− 1
����

����

≤ θk Φ vk(  − Φ(p)
����

���� + θk ‖Φ(p) − p‖ + R1(  + 1 − θk(  vk − p
����

����

≤ 1 − ck(  vk − p
����

���� + ckR2

≤max vk − p
����

����, R2 ,

(28)

where ck � θk(1 − ρ) and R2 � ‖Φ(p) − p‖ + R1/1 − ρ. Us-
ing the inequality (15) with the defnition of vk+1 and As-
sumptions 13 and 14 implies that

vk+1 − p
����

����≤ ρk − p
����

����. (29)

Terefore, we can conclude that
‖vk+1 − p‖≤max ‖vk − p‖, R2  for any k ∈ N. Consequently,
vk  is bounded sequence. Moreover, the sequence Φ(vk) 

is bounded. Since the set Ψ is nonempty, closed and convex,
there is a unique υ ∈ Ψ such that υ � (PΨ ∘Φ)υ. By (4), we
also get that for any y ∈ Ψ,

〈Φ(υ) − υ, y − υ〉≤ 0. (30)

Now, for each k ∈ N, set Ξk :� ‖vk − υ‖2. Applying (28),
we have the following equation:

ρk − υ
����

����
2 ≤ 1 − ck(  vk − υ

����
���� + ckR2 

2

� 1 − ck( 
2Ξk + ck 2R2 1 − ck(  vk − υ

����
���� + ckR

2
2 

≤Ξk + ckR3,

(31)

for some R3 > 0. Tis follows from (15) that
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1 − αi
k  αi

k − μi  Sij
i
k − j

i
k

����
����
2

+ 1 − τiLi( 
2

  ρk − h
i
k

����
����
2
≤Ξk−

����u
i
k − υ

����
����
2

+ ckR3.

(32)

For all i ∈ [K]. It implies by (32) that there is ik ∈ [K]

such that

1 − αik
k  αik

k − μik
  Sik

j
ik
k − j

ik
k

�����

�����
2

+ 1 − τik
Lik

 
2

  ρk − h
ik
k

�����

�����
2
≤Ξk − Ξk+1 + ckR3. (33)

□

Case 21. Assume that there exists an integer N ∈ N such that
Ξk+1 ≤Ξk for all k≥N. Tis together with the boundedness
of Ξk , it is convergent. Since limk⟶∞ck � 0 and using
Assumptions 13 and 14, and by (33),

lim
k⟶∞

ρk − h
ik
k

�����

����� � lim
k⟶∞

Sik
j

ik
k − j

ik
k

�����

����� � 0. (34)

Tis combined with (16) yields that for all i ∈ [K],

vk+1 − ρk

����
����≤ vk+1 − j

ik
k

�����

����� + j
ik
k − ρk

�����

�����

≤ 1 − αik
k  Sik

j
ik
k − j

ik
k

�����

����� + 1 + τik
Lik

  ρk − h
ik
k

�����

�����⟶0 as k⟶∞.
(35)

Tis can be deduced from the defnition of vk+1 that

lim
k⟶∞

ρk − u
i
k

����
���� � 0, (36)

for all i ∈ [K]. Using (15) again, we have

1 − αi
k  αi

k − μi  Sij
i
k − j

i
k

����
����
2

+ 1 − τiLi( 
2

  ρk − h
i
k

����
����
2
≤ ρk − υ

����
����
2

− u
i
k − υ

����
����
2

≤R4 ρk − u
i
k

����
����,

(37)

for all i ∈ [K] and for some R4 > 0. From the combination of
this with (35) using Assumptions 13 and 14, we can derive
that for all i ∈ [K],

lim
k⟶∞

ρk − h
i
k

����
���� � lim

k⟶∞
Sij

i
k − j

i
k

����
���� � 0. (38)

From the defnition of ρk, the inequality (27) and
limk⟶∞θk � 0, we have

ρk − vk

����
����≤ θk Φ vk(  − vk

����
���� + ξk vk − vk− 1

����
����,

≤ θk Φ vk(  − vk

����
���� + R1 ⟶0 as n⟶∞.

(39)

Tis together with (35) implies that

lim
k⟶∞

vk+1 − vk

����
���� � 0. (40)

Initialization: Let v0, v1 ∈H, λi > 0 and τi
1 ∈ (0, 1/Li) for all i ∈ [K], and set k: � 1.

Iterative Steps: Create vk  through the following process:
Step 1. Set
ρk � vk + θk(Φ(vk) − vk) + ξk(vk − vk− 1)

and calculate, for all i ∈ [K],
hi

k � (I + τi
kGi)

− 1(I − τi
kFi)ρk.

Step 2. Compute, for all i ∈ [K],
ji

k � hi
k − τi

k(Fih
i
k − Fiρk) and ui

k � Sij
i
k − αi

k(Sij
i
k − ji

k).

If ρk � hi
k � Sij

i
k for all i ∈ [K], then stop and ρk ∈ Ψ. Otherwise, go to Step 3.

Step 3. Evaluate
vk+1 � argmax ‖ui

k − ρk‖: i ∈ [K] 

and update, for all i ∈ [K],

τi
k+1 �

min (λi‖ρk − h
i
k‖/‖Fiρk − Fih

i
k‖), τi

k , if Fiρk ≠Fih
i
k,

τi
k otherwise.



Replace k by k + 1 and go back to Step 1.

ALGORITHM 2: Inertial Tseng Mann parallel algorithm 2.
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Moreover, because vk  is bounded, there is r ∈H such
that vkm
⇀ r as m⟶∞ for some subsequence vkm

  of vk .
From (39), we get ρkm

⇀ r as m⟶∞. Ten using (38) with

Lemma 19 implies that r∈ Ψ. By (30), it is easy to dem-
onstrate that

lim sup
k⟶∞
〈Φ(υ) − υ, vk − υ〉 � lim

m⟶∞
〈Φ(υ) − υ, vkm

− υ〉 � 〈Φ(υ) − υ, r − υ〉≤ 0. (41)

Tus, we have by combining this with (40) that

lim sup
k⟶∞
〈Φ(υ) − υ, vk+1 − υ〉 ≤ lim sup

k⟶∞
〈Φ(υ) − υ, vk+1 − vk〉 + lim sup

k⟶∞
〈Φ(υ) − υ, vk − υ〉 ≤ 0. (42)

Hence, from the assumption on Φ, (6), (7) and (29), we
obtain

Ξk+1 ≤ ρk − υ
����

����
2

� θk Φ vk(  − Φ(υ)(  + 1 − θk(  vk − υ(  + ξk vk − vk− 1(  + θk(Φ(υ) − υ)
����

����
2

≤ θk Φ vk(  − Φ(υ)(  + 1 − θk(  vk − υ( 
����

����
2

+ 2〈ξk vk − vk− 1(  + θk(Φ(υ) − υ), vk+1 − υ〉

≤ θk Φ vk(  − Φ(υ)
����

����
2

+ 1 − θk( Ξk + 2ξk〈vk − vk− 1, vk+1 − υ〉 + 2θk〈Φ(υ) − υ, vk+1 − υ〉

≤ θkρ
2Ξk + 1 − θk( Ξk + 2ξk vk − vk− 1

����
���� vk+1 − υ
����

���� + 2θk〈Φ(υ) − υ, vk+1 − υ〉

≤ θkρΞk + 1 − θk( Ξk + 2θk ·
ξk

θk

vk − vk− 1
����

���� vk+1 − υ
����

���� + 2θk〈Φ(υ) − υ, vk+1 − υ〉

≤ 1 − ck( Ξk + ck R5
ξk

θk

vk − vk− 1
����

���� +
2

1 − ρ
〈Φ(υ) − υ, vk+1 − υ〉 ,

(43)

for some R5 > 0. As a consequence of applying this to the
inequality (42) with Lemma 7, it can be inferred that
limk⟶∞Ξk � 0.

Case 22. We can fnd a subsequence Ξkq
  of Ξk  such that

Ξkq
<Ξkq+1 for all q ∈ N. Te inequality Ξψ(k) ≤Ξψ(k)+1 is

derived by applying Lemma 8, where ψ: N⟶N is defned
by (12), and k≥ k∗ for some k∗ ∈ N. By similar arguments as
in Case 21, we obtain that

lim
k⟶∞

ρψ(k) − h
i
ψ(k)

�����

����� � lim
k⟶∞

Sij
i
ψ(k) − j

i
ψ(k)

�����

����� � 0, (44)

for all i ∈ [K] and

lim sup
k⟶∞
〈Φ(υ) − υ, vψ(k)+1 − υ〉 ≤ 0. (45)

Finally, from Ξψ(k) ≤Ξψ(k)+1 and by (43), for all k≥ k∗, we
obtain

Ξψ(k)+1 ≤ 1 − cψ(k) Ξψ(k)+1 + cψ(k) R5
ξψ(k)

θψ(k)

vψ(k) − vψ(k)− 1

�����

����� +
2

1 − ρ
〈Φ(υ) − υ, vψ(k)+1 − υ〉 . (46)

Some simple calculations yield
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Ξψ(k)+1 ≤R5
ξψ(k)

θψ(k)

vψ(k) − vψ(k)− 1

�����

����� +
2

1 − ρ
〈Φ(υ) − υ, vψ(k)+1 − υ〉. (47)

Tis implies that lim supk⟶∞Ξψ(k)+1 ≤ 0. Tus,
limk⟶∞Ξψ(k)+1 � 0. In addition, by Lemma 8,

lim
k⟶∞
Ξk ≤ lim

k⟶∞
Ξψ(k)+1 � 0. (48)

Terefore, it can be concluded that vk⟶υ as k⟶∞.

Theorem 23. Assume that Assum ptions 9–16 are satisfed.
Ten, the sequence vk  generated by Algorithm 2 converges
strongly to υ: � (PΨ ∘Φ)υ.

Proof. Employing the same methodology as in the proof of
([48], Lemma 3.1.), we conclude that
τi

k  ⊂ [min τi
1, λi/Li , τi

1] ⊂ (0, 1/Li) for all i ∈ [K], that

is, Assumption 14 holds. Te rest is similar to the proof of
Teorem 20. □

4. Application to Signal Recovery Problem

Signal recovery is a fundamental challenge in diverse sci-
entifc and engineering domains, and recent developments
in signal recovery algorithms have resulted in substantial
enhancements in the accuracy and efcacy of signal pro-
cessing applications. Efcient signal recovery techniques are
critical for numerous tasks, such as image and audio
analysis, data compression, and communication systems.
Consequently, sustained research and development eforts
aimed at advancing signal recovery algorithms are

Measured values with SNR=40 by using A3

-20
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Original signal
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Figure 1: From top to bottom: the original signal and the measurement by using A1, A2, and A3, respectively, with m � 100.

Table 1: Numerical comparison of four algorithms.

m nonzero elements
m � 100 m � 200 m � 300

Algorithm 2.2 Number of iterations 1183 1271 1326
CPU time (s) 10.0271 10.2887 10.7556

Algorithm 3 Number of iterations 381 433 481
CPU time (s) 6.3097 6.9989 7.5401

Algorithm 1 Number of iterations 159 180 198
CPU time (s) 3.9039 4.1992 4.5897

Algorithm 2 Number of iterations 169 193 212
CPU time (s) 4.1950 4.5258 4.9377

8 Journal of Mathematics
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Figure 3: From top to bottom: the original signal and the measurement by using A1, A2, and A3, respectively, with m � 300.
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Figure 2: From top to bottom: the original signal and the measurement by using A1, A2, and A3, respectively, with m � 200.
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imperative to further enhance the performance and capa-
bilities of these applications.

Te signal recovery problem involving diverse blurring
flters can be mathematically expressed as follows:

bi � Aix + εi, (49)

where bi ∈ RM is the observed signal with noise εi, x ∈ RN is
the original signal and Ai ∈ RM×N (M<N) is flter matrix
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Figure 5: From top to bottom: the reconstructed signals by four algorithms for m � 200.
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Figure 4: From top to bottom: the reconstructed signals by four algorithms for m � 100.
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Figure 7: Plots of Ek over iter when m � 100.

20001500 35002500 3000 4000500 1000
-2

0

2
Recovered signal with Algorithm 2

-2

0

2

35001500 30002500 4000500 1000 2000

Recovered signal with Algorithm 1

-2

0

2

1000 1500 2000 2500 3000 3500 4000500

Recovered signal by Algorithm 3

Recovered signal with Algorithm 2.2

1000 1500 2000 2500 3000 3500 4000500
-2

0

2

Figure 6: From top to bottom: the reconstructed signals by four algorithms for m � 300.
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Table 2: Numerical results of Algorithms 1.

Inputs m nonzero elements
m � 50 m � 100 m � 150

A1
Number of iterations 2373 3143 4474

CPU time (s) 3.4571 4.4129 6.2303

A2
Number of iterations 2328 3407 4297

CPU time (s) 3.1495 4.8879 5.8837

A3
Number of iterations 2334 3162 4316

CPU time (s) 3.1203 4.2016 6.1732

A1, A2
Number of iterations 581 564 762

CPU time (s) 2.0524 1.9764 2.9730

A1, A3
Number of iterations 548 589 685

CPU time (s) 2.8591 2.0762 3.5921

A2, A3
Number of iterations 598 629 644

CPU time (s) 2.3680 2.1654 2.9194

A1, A2, A3
Number of iterations 138 145 154

CPU time (s) 0.8413 0.7845 0.8708
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Figure 9: Plots of Ek over iter when m � 300.
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Figure 8: Plots of Ek over iter when m � 200.
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Figure 10: From top to bottom: the original signal and the measurement by using A1, A2, and A3, respectively, with m � 50.
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Figure 16: Plots of Ek over iter when m � 50.
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for all i ∈ [K]. Subsequently, we direct our attention toward
the following problem:

min
x∈RN

1
2

‖A1x − b1‖
2
2 +‖x‖1,

min
x∈RN

1
2

‖A2x − b2‖
2
2 +‖x‖1,

min
x∈RN

1
2

‖A3x − b3‖
2
2 +‖x‖1,

⋮

min
x∈RN

1
2

‖AKx − bK‖
2
2 +‖x‖1,

(50)

for all i ∈ [K]. According to Proposition 3.1 (iii) presented in
[49], the problem at hand can be recast as problem (2)
through the following settings: H � RN,
Si(·) � proxζ i‖·‖1

(I − ζ i∇hi)(·), Gi(·) � z(‖ · ‖1) and Fi � ∇hi,
where ζ i > 0, hi(·) � 1/2‖Ai(·) − bi‖

2
2 for all i ∈ [K]. It is

known that Si is nonexpansive mapping for ζ i ∈ (0, 2/‖Ai‖
2
2)

and hence 0-demicontractive. Besides, Gi is maximal
monotonemapping, and Fi is monotone and ‖Ai‖

2
2-Lipschitz

continuous mapping.
In this part, we perform two numerical experiments to

present the computational efciency of Algorithms 1 and 2
for signal recovery problems consisting of various blurring
flters. All computations were performed using Matlab
R2021a on an iMac equipped with an Apple M1 chip and
16GB of RAM.Experiment (∗∗∗) During the frst experi-
ment, we provide the numerical comparison of Algorithms 1
and 2 with Algorithm of Corollary 2.2 in [31] (Algorithm
2.2) and Algorithm 3 in [50]. Select the signal size to be N �

4000 and M � 2000. Set the original signal x is generated by
the uniform distribution in [− 2, 2] with m nonzero elements

and Ai be the Gaussian matrix generated by command
randn(M, N). Let the observation bi be generated by white
Gaussian noise with signal-to-noise ratio SNR� 40, the
initial points be the vectors generated randomly and ζ i �

1/‖Ai‖
2
2 for all i ∈ 1, 2, 3{ }. Measuring the accuracy of the

restoration using the mean-squared error, which is defned
as: Ek � 1/N‖vk − x‖22 < 5 × 10− 5.Te control parameters are
defned in the following manner:

(i) Algorithm 2.2: αn
i � 0.5;

(ii) Algorithm 3: λi � 0.5,φ(·) � 0.9(·), ci
1 � 9/10 ‖Ai‖

2
2,

ak � 1/k + 1, bk � 99k/100(k + 1) and ξk �

min 1/(k + 1)
1.1 max ‖uk − uk− 1‖2, ‖uk − uk− 1‖

2
2 , 0.25  if uk ≠ uk− 1;

0.25 otherwise;


(iii) Algorithm 1: αi
k � 0.25,Φ(·) � 0.9(·), τi

k � 9/10
‖Ai‖

2
2, θk � 1/k + 1 and ξk �

min 1/(k + 1)
1.1 max ‖vk − vk− 1‖2, ‖vk − vk− 1‖

2
2 , 0.25  if vk ≠ vk− 1;

0.25 otherwise;


(iv) Algorithm 2: λi � 0.5, αi
k � 0.25,Φ(·) � 0.9(·), τi

1 �

9/10‖Ai‖
2
2, θk � 1/k + 1 and ξk �

min 1/(k + 1)
1.1 max ‖vk − vk− 1‖2, ‖vk − vk− 1‖

2
2 , 0.25  if vk ≠ vk− 1;

0.25 otherwise;


Te following results are shown.
Te numerical results of Experiment (∗∗∗) clearly

demonstrate that both proposed algorithms are more ef-
fective than the two previous algorithms, as indicated in
Table 1 and Figures 1–9.

Experiment 24. In the second experiment, we present the
numerical results obtained via Algorithm 1 for solving
problem (4.1) with multiple inputs Ai.Te signal size is set to
be N � 2000 and M � 1000, with the original signal x being
generated via a uniform distribution over the interval
[− 2, 2], featuring m nonzero elements. Te matrices Ai are
Gaussian matrices generated using the command
randn(M, N). For i ∈ 1, 2, 3{ }, the observations bi are gen-
erated via the addition of white Gaussian noise εi with
variance σ2i , with initial points being randomly generated
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Figure 18: Plots of Ek over iter when m � 150.
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and ζ i � 1/‖Ai‖
2
2. Measuring the accuracy of the restoration

using the mean-squared error, which is defned as follows:
Ek � 1/N‖vk − x‖22 < 5 × 10− 5. For Algorithm 1, let
σi � 0.01(i), αi

k � 0.25,Φ(·) � 0.9(·), τi
k � 9/10‖Ai‖

2
2, θk � 1/

k + 1 and ξk � min 1/(k + 1)
1.1 max ‖vk − vk− 1‖2,

‖vk − vk− 1‖
2
2}, 0.25}if vk ≠ vk− 1; 0.25otherwise; Te ensuing

section depicts the results.
Based on the numerical results obtained from Experi-

ment 24, it is evident that incorporating all three Gaussian
matrices (A1, A2, and A3) into Algorithm 1 leads to more
efective outcomes in terms of time and number of itera-
tions, as compared to the usage of only one or two of the
matrices. Tese results are presented in Table 2 and
Figures 10–18.

5. Conclusions

In this research, we obtain strong convergence results for
common variational inclusion and common fxed point
problems using two new parallel methods. Our results ex-
tend and generalize several previously published fndings,
and the numerical results indicate that our suggested ap-
proaches to the signal recovery problem including multiple
blurring flters outperform the two preceding approaches.
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