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Let S be a ring with involution having a nontrivial symmetric idempotent element e. If Q is any appropriate multiplicative
generalized reverse *CE-derivation of S with involution =, then under some suitable restrictions on S, Q is centrally-extended

additive.

1. Introduction

In [1], Bell and Daif introduced the notion of centrally-
extended derivations as follows. Let S be a ring with center
Z(S), a map 6§ of S is called a centrally-extended derivation
(CE-derivation) if for each r,s € S,8(r +s) — 6(r)— 8(s) €
Z(S) and 8(rs) — 6(r)s —rd(s) € Z(S). They discussed the
existence of such map which is not a derivation and gave
some commutativity results. In [2], the authors generalized
this notion to other kinds of maps and extended some results
due to Bell and Daif. Recently, in [3], the authors gave the
notion of Jordan CE-derivations and, under some condi-
tions, they proved that every Jordan CE-derivation of
a prime ring S is a CE-derivation.

Martindale [4] has asked the following question: When is
a multiplicative mapping additive? He answered his question
for a multiplicative isomorphism of a ring S. In [5], Daif has
given an answer to that question when the mapping is
a multiplicative derivation on S. Also, in [6-8], a general-
ization of this question can be found for the case of mul-
tiplicative generalized derivations, multiplicative generalized
reverse *— derivations, and multiplicative left centralizers.

In this article, we generalized the idea of Martindale [4]
and Daif [5] for the notion of the multiplicative generalized
reverse *CE-derivation.

2. Preliminaries

In this note, we introduce the notion of the multiplicative
generalized reverse *CE-derivation of a ring S with in-
volution # to be a mapping w of S into S such that
w(rs) —w(s)r* —s*6(r) € Z(S), for all r,s € S, where § is
a reverse *CE-derivation from S into S; i.e., for all r,s € §,
O(r+s)—8(r)—6(s) € Z(S) and 8(rs) —8(s)r*— s*6(r)
€ Z(8S). In other words, we can write the maps w and & by
w(rs) =w(s)r* +s*6(r) +¢(r,s) and &(rs) =d(s)r* +s*
&(r) + y(r,s), where ¢(r,s) and y (r, s) are central elements
depend on the choice of r and s and related to the mappings
w and 6, respectively.

Here, we ask the following question: When is a multi-
plicative generalized reverse *CE-derivation a *CE-addi-
tive? Under suitable conditions, we give an answer for this
question.

Asin [9], let e € S be a nontrivial symmetric idempotent
element so that e#1,e#0,ande* = e (S need not have an
identity). We will formally sete, = eand e, = 1 —e. The two-
sided Peirce decomposition of S relative to the idempotents
e, and e, takes the form S = e,Se, ®e,Se, ® e,Se; ®e,Se,. So
letting S;; = ¢;Se;: i, j € {1,2}, we may write $ = §,; ®5,,®
51 ©S5,. An element of the subring S;; will be denoted by s;;.
If p=py+py+ Uy + Uy € Z(S), since ey = pe;, then
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U1z = Py = 0, so we conclude that Z(S) C S;; ®S,,. Also, we
formally use the symbol Z;; for referring to the subring
SiNZ(S).

By the definition of §, we note that §(0) = v (0,0) €
Z (S). However, since * is bijection and, for all x € S, §(0) =
8(0x*) =x**6(0) +z; = x6(0) +z; € Z(8S). So that S§(0) =
6(0)S =6(0)S* =8*6(0) c Z(S). Then, we have §(0)S* =
8(0)S = {6(0)s*: s* € §*}, which is a two sided central ideal
in S. Since e§(0) € Z(S), if y(0,0) = v, (0,0) + v, (0,0),
then e (0) = y4,(0,0) € Z,; and this gives also y,, (0,0) €
Z,,. Similarly, w(0)S* is a two sided central ideal in S and
$,,(0,0) € Z,, and ¢,,(0,0) € Z,,.

Moreover,
8(e) =8(e*) =(e)e* +e*d(e) + m form = y(ee) € Z(S).
If we express §(e) = a;; +a,, + a, +4a,, and use the two
expressions of J(e), we get a,, =m, and a; =-my,.
Consequently, we have the following equation:

0(e) = ay, +ay —myy + 7y (1)

By the same manner, if w: S — S is a multiplicative
generalized reverse * CE-derivation associated with a reverse
*CE-derivation §,then w (e) = w(e?) = w(e)e* +e* &(e) + &,
where &=¢(ee) € Z(S) and we can  write
w(e) = by, +by, +by +by,, and using the values of w(e)
and & (e). we conclude that &, = 7}y, by, =&, and by, = a,
so,

w(e) =byy +ap, +by + &y, (2)

In our work we will need the following facts.

Proposition 1
Then, s; =1, wherer =s" € S. Moreover,

[7]. Let seS (s € S,-jwherei,j € {1,2}).

:1"’{<

Sij ]i'

Lemma 2. ¢, € Z,; and n; € Z;;, where i € {1,2}.

Proof. For any element s € S, by expanding both sides of
w(es) = w(e(es)), we get the following equation:

s"0(e) + d(e,s) =s"8(e)e+s"ed(e) + P (e s)e+ ¢ (e es).
(3)

Now using equation (1) in equation (3), we get 7s* =
dle,s)e+¢(e,es) —d(e,s) and since ¢(e,s),P(e es) € Z
(8) € S;;88S,,, this means

ns" €898, (4)

Now, Since * is bijection, there exist » € S such that
r =5, so we can rewrite s* =r =71, + 1, +1, +71, and
using that 7 € Z(S), we get my 1, =77y, and 7m,,r,, =
5,7, which implies m,; € Z(S,;) and m,, € Z(S,,). And
again equation (4) gives 7,7, + Ty7y; =0 and r,m,, +
r517; =0, which gives w7, = M,y =0 and r,m,, =
757, = 0, this means that m is a left and right annihilator of
the two subrings S;, and S,,. Now, for any r € §, m;r =
Ty =77, =y, which gives m; € Z(S). Since
Ty, = 7 — 7y;, then 7,, € Z(S). Also, since &;; = m;;, we get
&1 €Z(S) and &y, = (§-&;)) € Z(9).
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To achieve our main result, we assume that the ring S
endowed with an involution * contains a nontrivial sym-
metric idempotent e and satisfies the following conditions:

(C,) tSe c Z(S) implies t € Z(S). And tS c Z(S) im-
plies t € Z(S).

(C,) teS(1 —e) c Z(S) implies t € Z(S).

And w is any multiplicative generalized reverse *CE-
derivation of S associated with a reverse *CE-derivation ¢
of S.

The following lemma is fruitful in our proofs: O

Lemma 3. The ideals S*§, S*¢;, S*n, S*m, and S*7 are
central ideals in S, where y=d¢(ee)eZ(S),
n=vy(ee) € Z(S), m=my —my € Z(S), and i € {1,2}.

Proof. First, using Lemma 2, for any s}, € S;;, we get
&Esiis1, = 57,851, = 0 € Z(S) and using condition (C,), we
get s7,& = &st; € Z(8S). Secondly, assume that §(s,,) = ¢q; +
C1p + €y + ¢y, and since w(sye) = w(0) € Z(S), so using
equation (2), we have w (0) = w(e)s;, + ed(sy,) + ¢ (s55,€) =
a1585, + €585, + ¢ + ¢ + ¢ (55, €) and this gives ay,s5, +
¢, =0 and &y,s5, = B —cy, where = (w(0) - ¢(sy,€))
€ Z(S). Now, using Lemma 2, for any r € S, we get &,,s5,7 =
S8 = = (B-c)rn =Prop=rpf=rp( -
1) = 158y, = 18ys3, = 753,85, and this gives 53,85,
€ Z(S). Also, if s,r € S, thenrs*& = r (s}, + s5,&) = rs}; &+
rs3& =s1.8r+ 55,8r = (s§; +55,)ér =s*&r. By a similar
method one can prove the other cases. O

Remark 4. An example of a reverse *CE-derivation, if a is
any fixed element in S, the map J,: S — S which satisfies
8,(r) — [r*,a] € K where K is a central ideal, we can call it
an inner reverse *CE-derivation. Now, using Lemma 3 we
can show that the map &, given by 8, (s) = [s*,a;,, —a,, ]+ 7
is areverse *CE-derivation and with equation (1), we get the
following equation:

6,(e) =ay, +a, +m=274(e). (5)

Remark 5. An example of a generalized reverse *CE-
derivation is if a and b are any two fixed elements in S,
the map w,;): S —> S which satisfies w,) (r) —ar*—
r*b € L, where L is a central ideal, we can call it an inner
generalized reverse *CE-derivation associated with the in-
ner reverse “CE-derivationd, which is given by
0, — [s*,b] € L.

Again, using Lemma 3, we can show that the map w,
given by w,(s) = (by; +by =& )s" +s"(a;; —ay) +& is
a generalized reverse *CE-derivation associated with the
inner reverse *CE-derivation &, and with equation (2) we
get the following equation:

wy (e) = by + by +ay, + &y = w(e) (6)

Remark 6. For simplification, we will replace, without loss of
generality, the reverse *CE-derivation § by the reverse *CE-
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derivation A = § — §, which by using equation (5) bring us to
A(e) =0 and the multiplicative generalized reverse
*CE-derivation w by the multiplicative generalized reverse
*CE-derivation Q = w — w; with Q(e) = 0 by equation (6).
Also, A(0)=6(0)-6,(0)=6(0)-m=60€Z(S) and
Q(0) = w(0) - w, (0) = w(0) - & = a € Z(S). One can easily
show that both of 6 and « generates a two sided central ideal
in S.

To prove our main theorem we need the following
lemmas.

Lemma 7. For any element s;; € S;;, there existsrj; € S;; and
Pii» Oii € Zii 4> j € {1,2} such that

(D) Alsy) =rii+pjjp  i# ]

() A(sj) =rji+pi+0j; i#]

Proof. For (1), we have to prove two separable cases:

(a) Let s;; be an arbitrary element of S;; and let A(s,;) =
T+ 7o+ 1y + 7y Then, A(syy) = Alesy;) = A(syy)
e+ sy Ae) +p; p € Z(S), which gives rj, =0,p;; =
0 and 7y, = py, € Z,y, S0 we get A(sy) =1 +75 +
Py Similarly, A(s;;) = A(sj e) = A(e)s]; +eA(syy) +
y; ¥ € Z(S) which means r,; = 0 and we get A(s;;)
=Tt Py

(b) Assume that s,, € S,,, write A(sy,) =71, +715, + 1y
+75, s0 0=A(es,,) =A(sy)e+s5,A(e) +y, =1,
+ry + V15 Y1 € Z(S), so 1y +ry =0-7p, € Z(S)
which means r,; =0 and ry; € Z,;. Likewise, 0 =
A(sye) =1 +1+ 955 V2 €Z(S), so 1y +1, =
00—y, € Z(S), so that r;, =0 and thus A(sy,) =
711 + 7y, Where ry; € Z,,.

Also, For (2) , we have to prove two separable cases:

(a) Assume that A(sy,) =1y + 1, + 1 + 15, so that
A(syp)e = 1q; + 1, Also, we have A(s},) = A(es;,) =
T+ 7y +0;0€Z(S) which gives A(sjy)e=r; +
5 + 04;. Comparing between the two values of
A(sy,)e, we get 01, = 0 and having 0 = 0, € Z,, and
we get A(sy,) =1, + 75 + 05 Now, 0= A(s,e) = e
A(sp) +u; e Z(S), hence eA(s;,)=(0-u)=
n € Z(S) and this gives eA(s;,) =r;; +r, =14 €
Z(S) which means r, =0 and r; =%, € Z,;. So,
we arrive to A(sy,) =15 + 1y, + 05y

(b) Assume that A(sy) =71, + 15 +7y + 1y, so that
eA(s,;) = 1q; + 1, Also, we have A(s,;) = A(sye) =
ri + 71+ K k€ Z(S). which gives eA(sy) =1, +
71, + k;,. Comparing the two expressions of eA (s, ),
we get x,; =0, k =k,, € Z,, and we get A(sy) =
711+ 7 + Ky Now, 0=A(esy) =A(sy)e+7v; v
€ Z(8S), hence A(s,;)e = (6 —v) = € Z(S) which
means ry; = {;; € Z;; and we have A(s,) =7, +
(it K

Lemma 8. For any element s, € S,;, we have Q(s,;) =r; +
@, for some vy, € Sy, and @,, € Z,,.

Proof. Since Q(rs) = Q(s)r* + s*A(r) +y, for every r,s € S
and y € Z(S) it follows that for every s;; € S;;, we have
Q(syy) = Q(sy,8) = eA(sy) + V15 y1 € Z(S) because Q(e) =
0 and by Lemma 7 A(S;;) € $;; + Z(S) and Z(S) € S;; + S5
so we have that Q | S;; € §;; + Z(S). Now, assume that Q(s;)
=a; +¢,9 € Z(S), then Q(s;) =Q (es;;) = Q(s;)e+
Y, € Z(S) which gives Q(s;;) - Q(s;)e=a, +¢—ay -
@11 € Z(S). We conclude that ¢,, € Z,, and Q(s;;) =a,; +
P =ay+ @+ @y =1y + ¢y withry, =ay, +¢, €5, and
@,y € Z,, as required.

Lemma 9. For any s, € S5, Q(s1,) =1 + 1y + 7Yy, for
some 1y, € 811,13 €Sy, and y,, € Zy,.

Proof. If s, € S}, with Q(s,) =1, +7, +7, + 7, then
Q(sy) =Q(esy) =Q(sple+y; y € Z(S), so Q(sy) =1y
+7, +yforsomey € Z(S). Also, eQ(s,) =1+, =1 +
1, which gives y;; =0 and y = y,, € Z(S), hence Q(s},) =
[SVRLR S R 072 u

Lemma 10. For any s,; € S,;, we have Q(sy) =1, + X, +
Hay for some 1y, € Spy,xyy € Zyy and piy € Zy.

Proof. For s,; € S,;, using Lemma 7, we have Q(s,;) = Q
(sy18) = eA(sy) +pu =71, + K+ Y5 115 € S1p, %y € Zy; and
p € Z(S). Also, we have Q(0) = Q(esy;) = Q(sy;)e+ { = xyy
+py + (5 (€ Z(S), which gives yy; € Z;;, and hence y,, =
U=y, € Z,y. So, we arrive to Q(sy) =1, + X1 + Hans
where y;, = &;; + 4;; € Z;; which is required.

Lemma 11. For any element t € (S;; +8,,),Q(t) =1 +
Y1 + V2> for some vy € Sy, 15 €S,,, and yy, € Z,,.

Proof. Assuming that t € (§;;+S,;) and Q(t) =1, +7,
+7y + 1y, then Q(f) = Q(s;; +55,) = Qle(s;; +5)] =Q
(s; +spe+y=r +1r +y; v € Z(S). This gives ry, =0,
11 =0, and y,, =y € Z(S), and hence Q(t) =1 +71y,
+ Y25 O

Lemma 12. Q is centrally-extended additive on S,,.

Proof. Assuming that r,; and s;; € S;;, then Q(r; +s;;) =
Q((ryp+s;)e) =eA(r+s;)+y=A [(ry +s7)e]l —A
(@ +851)" + 9y, =A(r +511) + 72 =A (r)) +Asyy) +
ys =eA(ry) +eA(s;) +y, =Q  (rpe) + Q(sype) +y5 = Q
(r11) + Q(sy1) + y5; where y1,¥,, V3 74 and ys € Z(S). O

Lemma 13. Q(r, +1,) — Q(r,) — Q(ry) € Z(S) for all
T, €S, and ry €8,).



4 Journal of Mathematics

Proof. For any ry, € S;,,75; €S,; and u,, €S,,, where
n € {1, 2}, we have

1)y, + Q(ry)uy, = Q(r) v + Q(ra)v,

Vrr12) = 1A (Vr) + Q (Vi a1) = 18 (V) + 11

Vir (T2 +721)) = 1A (V) = 73 A(Vi) + 72 (7)
2+ )V + (1 +720) "A(Vr) = T1A (V) = 75 A (V) + 73

Tia + o1 )y, + V35 V1> V2 V3 € Z(S).

(Q(r1n) + Q(ry)Juy, =

[
Q00 0 0 P

Which implies (Q(r, +1y;) — Q(ry) + Q(ry)uy,
€ Z(S), that is,

(Q(riy+121) = Q(r1) + Q(r21))S1, € Z(S), for all n € {1,2}. (8)

In a similar way, we obtained the following equation:

(Q(r1y+151) = Q(r,) = Q(r21))Sy, € Z(S), for all n € {1,2}. (9)

Combining equations (8) and (9), we obtained (Q(r,, +  Proof. Letry, € S;;,71, € S12,t12 € S, and u,, € S,,,, where
r31) — Q(ry) —Q(ry))S € Z(S). By hypothesis (C,), we  n € {1,2}. Then, we have (Q(r;; +r,) —Q(r;;)— Q(r,)
have Q (1, +15;) —Q(r,) —Q(ry) € Z(S). O tuy, € Z(S). Which implies

Lemma 14. Q(r +1,) — Q(ryy) —Q(ry,) € Z(S) for all
r €8, and ry, €8S,.

(Q(ry +11) = Q(ry;) = Q(r12))t1281, € Z(S), for all n € {1,2}. (10)

For any u,, € S,,; n € {1,2}, using Lemmas 7 and 13, we
find the following equation:

Q(ryy +71)tpty, = Q(ryy + 1) Wy v, = Q1 +71) (Vpwy,)”

= Q((vwa) (111 +112)) = (11 +712) A(Vpwy) + 7,

= Q((Vpwa + Vi) (Wt +112)) = (r1y +712) A(Vwy) + 7,

= Q(wy 1y +71) (VW + V)" + (Wart1y +712) A(V,pw); + V)
—(ri +112) A(Vpwy) +,

= Q(wyryy +11) (VW + Vi) + (Warr11) A(Vipwy)) + 1A (V,owsy)
+ (Wyr11) A (V) + 1HA (V) = 11 A (Vawar) = LA (Vpwyy) + 73

= Q(wyryy +71) (VW1 + Vi) + (Warr11) A (Vpway) + 1A (V)
— A (W)Y, + 7

= Q(wy 1) (Vs + V)" + Q(r12) (Vawy + V)™ + (War) A(v,,w,)
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+ 1A (V) = AWy )v,, + s

= Q(wy 1) (Vawa)" + Q(wyr)Vi, + Q1) (Vpws)™ + Q(rp)vi,
+ (warrn) " A(Viawa) + A (Vi) = 1A (Wa)v,, + Y

= Q((wa) (Warrn)) + Q(wyr11)Vp, + Q1) (Vpwa)™ + Q(Ver)
- A(wy )V, + 7,

=Q(0) + Q(wyr11)v, + Q(r12) (Vewy) ™ + Q0) — 1, A(wy )V, + 7,

= Q(r)wy v + A Wy)V, + Q(r)wy v, — 1A (wa) vy, + 7

= (Q(ry) + Q(r12))tts, +v5; v € Z(S),i € {1,2,...,8}.
(11)

Which implies that

(Q(ry +112) = Q(r1;) = Q(r12))t12S,, € Z(S),for all n € {1,2}. (12)

Combining equations (10) and (12), we obtained the Lemma 15. Q(r, +15,) — Q(r,) — Q(ry,) € Z(S), for all
following equation: 712 € 812722 € Sy,

(Q(ryy +712) = Q(r1y) = Q(r12))t12S € Z(S). (13) Proof. Letr,, € Sy,,75, € Sy, andu,, € S,,,, wheren € {1,2}.

Applying (C,), we get (Q(ry, + 1) — Q(ryy) — Q(r1)) Then, we have the following equation:
S12 € Z(8S). Applying (C,), we get Q(ry, +7,) — Q(ry) —
Q(ry,) € Z(S), as desired. O

(Q(r1p) + Q(ry))ur, = Q(ri)ur, + Q(ry)uy, = Qrip)v,, + Q(ryn)v,

Vir12) = 1A (V) + Q(Var22) = 18 (V) + 1y

Var (T2 +732)) = (i + 122)A (V) + 2 (14)
T2+ )V + (riy +720) "A(v)

Tia + o)ty + fhs

~ o~ o~ o~ o~

where y; € Z(S),i € {1,2,3}. Which implies that

(Q(r +72) = Q(r15) = Q(r))Si, € Z(S) for all n € {1,2}. (15)

Analogously, we obtained the following equation:

(Q(r1y + 1) = Q(r,) = Q(r2))S,, € Z(S) for all n € {1,2}. (16)



Combining equations (15) and (16), we obtained
(Q(ry +755) —Q(r1,) — Q(rp))S € Z(8S). In view of (C)),
we get Q(r, +15,) — Q(ry) — Q(ry,) € Z(S). O

Lemma 16. Q is centrally-extended additive on S,,.

* *
ip +Sp)Wy v,

12 +5)2) (Vn2w21)*
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Proof. Let ryy, 515, t, € S;, and u,, € S,,, where n € {1,2}.
Then, we have the following equation:

(

(

((Vowa1) (r1a +512)) = (riz + 512) " A(Vaway) + 1y

(VoW1 + V) (112 + Ways12)) = (112 +512) " A(Vpwyy) + 1y
(112 + Wyr12) (Vo War + V)" + (r1p + Wars12) "A(Vpwy; + v,)

= (rip +512) A(V,pwa) + 1

(17)

= Q(r12) (Vawn)" + Q(wy512)V + (Wi1515) A (V) = 51,A (Vo w,y)

+ p3; (by Lemma2.15)

= Q(r12) (Vawn)" + Q(s12)w), vy, + py
= (Q(r12) + Qs12) w3, vy + thy
= (Q(r1) + Q(s12))t12than + tha

Which implies that

(Q(r1, +512) = Q(r12) = Q(512))t12S5, € Z(S) for all n € {1,2}.

And trivially, we have the following equation:
(Q(ry +512) = Q(r12) = Q(512))t12S1, € Z(S) for all n € {1,2}.
(19)
Combining equations (18) and (19), we find (Q(r, +
$15) — Q (1) = Q(s;))t,S8 € Z(S). By (Cy), we get (Q(ry,

+515) = Q(r,) — Q(s12))S1, € Z(S). Applying (C,), we get
Q(r, +512) = Q(r,) —Q(sy,) € Z(S), as desired. O

(18)

Lemma 17. Q s additive on

Sy +S,, = €.

centrally-extended

Proof. Consider the arbitrary elements r,;, s;; in S;; and r,,
$;, in Sp,. So Lemmas 14, 16, and 12 give the following
equation:

Q((ryg +71) + (s +512)) = Q((ryg +511) + (112 + 512))

=Q(ry +s) +Q(rp +sp) 4

= Q(ryy) + Q(sp) + Q(rp) + Q(sp) +4,

(20)

= (Q(ryy) + Q(r1,) + (Q(s11) + Q(s512)) + 4
= Q(ryy +11p) + Q(s11 +515) + 43,

where A; € Z(S); i € {1,2,3}. Thus, Q is centrally-extended
additive on S;; + Sy,, as required. O

3. Main Result

Now, we are ready to prove our main theorem.

Theorem 18. Let S be a ring endowed with an involution *
containing a nontrivial symmetric idempotent e which sat-
isfies conditions (C,) and (C,). If Q is any multiplicative
generalized reverse * CE-derivation of S, i.e, Q(rs) = Q(s)
r* +s*A(r) +p, for all r,s € S and p € Z(S) which is asso-
ciated with some reverse *CE-derivation A of S, then Q is
centrally-extended additive.
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Proof. Let r and s be any elements of S. Consider Q(r) +
Q(s). Take an element k in Se = S;; + S,;. Thus, rk and sk are

elements of Se. According to Lemma 17, we can obtain the
following equation:

(Q(r) + Q(s)k = (Q(r) + Q(s)t" = Q(tr) + Q(ts) — (r +s)"A(t) + p,
=Qtr+ts) = (r+s)"A{t) +p, = Q(t(r +3)) — (r +8)"A(t) + p,
=Q(r+s)t" +(r+8)"Alt)—(r+s)"At) +ps

=Q(r + )k +ps,

where p; € Z(S);i€{1,2,3}. Thus, {Q(r+s)—-Q(r)-
Q(s)}k € Z(S). Since k is an arbitrary element in Se, we
obtain (Q(r) +Q(s) —Q(r +5))Se<cZ(S). By condition
(C)), we get Q(r+s)—Q(r) —Q(s) € Z(S), which shows
that the multiplicative generalized reverse *CE-derivation Q
is centrally-extended additive. O
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