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Let S be a ring with involution having a nontrivial symmetric idempotent element e. If Ω is any appropriate multiplicative
generalized reverse ∗CE-derivation of S with involution ∗, then under some suitable restrictions on S, Ω is centrally-extended
additive.

1. Introduction

In [1], Bell and Daif introduced the notion of centrally-
extended derivations as follows. Let S be a ring with center
Z(S), a map δ of S is called a centrally-extended derivation
(CE-derivation) if for each r, s ∈ S, δ(r + s) − δ(r)− δ(s) ∈
Z(S) and δ(rs) − δ(r)s − rδ(s) ∈ Z(S). Tey discussed the
existence of such map which is not a derivation and gave
some commutativity results. In [2], the authors generalized
this notion to other kinds of maps and extended some results
due to Bell and Daif. Recently, in [3], the authors gave the
notion of Jordan CE-derivations and, under some condi-
tions, they proved that every Jordan CE-derivation of
a prime ring S is a CE-derivation.

Martindale [4] has asked the following question:When is
a multiplicative mapping additive? He answered his question
for a multiplicative isomorphism of a ring S. In [5], Daif has
given an answer to that question when the mapping is
a multiplicative derivation on S. Also, in [6–8], a general-
ization of this question can be found for the case of mul-
tiplicative generalized derivations, multiplicative generalized
reverse ∗− derivations, and multiplicative left centralizers.

In this article, we generalized the idea of Martindale [4]
and Daif [5] for the notion of the multiplicative generalized
reverse ∗CE-derivation.

2. Preliminaries

In this note, we introduce the notion of the multiplicative
generalized reverse ∗CE-derivation of a ring S with in-
volution ∗ to be a mapping ω of S into S such that
ω(rs) − ω(s)r∗ − s∗δ(r) ∈ Z(S), for all r, s ∈ S, where δ is
a reverse ∗CE-derivation from S into S; i.e., for all r, s ∈ S,

δ(r + s) − δ(r) − δ(s) ∈ Z(S) and δ(rs) − δ(s)r∗− s∗δ(r)

∈ Z(S). In other words, we can write the maps ω and δ by
ω(rs) � ω(s)r∗ + s∗δ(r) + ϕ(r, s) and δ(rs) � δ(s)r∗ + s∗

δ(r) + ψ(r, s), where ϕ(r, s) and ψ(r, s) are central elements
depend on the choice of r and s and related to the mappings
ω and δ, respectively.

Here, we ask the following question: When is a multi-
plicative generalized reverse ∗CE-derivation a ∗CE-addi-
tive? Under suitable conditions, we give an answer for this
question.

As in [9], let e ∈ S be a nontrivial symmetric idempotent
element so that e≠ 1, e≠ 0, and e∗ � e (S need not have an
identity). We will formally set e1 � e and e2 � 1 − e. Te two-
sided Peirce decomposition of S relative to the idempotents
e1 and e2 takes the form S � e1Se1 ⊕ e1Se2 ⊕ e2Se1 ⊕ e2Se2. So
letting Sij � eiSej: i, j ∈ 1, 2{ }, we may write S � S11 ⊕ S12 ⊕
S21 ⊕ S22. An element of the subring Sij will be denoted by sij.
If μ � μ11 + μ12 + μ21 + μ22 ∈ Z(S), since e1μ � μe1, then

Hindawi
Journal of Mathematics
Volume 2023, Article ID 2102909, 7 pages
https://doi.org/10.1155/2023/2102909

https://orcid.org/0009-0008-8825-3251
https://orcid.org/0000-0002-6093-0475
https://orcid.org/0000-0001-5897-7621
mailto:a.ghareeb@sci.svu.edu.eg
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/2102909


μ12 � μ21 � 0, so we conclude that Z(S) ⊂ S11 ⊕ S22. Also, we
formally use the symbol Zii for referring to the subring
Sii ∩Z(S).

By the defnition of δ, we note that δ(0) � ψ(0, 0) ∈
Z(S). However, since ∗ is bijection and, for all x ∈ S, δ(0) �

δ(0x∗) � x∗∗δ(0) + z1 � xδ(0) + z1 ∈ Z(S). So that Sδ(0) �

δ(0)S � δ(0)S∗ � S∗δ(0) ⊂ Z(S). Ten, we have δ(0)S∗ �

δ(0)S � δ(0)s∗: s∗ ∈ S∗{ }, which is a two sided central ideal
in S. Since eδ(0) ∈ Z(S), if ψ(0, 0) � ψ11(0, 0) + ψ22(0, 0),
then eδ(0) � ψ11(0, 0) ∈ Z11 and this gives also ψ22(0, 0) ∈
Z22. Similarly, ω(0)S∗ is a two sided central ideal in S and
ϕ11(0, 0) ∈ Z11 and ϕ22(0, 0) ∈ Z22.

Moreover,
δ(e) � δ(e2) � δ(e)e∗ + e∗δ(e) + π, for π � ψ(e, e) ∈ Z(S).
If we express δ(e) � a11 + a12 + a21 + a22 and use the two
expressions of δ(e), we get a22 � π22 and a11 � − π11.
Consequently, we have the following equation:

δ(e) � a12 + a21 − π11 + π22. (1)

By the same manner, if ω: S⟶ S is a multiplicative
generalized reverse ∗CE-derivation associated with a reverse
∗CE-derivation δ,then ω(e) � ω(e2) � ω(e)e∗ + e∗ δ(e) + ξ,
where ξ � ϕ(e, e) ∈ Z(S) and we can write
ω(e) � b11 + b12 + b21 + b22, and using the values of ω(e)

and δ(e). we conclude that ξ11 � π11, b22 � ξ22 and b12 � a12
so,

ω(e) � b11 + a12 + b21 + ξ22. (2)

In our work we will need the following facts.

Proposition 1 [7]. Let s ∈ S (sij ∈ Sijwhere i, j ∈ 1, 2{ }).
Ten, s∗ij � rji, where r � s∗ ∈ S. Moreover, sij � r∗ji.

Lemma 2. ξii ∈ Zii and πii ∈ Zii, where i ∈ 1, 2{ }.

Proof. For any element s ∈ S, by expanding both sides of
ω(es) � ω(e(es)), we get the following equation:

s
∗δ(e) + ϕ(e, s) � s

∗δ(e)e + s
∗
eδ(e) + ϕ(e, s)e + ϕ(e, es).

(3)

Now using equation (1) in equation (3), we get πs∗ �

ϕ(e, s)e + ϕ(e, es) − ϕ(e, s) and since ϕ(e, s), ϕ(e, es) ∈ Z

(S) ⊂ S11 ⊕ S22, this means

πs
∗ ∈ S11 ⊕ S22. (4)

Now, Since ∗ is bijection, there exist r ∈ S such that
r � s∗, so we can rewrite s∗ � r � r11 + r12 + r21 + r22 and
using that π ∈ Z(S), we get π11r11 � r11π11 and π22r22 �

r22π22 which implies π11 ∈ Z(S11) and π22 ∈ Z(S22). And
again equation (4) gives π11r12 + π22r21 � 0 and r12π22 +

r21π11 � 0, which gives π11r12 � π22r21 � 0 and r12π22 �

r21π11 � 0, this means that π is a left and right annihilator of
the two subrings S12 and S21. Now, for any r ∈ S, π11r �

π11r11 � r11π11 � rπ11, which gives π11 ∈ Z(S). Since
π22 � π − π11, then π22 ∈ Z(S). Also, since ξ11 � π11, we get
ξ11 ∈ Z(S) and ξ22 � (ξ − ξ11) ∈ Z(S).

To achieve our main result, we assume that the ring S

endowed with an involution ∗ contains a nontrivial sym-
metric idempotent e and satisfes the following conditions:

(C1) tSe ⊂ Z(S) implies t ∈ Z(S). And tS ⊂ Z(S) im-
plies t ∈ Z(S).

(C2) teS(1 − e) ⊂ Z(S) implies t ∈ Z(S).

And ω is any multiplicative generalized reverse ∗CE-
derivation of S associated with a reverse ∗CE-derivation δ
of S.

Te following lemma is fruitful in our proofs: □

Lemma 3. Te ideals S∗ξ, S∗ξii, S∗π, S∗πii, and S∗π are
central ideals in S, where ψ � ϕ(e, e) ∈ Z(S),

π � ψ(e, e) ∈ Z(S), π � π22 − π11 ∈ Z(S), and i ∈ 1, 2{ }.

Proof. First, using Lemma 2, for any s∗11 ∈ S11, we get
ξs∗11s12 � s∗11ξs12 � 0 ∈ Z(S) and using condition (C2), we
get s∗11ξ � ξs∗11 ∈ Z(S). Secondly, assume that δ(s22) � c11 +

c12 + c21 + c22 and since ω(s22e) � ω(0) ∈ Z(S), so using
equation (2), we have ω(0) � ω(e)s∗22 + eδ(s22) + ϕ(s22, e) �

a12s
∗
22 + ξ22s∗22 + c11 + c12 + ϕ(s22, e) and this gives a12s

∗
22 +

c12 � 0 and ξ22s∗22 � β − c11, where β � (ω(0) − ϕ(s22, e))

∈ Z(S). Now, using Lemma 2, for any r ∈ S, we get ξ22s∗22r �

s∗22ξ22r22 � ξ22s∗22r22 � (β − c11)r22 � βr22 � r22β � r22(β −

c11) � r22ξ22s∗22 � rξ22s∗22 � rs∗22ξ22 and this gives s∗22ξ22
∈ Z(S). Also, if s, r ∈ S, then rs∗ξ � r(s∗11ξ + s∗22ξ) � rs∗11ξ +

rs∗22ξ � s∗11ξr + s∗22ξr � (s∗11 + s∗22)ξr � s∗ξr. By a similar
method one can prove the other cases. □

Remark 4. An example of a reverse ∗CE-derivation, if a is
any fxed element in S, the map δa: S⟶ S which satisfes
δa(r) − [r∗, a] ∈ K where K is a central ideal, we can call it
an inner reverse ∗CE-derivation. Now, using Lemma 3 we
can show that the map δ1 given by δ1(s) � [s∗, a12 − a21] + π
is a reverse ∗CE-derivation and with equation (1), we get the
following equation:

δ1(e) � a12 + a21 + π � δ(e). (5)

Remark 5. An example of a generalized reverse ∗CE-
derivation is if a and b are any two fxed elements in S,
the map ω(a,b): S⟶ S which satisfes ω(a,b)(r) − ar∗−

r∗b ∈ L, where L is a central ideal, we can call it an inner
generalized reverse ∗CE-derivation associated with the in-
ner reverse ∗CE-derivation δb which is given by
δb − [s∗, b] ∈ L.

Again, using Lemma 3, we can show that the map ω1
given by ω1(s) � (b11 + b21 − ξ11)s∗ + s∗(a12 − a21) + ξ is
a generalized reverse ∗CE-derivation associated with the
inner reverse ∗CE-derivation δ1 and with equation (2) we
get the following equation:

ω1(e) � b11 + b21 + a12 + ξ22 � ω(e). (6)

Remark 6. For simplifcation, we will replace, without loss of
generality, the reverse ∗CE-derivation δ by the reverse ∗CE-

2 Journal of Mathematics



derivation∆ � δ − δ1 which by using equation (5) bring us to
∆(e) � 0 and the multiplicative generalized reverse
∗CE-derivationω by the multiplicative generalized reverse
∗CE-derivationΩ � ω − ω1 with Ω(e) � 0 by equation (6).
Also, ∆(0) � δ(0) − δ1(0) � δ(0) − π � θ ∈ Z(S) and
Ω(0) � ω(0) − ω1(0) � ω(0) − ξ � α ∈ Z(S). One can easily
show that both of θ and α generates a two sided central ideal
in S.

To prove our main theorem we need the following
lemmas.

Lemma 7. For any element sij ∈ Sij, there exists rji ∈ Sji and
ρii, σii ∈ Zii; i, j ∈ 1, 2{ } such that

(1) ∆(sii) � rii + ρjj, i≠ j,

(2) ∆(sij) � rji + ρii + σjj, i≠ j.

Proof. For (1), we have to prove two separable cases:

(a) Let s11 be an arbitrary element of S11 and let ∆(s11) �

r11 + r12 + r21 + r22. Ten, ∆(s11) � ∆(es11) � ∆(s11)

e + s∗11∆(e) + ρ; ρ ∈ Z(S), which gives r12 � 0, ρ11 �

0 and r22 � ρ22 ∈ Z22, so we get ∆(s11) � r11 + r21 +

ρ22. Similarly, ∆(s11) � ∆(s11e) � ∆(e)s∗11 + e∆(s11) +

c; c ∈ Z(S) which means r21 � 0 and we get ∆(s11)

� r11 + ρ22.
(b) Assume that s22 ∈ S22, write ∆(s22) � r11 + r12 + r21

+r22 so θ � ∆(es22) � ∆(s22)e + s∗22∆(e) + c1 � r11
+r21 + c1; c1 ∈ Z(S), so r11 + r21 � θ − c1 ∈ Z(S)

which means r21 � 0 and r11 ∈ Z11. Likewise, θ �

∆(s22e) � r11 + r12 + c2; c2 ∈ Z(S), so r11 + r12 �

θ − c2 ∈ Z(S), so that r12 � 0 and thus ∆(s22) �

r11 + r22, where r11 ∈ Z11.

Also, For (2) , we have to prove two separable cases:

(a) Assume that ∆(s12) � r11 + r12 + r21 + r22, so that
∆(s12)e � r11 + r21. Also, we have ∆(s12) � ∆(es12) �

r11 + r21 + σ; σ ∈ Z(S) which gives ∆(s12)e � r11 +

r21 + σ11. Comparing between the two values of
∆(s12)e, we get σ11 � 0 and having σ � σ22 ∈ Z22 and
we get ∆(s12) � r11 + r21 + σ22. Now, θ � ∆(s12e) � e

∆(s12) + μ; μ ∈ Z(S), hence e∆(s12) � (θ − μ) �

η ∈ Z(S) and this gives e∆(s12) � r11 + r12 � η ∈
Z(S) which means r12 � 0 and r11 � η11 ∈ Z11. So,
we arrive to ∆(s12) � r21 + η11 + σ22.

(b) Assume that ∆(s21) � r11 + r12 + r21 + r22, so that
e∆(s21) � r11 + r12. Also, we have ∆(s21) � ∆(s21e) �

r11 + r12 + κ; κ ∈ Z(S). which gives e∆(s21) � r11 +

r12 + κ11. Comparing the two expressions of e∆(s21),
we get κ11 � 0, κ � κ22 ∈ Z22 and we get ∆(s21) �

r11 + r12 + κ22. Now, θ � ∆(es21) � ∆(s21)e + ]; ]
∈ Z(S), hence ∆(s21)e � (θ − ]) � ζ ∈ Z(S) which
means r11 � ζ11 ∈ Z11 and we have ∆(s21) � r12 +

ζ11+ κ22. □

Lemma 8. For any element s11 ∈ S11, we haveΩ(s11) � r11 +

φ22 for some r11 ∈ S11 and φ22 ∈ Z22.

Proof. Since Ω(rs) � Ω(s)r∗ + s∗∆(r) + c, for every r, s ∈ S

and c ∈ Z(S) it follows that for every s11 ∈ S11, we have
Ω(s11) � Ω(s11e) � e∆(s11) + c1; c1 ∈ Z(S) because Ω(e) �

0 and by Lemma 7 ∆(S11) ⊂ S11 + Z(S) and Z(S) ⊂ S11 + S22,
so we have thatΩ | S11 ⊂ S11 + Z(S). Now, assume thatΩ(s11)

� a11 + φ,φ ∈ Z(S), then Ω(s11) � Ω (es11) � Ω(s11)e + c2,

c2 ∈ Z(S) which gives Ω(s11) − Ω(s11)e � a11 + φ − a11 −

φ11 ∈ Z(S). We conclude that φ22 ∈ Z22 and Ω(s11) � a11 +

φ � a11 + φ11 + φ22 � r11 + φ22 with r11 � a11 + φ11 ∈ S11 and
φ22 ∈ Z22 as required. □

Lemma 9. For any s12 ∈ S12,Ω(s12) � r11 + r21 + c22 for
some r11 ∈ S11, r21 ∈ S21 and c22 ∈ Z22.

Proof. If s12 ∈ S12 with Ω(s12) � r11 + r12 + r21 + r22, then
Ω(s12) � Ω(es12) � Ω(s12)e + c; c ∈ Z(S), so Ω(s12) � r11
+ r21 + c for some c ∈ Z(S). Also, eΩ(s12) � r11 + r12 � r11 +

c11 which gives c11 � 0 and c � c22 ∈ Z(S), hence Ω(s12) �

r11 + r21 + c22. □

Lemma 10. For any s21 ∈ S21, we have Ω(s21) � r12 + χ11 +

μ22, for some r12 ∈ S12, χ11 ∈ Z11 and μ22 ∈ Z22.

Proof. For s21 ∈ S21, using Lemma 7, we have Ω(s21) � Ω
(s21e) � e∆(s21) + μ � r12 + κ11+ μ; r12 ∈ S12, κ11 ∈ Z11 and
μ ∈ Z(S). Also, we haveΩ(0) � Ω(es21) � Ω(s21)e + ζ � κ11
+ μ11 + ζ; ζ ∈ Z(S), which gives μ11 ∈ Z11, and hence μ22 �

μ − μ11 ∈ Z22. So, we arrive to Ω(s21) � r12 + χ11 + μ22,
where χ11 � κ11 + μ11 ∈ Z11 which is required. □

Lemma 11. For any element t ∈ (S11 + S12),Ω(t) � r11 +

r21 + c22, for some r11 ∈ S11, r21 ∈ S21, and c22 ∈ Z22.

Proof. Assuming that t ∈ (S11 + S12) and Ω(t) � r11 + r12
+ r21 + r22, then Ω(t) � Ω(s11 + s12) � Ω[e(s11 + s12)] � Ω
(s11 + s12)e + c � r11 + r21 + c; c ∈ Z(S). Tis gives r12 � 0,

c11 � 0, and c22 � c ∈ Z(S), and hence Ω(t) � r11 + r21
+ c22. □

Lemma 12. Ω is centrally-extended additive on S11.

Proof. Assuming that r11 and s11 ∈ S11, then Ω(r11 + s11) �

Ω((r11 + s11)e) � e∆(r11 + s11) + c1 � ∆ [(r11 + s11)e] − ∆
(e)(r11 + s11)

∗ + c2 � ∆(r11 + s11) + c2 � ∆ (r11) + ∆(s11) +

c3 � e∆(r11) + e∆(s11) + c4 � Ω (r11e) +Ω(s11e) + c5 � Ω
(r11) +Ω(s11) + c5; where c1, c2, c3, c4 and c5 ∈ Z(S). □

Lemma 13. Ω(r12 + r21) − Ω(r12) − Ω(r21) ∈ Z(S) for all
r12 ∈ S12 and r21 ∈ S21.
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Proof. For any r12 ∈ S12, r21 ∈ S21 and u1n ∈ S1n, where
n ∈ 1, 2{ }, we have

Ω r12(  +Ω r21( ( u1n � Ω r12( u1n +Ω r21( u1n � Ω r12( v
∗
n1 +Ω r21( v

∗
n1

� Ω vn1r12(  − r
∗
12∆ vn1(  +Ω vn1r21(  − r

∗
21∆ vn1(  + c1

� Ω vn1 r12 + r21( (  − r
∗
12∆ vn1(  − r

∗
21∆ vn1(  + c2

� Ω r12 + r21( v
∗
n1 + r12 + r21( 

∗∆ vn1(  − r
∗
12∆ vn1(  − r

∗
21∆ vn1(  + c3

� Ω r12 + r21( u1n + c3; c1, c2, c3 ∈ Z(S).

(7)

Which implies (Ω(r12 + r21) − Ω(r12) +Ω(r21))u1n

∈ Z(S), that is,

Ω r12 + r21(  − Ω r12(  +Ω r21( ( S1n ⊂ Z(S), for all n ∈ 1, 2{ }. (8)

In a similar way, we obtained the following equation:

Ω r12 + r21(  − Ω r12(  − Ω r21( ( S2n ⊂ Z(S), for all n ∈ 1, 2{ }. (9)

Combining equations (8) and (9), we obtained (Ω(r12 +

r21) − Ω(r12) − Ω(r21))S ⊂ Z(S). By hypothesis (C1), we
have Ω(r12 + r21) − Ω(r12) − Ω(r21) ∈ Z(S). □

Lemma 14. Ω(r11 + r12) − Ω(r11) − Ω(r12) ∈ Z(S) for all
r11 ∈ S11 and r12 ∈ S12.

Proof. Let r11 ∈ S11, r12 ∈ S12, t12 ∈ S12 and u1n ∈ S1n, where
n ∈ 1, 2{ }. Ten, we have (Ω(r11 + r12) − Ω(r11) − Ω(r12))

t12u1n ∈ Z(S). Which implies

Ω r11 + r12(  − Ω r11(  − Ω r12( ( t12S1n ⊂ Z(S), for all n ∈ 1, 2{ }. (10)

For any u2n ∈ S2n; n ∈ 1, 2{ }, using Lemmas 7 and 13, we
fnd the following equation:

Ω r11 + r12( t12u2n � Ω r11 + r12( w
∗
21v
∗
n2 � Ω r11 + r12(  vn2w21( 

∗

� Ω vn2w21(  r11 + r12( (  − r11 + r12( 
∗∆ vn2w21(  + ]1

� Ω vn2w21 + vn2(  w21r11 + r12( (  − r11 + r12( 
∗∆ vn2w21(  + ]1

� Ω w21r11 + r12(  vn2w21 + vn2( 
∗

+ w21r11 + r12( 
∗∆ vn2w21 + vn2( 

− r11 + r12( 
∗∆ vn2w21(  + ]2

� Ω w21r11 + r12(  vn2w21 + vn2( 
∗

+ w21r11( 
∗∆ vn2w21(  + r

∗
12∆ vn2w21( 

+ w21r11( 
∗∆ vn2(  + r

∗
12∆ vn2(  − r

∗
11∆ vn2w21(  − r

∗
12∆ vn2w21(  + ]3

� Ω w21r11 + r12(  vn2w21 + vn2( 
∗

+ w21r11( 
∗∆ vn2w21(  + r

∗
12∆ vn2( 

− r
∗
11∆ w21( v

∗
n2 + ]4

� Ω w21r11(  vn2w21 + vn2( 
∗

+Ω r12(  vn2w21 + vn2( 
∗

+ w21r11( 
∗∆ vn2w21( 

4 Journal of Mathematics



+ r
∗
12∆ vn2(  − r

∗
11∆ w21( v

∗
n2 + ]5

� Ω w21r11(  vn2w21( 
∗

+Ω w21r11( v
∗
n2 +Ω r12(  vn2w21( 

∗
+Ω r12( v

∗
n2

+ w21r11( 
∗∆ vn2w21(  + r

∗
12∆ vn2(  − r

∗
11∆ w21( v

∗
n2 + ]6

� Ω vn2w21(  w21r11( (  +Ω w21r11( v
∗
n2 +Ω r12(  vn2w21( 

∗
+Ω vn2r12( 

− r
∗
11∆ w21( v

∗
n2 + ]7

� Ω(0) +Ω w21r11( v
∗
n2 +Ω r12(  vn2w21( 

∗
+Ω(0) − r

∗
11∆ w21( v

∗
n2 + ]7

� Ω r11( w
∗
21v
∗
n2 + r
∗
11∆ w21( v

∗
n2 +Ω r12( w

∗
21v
∗
n2 − r
∗
11∆ w21( v

∗
n2 + ]8

� Ω r11(  +Ω r12( ( t12u2n + ]8; ]i ∈ Z(S), i ∈ 1, 2, . . . , 8{ }.
(11)

Which implies that

Ω r11 + r12(  − Ω r11(  − Ω r12( ( t12S2n ⊂ Z(S), for all n ∈ 1, 2{ }. (12)

Combining equations (10) and (12), we obtained the
following equation:

Ω r11 + r12(  − Ω r11(  − Ω r12( ( t12S ⊂ Z(S). (13)

Applying (C1), we get (Ω(r11 + r12) − Ω(r11) − Ω(r12))

S12 ⊂ Z(S). Applying (C2), we get Ω(r11 + r12) − Ω(r11) −

Ω(r12) ∈ Z(S), as desired. □

Lemma 15. Ω(r12 + r22) − Ω(r12) − Ω(r22) ∈ Z(S), for all
r12 ∈ S12, r22 ∈ S22.

Proof. Let r12 ∈ S12, r22 ∈ S22 and u1n ∈ S1n, where n ∈ 1, 2{ }.

Ten, we have the following equation:

Ω r12(  +Ω r22( ( u1n � Ω r12( u1n +Ω r22( u1n � Ω r12( v
∗
n1 +Ω r22( v

∗
n1

� Ω vn1r12(  − r
∗
12∆ vn1(  +Ω vn1r22(  − r

∗
22∆ vn1(  + μ1

� Ω vn1 r12 + r22( (  − r
∗
12 + r
∗
22( ∆ vn1(  + μ2

� Ω r12 + r22( v
∗
n1 + r12 + r22( 

∗∆ vn1( 

− r
∗
12 + r
∗
22( ∆ vn1(  + μ3 � Ω r12 + r22( u1n + μ3,

(14)

where μi ∈ Z(S), i ∈ 1, 2, 3{ }. Which implies that

Ω r12 + r22(  − Ω r12(  − Ω r22( ( S1n ⊂ Z(S)  for all n ∈ 1, 2{ }. (15)

Analogously, we obtained the following equation:

Ω r12 + r22(  − Ω r12(  − Ω r22( ( S2n ⊂ Z(S)  for all n ∈ 1, 2{ }. (16)
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Combining equations (15) and (16), we obtained
(Ω(r12 + r22) − Ω(r12) − Ω(r22))S ⊂ Z(S). In view of (C1),
we get Ω(r12 + r22) − Ω(r12) − Ω(r22) ∈ Z(S). □

Lemma 16. Ω is centrally-extended additive on S12.

Proof. Let r12, s12, t12 ∈ S12 and u2n ∈ S2n, where n ∈ 1, 2{ }.

Ten, we have the following equation:

Ω r12 + s12( t12u2n � Ω r12 + s12( w
∗
21v
∗
n2

� Ω r12 + s12(  vn2w21( 
∗

� Ω vn2w21(  r12 + s12( (  − r12 + s12( 
∗∆ vn2w21(  + μ1

� Ω vn2w21 + vn2(  r12 + w21s12( (  − r12 + s12( 
∗∆ vn2w21(  + μ1

� Ω r12 + w21s12(  vn2w21 + vn2( 
∗

+ r12 + w21s12( 
∗∆ vn2w21 + vn2( 

− r12 + s12( 
∗∆ vn2w21(  + μ2

� Ω r12(  vn2w21( 
∗

+Ω w21s12( v
∗
n2 + w21s12( 

∗∆ vn2(  − s
∗
12∆ vn2w21( 

+ μ3; (by Lemma 2.15)

� Ω r12(  vn2w21( 
∗

+Ω s12( w
∗
21v
∗
n2 + μ4

� Ω r12(  +Ω s12( ( w
∗
21v
∗
n2 + μ4

� Ω r12(  +Ω s12( ( t12u2n + μ4.

(17)

Which implies that

Ω r12 + s12(  − Ω r12(  − Ω s12( ( t12S2n ⊂ Z(S)  for all n ∈ 1, 2{ }. (18)

And trivially, we have the following equation:

Ω r12 + s12(  − Ω r12(  − Ω s12( ( t12S1n ⊂ Z(S)  for  all n ∈ 1, 2{ }.

(19)

Combining equations (18) and (19), we fnd (Ω(r12 +

s12) − Ω(r12) − Ω(s12))t12S ⊂ Z(S). By (C1), we get (Ω(r12
+ s12) − Ω(r12) − Ω(s12))S12 ⊂ Z(S). Applying (C2), we get
Ω(r12 + s12) − Ω(r12) − Ω(s12) ∈ Z(S), as desired. □

Lemma 17. Ω is centrally-extended additive on
S11 + S12 � eS.

Proof. Consider the arbitrary elements r11, s11 in S11 and r12,
s12 in S12. So Lemmas 14, 16, and 12 give the following
equation:

Ω r11 + r12(  + s11 + s12( (  � Ω r11 + s11(  + r12 + s12( ( 

� Ω r11 + s11(  +Ω r12 + s12(  + λ1
� Ω r11(  +Ω s11(  +Ω r12(  +Ω s12(  + λ2
� Ω r11(  +Ω r12( (  + Ω s11(  +Ω s12( (  + λ2
� Ω r11 + r12(  +Ω s11 + s12(  + λ3,

(20)

where λi ∈ Z(S); i ∈ 1, 2, 3{ }. Tus, Ω is centrally-extended
additive on S11 + S12, as required. □

3. Main Result

Now, we are ready to prove our main theorem.

Theorem 18. Let S be a ring endowed with an involution ∗
containing a nontrivial symmetric idempotent e which sat-
isfes conditions (C1) and (C2). If Ω is any multiplicative
generalized reverse ∗CE-derivation of S, i.e., Ω(rs) � Ω(s)

r∗ + s∗∆(r) + ρ, for all r, s ∈ S and ρ ∈ Z(S) which is asso-
ciated with some reverse ∗CE-derivation ∆ of S, then Ω is
centrally-extended additive.
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Proof. Let r and s be any elements of S. Consider Ω(r) +

Ω(s). Take an element k in Se � S11 + S21.Tus, rk and sk are
elements of Se. According to Lemma 17, we can obtain the
following equation:

(Ω(r) +Ω(s))k � (Ω(r) +Ω(s))t
∗

� Ω(tr) +Ω(ts) − (r + s)
∗∆(t) + ρ1

� Ω(tr + ts) − (r + s)
∗∆(t) + ρ2 � Ω(t(r + s)) − (r + s)

∗∆(t) + ρ2
� Ω(r + s)t

∗
+(r + s)

∗∆(t) − (r + s)
∗∆(t) + ρ3

� Ω(r + s)k + ρ3,

(21)

where ρi ∈ Z(S); i ∈ 1, 2, 3{ }. Tus, Ω(r + s) − Ω(r) −{

Ω(s)}k ∈ Z(S). Since k is an arbitrary element in Se, we
obtain (Ω(r) +Ω(s) − Ω(r + s))Se⊆Z(S). By condition
(C1), we get Ω(r + s) − Ω(r) − Ω(s) ∈ Z(S), which shows
that the multiplicative generalized reverse ∗CE-derivationΩ
is centrally-extended additive. □
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