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Over time, hybrid fxed point results have been examined merely in the framework of classical mathematics. Tis one way research has
clearly dropped-of a great amount of important results, considering the fact that a fuzzy set is a natural enhancement of a crisp set. In
order to entrench hybrid fxed notions in fuzzymathematics, this paper focuses on introducing a new idea under the name intuitionistic
fuzzy p-hybrid contractions in the realm of -metric spaces. Sufcient conditions for the existence of common intuitionistic fuzzy fxed
points for such maps are established. In the instance where our presented results are slimmed down to their equivalent nonfuzzy
counterparts, the concept investigated herein unifes and generalizes a signifcant number of well-known fxed point theorems in the
setting of both single-valued and multivalued mappings in the corresponding literature. A handful of these special cases are highlighted
and analysed as corollaries. A nontrivial example is put together to indicate that the hypotheses of our results are valid.

1. Introduction

In practical, if a model asserts that conclusions drawn from it
have some bearings on reality, then twomajor complications
are immediate, namely, real situations are often not crisp
and deterministic; a complete description of real systems
often requires more detailed data than human beings could
recognize simultaneously, process, and understand.
Whence, by using classical mathematical tools, as the dif-
fculty of a practical system increases, our ability to come up
with precise and signifcant statements reduces until a
threshold is reached after which accuracy become an almost
mutually exclusive characteristics, see [1]. Tese restrictions

in everyday systems paved the way to the launching of the
fuzzy set by Zadeh [2], which is a fexible mathematical
device to design mathematical approaches in line with
practical issues. At present, the primitive ideas of the fuzzy
set have been upgraded in a multifarious framework. Fol-
lowing this development, Heilpern [3] employed the idea of
the fuzzy set to initiate a class of fuzzy set-valued mappings
and presented a fxed point(Fp) theorem which is a fuzzy
version of the Fp result of Nadler [4]. Tereafter, a sub-
stantial number of authors have studied the existence of Fp
of fuzzy set-valued maps, for example, see [5–10]. Following
Zadeh [2], an intuitionistic fuzzy set (IFS) was brought up by
Atanassov [11] as an additional refnement of the notions of
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fuzzy set. IFS gives relevant frames to take care of inaccuracy
and hesitancy due to inadequate information. IFS is more
useful than a fuzzy set as it evaluates the degrees of both
membership and nonmembership. Whence, it has attracted
enormous applications in several felds. At present, work on
IFS have been rising at a faster speed and varying views have
been discovered in diferent arms. Along this direction,
Azam et al. [12] came up with a modern way for examining
the existence of Fp of intuitionistic fuzzy set-valued maps
defned on a complete metric space. Later after, [13] pre-
sented criteria for investigating coincidence points for
intuitionistic fuzzy set-valued maps and employed their
results to examine conditions for the existence of solutions
to a system of integral equations. Of recent, [14, 15] coined
the idea of Fp results for two intuitionistic fuzzy set-valued
maps using (T,N, α⌣)-cut set.

Te well-celebrated Banach contraction has laid a solid
foundation for the development of the metric fxed point
theory.Te prototypical concept of the contraction mapping
principle has been refned in several domains (e.g., see
[16–20]). Along the lane, hybrid Fp theory emerged and has
so far been studied only in the context of classical mathe-
matics. Tis one way investigation has obviously neglected a
great amount of useful results, considering the fact that a
fuzzy set is a natural generalization of a crisp set. Whence, in
order to entrench hybrid fxed point notions in fuzzy
mathematics, the aim of this paper is to introduce new
concepts under the name intuitionistic fuzzy p-hybrid
contractions in the framework of b-metric space. Sufcient
criteria for the existence of common intuitionistic fuzzy Fp
for such mappings are established. It is observed that at the
instance where our results are reduced to their corre-
sponding crisp ideas, the concepts examined herein har-
monize and generalize a signifcant number of Fp results in
the setting of both point-valued and set-valued mappings in
the related literature. A few of these particular cases are
pinned down and discussed. A comparative example is
designed to validate the hypotheses of our obtained results.

2. Preliminaries

We collect herewith specifc fundamentals that will be
needed later on. Tese basis are some extracts from
[2, 4, 21, 22].

Defnition 1 [21]. Let [ be a nonempty set and 􏽢η≥ 1 be a
constant. Suppose that the mapping 􏽢μ: [ × [⟶ R+ sat-
isfes the following criteria for all ς,ω, ξ ∈ [:

(i) 􏽢μ(ς,ω) � 0⇔ς � ω;
(ii) 􏽢μ(ς,ω) � 􏽢μ(ω, ς);
(iii) 􏽢μ(ς,ω)≤ 􏽢η[􏽢μ(ς, ξ) + 􏽢μ(ξ,ω)].

Ten, ([, 􏽢μ, 􏽢η) is called as a b-metric space.

Defnition 2 [23]. Consider a b-metric space ([, 􏽢μ, 􏽢η) .
A sequence ς℘􏽮 􏽯℘∈N is called:

(i) convergent ⇔ς ∈ [ is such that 􏽢μ(ς℘, ς)⟶ 0 as
℘⟶∞.

(ii) Cauchy if 􏽢μ(ς℘, ςϖ)⟶ 0 as ℘,ϖ⟶∞.
(iii) complete if every Cauchy sequence in [ is

convergent.

In a b-metric space, the limit of a sequence is not always
unique. However, if a b-metric is continuous, then every
convergent sequence has a unique limit.

Defnition 3 [23]. Consider a b-metric space ([, 􏽢μ, 􏽢η). A
subset 􏽥∇ of [ is called:

(i) compact⇔ for every sequence of elements of 􏽥∇ , we
can fnd a subsequence that converges to an element
of 􏽥∇ .

(ii) closed ⇔ for every sequence ς℘􏽮 􏽯℘∈N of elements of
􏽥∇ that converges to an element ς, we have ς ∈ 􏽥∇ .

Defnition 4 [24]. A nonempty subset 􏽥∇ of [ is called
proximal if, for each ς ∈ [, we can fnd a ∈ 􏽥∇ such that
􏽢μ(ς, a) � 􏽢μ(ς, 􏽥∇ ).

We denote byN([), CB([), Pr([), Pr
b([) andK([),

the family of all nonempty subsets of [, the class of all
nonempty closed and bounded subsets of [, the collection of
all nonempty proximal subsets of [, the totality of all
bounded proximal subsets of [ and the class of nonempty
compact subsets of [, respectively.

Consider a b-metric space ([, 􏽢μ, 􏽢η) . For 􏽥∇ , 􏽥∇∈ Pr([),
the function ℵ: Pr([) × Pr([)⟶ R+, defned by

ℵ( 􏽥∇ , 􏽥Δ ) � max sup
ς∈􏽥∇

􏽢μ(ς, 􏽥Δ), sup
ς∈􏽥△ 􏽢μ

(ς, 􏽥∇ ) },

⎧⎪⎪⎨

⎪⎪⎩
(1)

is called a Hausdorf-Pompeiu b-metric onPr([) generated
by 􏽢μ, where

􏽢μ(ς, 􏽥∇ ) � inf
ω∈􏽥∇

􏽢μ(ς,ω). (2)

Remark 1. Since every compact set is proximal and every
proximal set is closed (see [24]), whence:

K([)⊆Pr
([)⊆CB([)⊆N([). (3)

Let [ be a universal set. A fuzzy set in [ is a function
with domain [ and values in [0, 1] � I. If 􏽥∇ f is a fuzzy set in
[, then the function value 􏽥∇ f(ς) is called the grade of
membership of ς in 􏽥∇ f. Te α⌣-level set of a fuzzy set 􏽥∇ f is
denoted by [ 􏽥∇ f]α⌣ and is given as follows:
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􏽥∇f􏽨 􏽩α⌣ �
ς ∈ [: 􏽥∇(ς)> 0􏼈 􏼉, if α⌣ � 0

ς ∈ [: 􏽥∇(ς)≥ α⌣􏽮 􏽯, if α⌣ ∈ (0, 1],

⎧⎪⎨

⎪⎩
(4)

where by M, we mean the closure of the crisp set M. We
denote the family of all fuzzy sets in [ by I[.

A fuzzy set 􏽥∇ f in a metric space V is called an ap-
proximate quantity if and only if [ 􏽥∇ f]α⌣ is compact and
convex in V and supς∈V 􏽥∇ (ς) � 1. Denote the collection of all
approximate quantities in V by W(V). If we can fnd an
α⌣ ∈ [0, 1] such that [ 􏽥∇ f]α⌣, [ 􏽥△ f]α⌣ ∈ P

r
b([), then defne

Dα⌣
􏽥∇ f, 􏽥△ f􏼐 􏼑 � ℵ 􏽥∇ f􏽨 􏽩α⌣, 􏽥△ f􏽨 􏽩α⌣􏼐 􏼑,

􏽢μ∞ 􏽥∇ f, 􏽥△ f􏼐 􏼑 � sup
α⌣

Dα⌣( 􏽥∇ , 􏽥△ ).
(5)

Defnition 5 [3]. Let [ be a nonempty set. Te mapping
Ξ: [⟶ I[ is called a fuzzy set-valued map. A point u ∈ [

is called a fuzzy Fp of Ξ if we can fnd an α⌣∈ (0, 1] such that
u ∈ [Ξu]α⌣.

Defnition 6 [11]. Let [ be a nonempty set. An IFS 􏽥∇ in [ is
a set:

􏽥∇ � 〈J, 􏽢μ􏽥∇
(J), ]􏽥∇

(J)〉: J ∈ [},􏼚 (6)

where 􏽢μ􏽥∇
: [⟶ [0, 1] and ]􏽥∇

: [⟶ [0, 1] defne the
degrees of membership and non-membership, accordingly
of J in [ and fulfl 0≤ 􏽢μ􏽥∇

+ ]􏽥∇
≤ 1, for each J ∈ [.

We depict the set of all IFS in [ as (IFS)[.

Defnition 7 [11]. Let 􏽥∇ be an IFS in [. Ten the α⌣-level set
of 􏽥∇ is a crisp subset of [ denoted by [ 􏽥∇ ]α⌣ and is given as
follows:

[ 􏽥∇ ]α⌣ � J ∈ [: 􏽢μ􏽥∇
(J)≥ α⌣ and ]􏽥∇

(J)≤ 1 − α⌣}, if α⌣ ∈ [0, 1].􏼚

(7)

Defnition 8 [12]. Let L � (α⌣, β
⌣

): α⌣ + β
⌣

≤ 1, (α⌣, β
⌣

) ∈ (0, 1]􏼚

×t[0, 1)} and 􏽥∇ is an IFS in [. Ten the (α⌣, β
⌣

)-level set of 􏽥∇
is given as follows:

[ 􏽥∇ ]
(α⌣,β

⌣

)
� J ∈ [: 􏽢μ􏽥∇

(J)≥ α⌣ and ]􏽥∇
(J)≤ β

⌣

}.􏼚 (8)

A modifcation of Defnition 2.9 in [13] is the following.

Defnition 9 [13]. Te ( 􏽥M, 􏽥ϖ)-level set of an intuitionistic
fuzzy set 􏽥∇ in [ is given as follows:

[ 􏽥∇ ]
( 􏽥M,􏽥ϖ) � ς ∈ [: 􏽢μ􏽥∇

(ς) � 􏽥M and ]􏽥∇
(ς) � 􏽥ϖ},􏼚 (9)

with
􏽥M � max

ς∈[
􏽢μ􏽥∇

(ς) and 􏽥ϖ � min
ς∈[

]􏽥∇
(ς). (10)

Example 1. Let [ � J1, J2, J3, J4, J5􏼈 􏼉 and 􏽥∇ be an IFS in [

given by

􏽥∇ � J1, 0.6, 0.2( 􏼁, J2, 0.5, 0.4( 􏼁, J3, 0.1, 0.7( 􏼁, J4, 0.3, 0.5( 􏼁, J5, 0.4, 0.3( 􏼁􏼈 􏼉. (11)

Ten the (α⌣, β
⌣

)-level sets of 􏽥∇ are given by.
[ 􏽥∇ ](0.4,0.3) � J1, J5􏼈 􏼉.
[ 􏽥∇ ](0.1,0.7) � J1, J2, J3, J4, J5􏼈 􏼉.
[ 􏽥∇ ](0.3,0.5) � J1, J2, J4, J5􏼈 􏼉.

Defnition 10 [12]. Let [ be a nonempty set. Te map Υ �

〈􏽢μΥ, ]Υ〉: [⟶ (IFS)[ is called an intuitionistic fuzzy set-
valued map. An element u ∈ [ is named an intuitionistic
fuzzy Fp of Υ if we can fnd (α⌣, β

⌣

) ∈ (0, 1] × t[0, 1) such that
u ∈ [Υu]

(α⌣,β
⌣

)
.

Defnition 11 [22, 25]. An increasing function 􏽢φ: R+⟶
R+ is called:

(i) a c-comparison function if 􏽢φ℘(t)⟶ 0 as ℘⟶∞
for every t ∈ R+;

(ii) a b-comparison function if we can fnd k0 ∈ N,
λ ∈ (0, 1) and a convergent non-negative series
􏽐
∞
℘�1 ς℘: 􏽢ηk+1􏽢φk+1(t)≤ λ􏽢ηk􏽢φk(t) + ςk, for 􏽢η≥ 1, k≥ k0

and any t≥ 0, where 􏽢φ℘ denotes the ℘th iterate of 􏽢φ

Denote by Ω, the class of functions 􏽢φ: R+⟶ R+

obeying:

(i) 􏽢φ is a b-comparison function;
(ii) 􏽢φ(t) � 0⇔t � 0;
(iii) 􏽢φ is continuous.

Lemma 1 [25]. For every comparison function
􏽢φ: R+⟶ R+, we have the following points:

(i) each iterate 􏽢φ℘,℘ ∈ N is also a comparison function;
(iii) 􏽢φ(t)< t for all t> 0.

Lemma 2 [25]. Let 􏽢φ: R+⟶ R+ be a b-comparison
function. Ten, the series 􏽐

∞
k�0 􏽢ηk􏽢φk(t) converges for every

t ∈ R+.

Remark 2 [22]. In Lemma 2, every b-comparison function is
a comparison function and thus, in Lemma 1, every
b-comparison function satisfes 􏽢φ(t)< t.
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Lemma 3 ([26]). Consider a b-metric space ([, 􏽢μ, 􏽢η). For
􏽥∇ , 􏽥△∈K([) and ς,ω ∈ [, the following criteria hold:

(i) 􏽢μ(ς, 􏽥△ )≤ℵ( 􏽥∇ , 􏽥△ ), for any ς ∈ 􏽥∇ .
(ii) 􏽢μ(ς, 􏽥∇ )≤ 􏽢η[􏽢μ(ς,ω) + 􏽢μ(ω, 􏽥∇ )].
(iii) 􏽢μ(ς, 􏽥∇ ) � 0⇔ς ∈ 􏽥∇ .
(iv) ℵ( 􏽥∇ , 􏽥△ ) � 0⇔ 􏽥∇ � 􏽥△ .
(v) ℵ( 􏽥∇ , 􏽥△ ) � ℵ( 􏽥△ , 􏽥∇ ).
(vi) ℵ( 􏽥∇ , 􏽥△ )≤ 􏽢η[ℵb( 􏽥∇ , C) + ℵb(C, 􏽥△ )].

3. Main Results

We commence this section with the notion of intuitionistic
fuzzy p-hybrid contractions on a b-metric space in the
following manner.

Defnition 12. Consider a b-metric space ([, 􏽢μ, 􏽢η) and
Υ,Ψ: [⟶ (IFS)[ be intuitionistic fuzzy set-valued maps.
Ten, the pair (Υ,Ψ) is said to form an intuitionistic fuzzy
p-hybrid contraction, if for all ς,ω ∈ [, we can fnd
(α⌣, β

⌣

)Υ(ς), (α⌣, β
⌣

)Ψ(ω) ∈ (0, 1] × t[0, 1) such that

ℵ [Υς]
(α⌣,β

⌣

)Υ(ς)
, [Ψω]

(α⌣,β
⌣

)Ψ(ω)

􏼒 􏼓≤ 􏽢φCp

(Υ,Ψ) ς,ω, (α⌣, β
⌣

)Υ(ς), (α⌣, β
⌣

)Ψ(ω)􏼒 􏼓, (12)

where 􏽢φ ∈ Ω, p≥ 0, ai ≥ 0, i � 1, 2, 3, 4 with 􏽐
4
i�1 ai � 1 and

C
p

(Υ,Ψ) ς,ω, (α⌣, β
⌣

)Υ(ς), (α⌣, β
⌣

)Ψ(ω)􏼒 􏼓 � (13)

a1(􏽢μ(ς,ω))
p

+ a2 􏽢μ ς( ), [Υς]
(α⌣,β

⌣

)Υ(ς)
􏼒 􏼓

p

􏼔

+ a3 􏽢μ ω, [Ψω]
(α⌣,β

⌣

)Ψ(ω)

􏼒 􏼓􏼒 􏼓
p

+ a4

􏽢μ ω, [Υς]
(α⌣,β

⌣

)Υ(ς)
􏼒 􏼓 + 􏽢μ ς, [Ψω]

(α⌣,β
⌣

)Ψ(ω)

􏼒 􏼓

2􏽢η
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/p

,

􏽢μ(ς,ω)
a1 􏽢μ ς, [Υς]

(α⌣,β
⌣

)Υ(ς)
􏼒 􏼓􏼒 􏼓

a2
􏽢μ ω, [Ψω]

(α⌣,β
⌣

)Ψ(ω)

􏼒 􏼓􏼒 􏼓􏼒 􏼓
a3

×

􏽢μ ς, [Ψω]
(α⌣,β

⌣

)Ψ(ω)

􏼒 􏼓 + 􏽢μ ω, [Υς]
(α⌣,β

⌣

)Υ(ς)
􏼒 􏼓

2􏽢η
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

a4

,

forp � 0, ς,ω ∈ [∖Fix(Υ,Ψ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where

Fix(Υ,Ψ) � ς,ω ∈ [: ς ∈ [Υς]
(α⌣,β

⌣

)Υ(ς)
,ω ∈ [Ψω]

(α⌣,β
⌣

)Ψ(ω)

􏼚 􏼛.

(15)

In particular, if (12) holds for p � 0, then we say that the
pair (Υ,Ψ) forms an intuitionistic fuzzy 0-hybrid contrac-
tion. Our frst main result is presented hereunder.

Theorem 1. Let ([, 􏽢μ, 􏽢η) be a complete b-metric space and
Υ ,Ψ: [⟶ (IFS)[ be intuitionistic fuzzy set-valued maps.
Suppose that for each ς ∈ [, we can fnd (α⌣, β

⌣

)Υ(ς),

(α⌣, β
⌣

)Ψ(ς) ∈ (0, 1] × t[0, 1) such that [Υς]
(α⌣,β

⌣

)Υ(ς)
and

[Ψς]
(α⌣,β

⌣

)Ψ(ς)
are nonempty bounded proximal subsets of [. If the

pair (Υ ,Ψ) forms an intuitionistic fuzzy p-hybrid contraction,
then Υ and Ψ have a common intuitionistic fuzzy Fp in [.

Proof. Let ς0 ∈ [, then, by hypotheses, we can fnd (α⌣, β
⌣

)Υ(ς0)

∈ (0, 1] × t[0, 1) such that [Υς0](α⌣,β
⌣

)Υ(ς0)

∈ Pr
b([). Take ς1 ∈

[Υ ς0](α⌣,β
⌣

)Υ(ς0)

such that 􏽢μ(ς0, ς1) � 􏽢μ(ς0, [Υς0](α⌣,β
⌣

)Υ(ς0)

).

Similarly, [Ψς1](α⌣,β
⌣

)Υ(ς1)

∈ Pr
b([), by hypothesis. So, we can

fnd ς2 ∈ [Ψς1](α⌣,β
⌣

)Υ(ς1)

so that by proximality of Ψ, 􏽢μ(ς1,

ς2) � 􏽢μ(ς1, [Ψς1](α⌣,β
⌣

)Υ(ς1)

). Continuing in this direction, we

can construct a sequence ς℘􏽮 􏽯℘∈N of elements of [ such that

ς2k+1 ∈ Υς2k􏼂 􏼃
(α⌣,β

⌣

)Υ ς2k( )
, ς2k+2 ∈ Ψς2k+1􏼂 􏼃

(α⌣,β
⌣

)Υ ς2k+1( )
(16)
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and

􏽢μ ς2k, ς2k+1( 􏼁 � 􏽢μ ς2k, Υς2k􏼂 􏼃
(α⌣,β

⌣

)Υ ς2k( )
􏼠 􏼡,

􏽢μ ς2k+1, ς2k+2( 􏼁 � 􏽢μ ς2k+1, Ψς2k+1􏼂 􏼃
(α⌣,β

⌣

)Υ ς2k+1( )
􏼠 􏼡, k ∈ N.

(17)

By Lemma 3 and the above relations, we have

􏽢μ ς2k, ς2k+1( 􏼁≤ℵ Υς2k􏼂 􏼃
(α⌣,β

⌣

)Υ ς2k( )
, Ψς2k−1􏼂 􏼃

(α⌣,β
⌣

)Υ ς2k−1( )
􏼠 􏼡, (18)

and

􏽢μ ς2k+1, ς2k+2( 􏼁≤ℵ Υς2k􏼂 􏼃
(α⌣,β

⌣

)Υ ς2k( )
, Ψς2k+1􏼂 􏼃

(α⌣,β
⌣

)Υ ς2k+1( )
􏼠 􏼡.

(19)

Suppose that ς2k � ς2k+1, for some k ∈ N and p> 0. Ten,
from (13), we have

C
p

(Υ,Ψ) ς2k, ς2k+1, (α⌣ , β
⌣

)Υ(2k), (α⌣ , β
⌣

)Ψ(2k+1)􏼒 􏼓

�

a1 􏽢μ ς2k, ς2k+1( 􏼁( 􏼁
p

+ a2 􏽢μ ς2k( , Υς2k􏼂 􏼃
(α⌣,β

⌣

)Υ ς2k( )
􏼠 􏼡

p

+ a3 􏽢μ ς2k+1( , Ψς2k+1􏼂 􏼃
(α⌣,β

⌣

)Υ ς2k+1( )
􏼠 􏼡

p

+

a4

􏽢μ ς2k+1, Υς2k􏼂 􏼃
(α⌣,β

⌣

)Υ ς2k( )
􏼠 􏼡 + 􏽢μ ς2k, Ψς2k+1􏼂 􏼃

(α⌣,β
⌣

)Υ ς2k+1( )
􏼠 􏼡

2􏽢η

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/p

� a1 􏽢μ ς2k, ς2k+1( 􏼁( 􏼁
p

+ a2 􏽢μ ς2k+1, ς2k+1( 􏼁( 􏼁
p

+ a3 􏽢μ ς2k+1, ς2k+2( 􏼁( 􏼁
p

+ a4
􏽢μ ς2k+1, ς2k+1( 􏼁( 􏼁

p
+ 􏽢μ ς2k+1, ς2k+2( 􏼁( 􏼁

2􏽢η
􏼠 􏼡

p

􏼢 􏼣

1/p

≤ a3 􏽢μ ς2k+1, ς2k+2( 􏼁( 􏼁
p

+ a4 􏽢η
􏽢μ ς2k, ς2k+1( 􏼁 + 􏽢μ ς2k+1, ς2k+2( 􏼁

2􏽢η
􏼠 􏼡􏼠 􏼡

p

􏼢 􏼣

1/p

≤ a3 􏽢μ ς2k+1, ς2k+2( 􏼁( 􏼁
p

+ a4 􏽢μ ς2k+1, ς2k+2( 􏼁( 􏼁
p

􏽨 􏽩
1/p

� a3 + a4( 􏼁
1/p

􏽢μ ς2k+1, ς2k+2( 􏼁 � 􏽢μ ς2k+1, ς2k+2( 􏼁 as p⟶∞.

(20)

Whence, using Lemma 1, we have

􏽢μ ς2k+1, ς2k+2( 􏼁≤ℵ Υς2k􏼂 􏼃
(α⌣,β

⌣

)Υ ς2k( )
, Ψς2k+1􏼂 􏼃

(α⌣,β
⌣

)Υ ς2k+1( )
􏼠 􏼡

≤ 􏽢φ 􏽢μ ς2k+1, ς2k+2( 􏼁( 􏼁< 􏽢μ ς2k+1, ς2k+2( 􏼁,

(21)

a contradiction. It follows that for all k ∈ N,

ς2k � ς2k+1 ∈ Υς2k􏼂 􏼃
(α⌣,β

⌣

)Υ ς2k( )
, (22)

ς2k � ς2k+1 � ς2k+2 ∈ Ψς2k+1􏼂 􏼃
(α⌣,β

⌣

)Υ ς2k+1( )

� Ψς2k􏼂 􏼃
(α⌣,β

⌣

)Υ ς2k( )
.

(23)

It follows that ς2k is the common intuitionistic fuzzy Fp
of Υ and Ψ.
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Again, for p � 0 and ς2k � ς2k+1, for some k ∈ N, we get
C

p

(Υ,Ψ)(ς2k, ς2k+1, (α⌣, β
⌣

)Υ(2k), (α⌣, β
⌣

)Ψ(2k+1)) � 0, for all k ∈ N.
Whence, by property (ii) of Ω, one obtains
􏽢μ(ς2k+1, ς2k+2) � 0, for all k ∈ N; from which, on similar
arguments as above, the same conclusion follows that

ς2k ∈ [Υς2k]
(α⌣,β

⌣

)Υ(ς2k)

∩ [Υς2k]
(α⌣,β

⌣

)Υ(ς2k)

. Hereafter, we assume

that for all k ∈ N, ςk+1 ≠ ςk if and only if 􏽢μ(ςk+1, ςk)> 0.
Now, in view of (13), setting ς � ς2k and ω � ς2k−1, we

have

C
p

(Υ,Ψ) ς2k, ς2k−1, (α⌣, β
⌣

)Υ(2k−1), (α⌣, β
⌣

)Ψ(2k+1)􏼒 􏼓

�

a1 􏽢μ ς2k, ς2k− 1( 􏼁( 􏼁
p

+ a2 􏽢μ ς2k, Υς2k􏼂 􏼃
(α⌣,β

⌣

)Υ ς2k( )
􏼠 􏼡􏼠 􏼡

p

􏼢

+a3􏽢μ ς2k− 1, Ψς2k− 1􏼂 􏼃
(α⌣,β

⌣

)Υ ς2k( )
􏼠 􏼡

p

+ a4

􏽢μ ς2k− 1, Υς2k􏼂 􏼃
(α⌣,β

⌣

)Υ ς2k( )
􏼠 􏼡 + 􏽢μ ς2k, Ψς2k− 1􏼂 􏼃

(α⌣,β
⌣

)Υ ς2k( )
􏼠 􏼡

2􏽢η

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/p

,

for p> 0,

􏽢μ ς2k, ς2k− 1( 􏼁( 􏼁
a1 􏽢μ ς2k, Υς2k􏼂 􏼃

(α⌣,β
⌣

)Υ ς2k( )
􏼠 􏼡􏼠 􏼡

a2

􏽢μ ς2k− 1, Ψς2k− 1􏼂 􏼃
(α⌣,β

⌣

)Υ ς2k( )
􏼠 􏼡􏼠 􏼡

a3

×

􏽢μ ς2k, Ψς2k− 1􏼂 􏼃
(α⌣,β

⌣

)Υ ς2k( )
􏼠 􏼡 + 􏽢μ ς2k− 1, Υς2k􏼂 􏼃

(α⌣,β
⌣

)Υ ς2k( )
􏼠 􏼡

2􏽢η

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

a4

, forp � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

Tat is,

C
p

(Υ,Ψ) ς2k, ς2k−1, (α⌣, β
⌣

)Υ(2k), (α⌣, β
⌣

)Ψ(2k−1)􏼒 􏼓 � (25)

a1 􏽢μ ς2k, ς2k− 1( 􏼁( 􏼁
p

+ a2 􏽢μ ς2k, ς2k+1( 􏼁( 􏼁
p

􏽨

+a3 􏽢μ ς2k− 1, ς2k( 􏼁( 􏼁
p

+ a4
􏽢μ ς2k− 1, ς2k+1( 􏼁 + 􏽢μ ς2k, ς2k( 􏼁

2􏽢η
􏼠 􏼡

p

􏼣

1/p

forp> 0,

􏽢μ ς2k, ς2k− 1( 􏼁( 􏼁
a1 􏽢μ ς2k, ς2k+1( 􏼁( 􏼁

a2 􏽢μ ς2k− 1, ς2k( 􏼁( 􏼁
a3

×
􏽢μ ς2k, ς2k( 􏼁 + 􏽢μ ς2k− 1, ς2k+1( 􏼁

2􏽢η
􏼠 􏼡

a4

,

forp � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

Now, we consider the following two cases: □
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Case 1. p> 0. Suppose that 􏽢μ(ς2k, ς2k+1)≥ 􏽢μ(ς2k−1, ς2k), then
from (25), we have

C
p

(Υ,Ψ) ς2k, ς2k−1, (α⌣, β
⌣

)Υ(2k), (α⌣, β
⌣

)Ψ(2k−1)􏼒 􏼓

≤ a1 􏽢μ ς2k+1, ς2k( 􏼁( 􏼁
p

+ a2 􏽢μ ς2k+1, ς2k( 􏼁( 􏼁
p

􏽨

+a3 􏽢μ ς2k+1, ς2k( 􏼁( 􏼁
p

+ a4 􏽢η
􏽢μ ς2k+1, ς2k( 􏼁 + 􏽢μ ς2k, ς2k− 1( 􏼁

2􏽢η
􏼠 􏼡􏼠 􏼡

p

􏼣

1/p

≤ a1 􏽢μ ς2k+1, ς2k( 􏼁( 􏼁
p

+ a2 􏽢μ ς2k+1, ς2k( 􏼁( 􏼁
p

+ a3 􏽢μ ς2k+1, ς2k( 􏼁( 􏼁
p

􏽨

+a4 􏽢η
􏽢μ ς2k+1, ς2k( 􏼁 + 􏽢μ ς2k+1, ς2k( 􏼁

2􏽢η
􏼠 􏼡

p

􏼠 􏼡􏼣

1/p

≤ a1 􏽢μ ς2k+1, ς2k( 􏼁( 􏼁
p

+ a2 􏽢μ ς2k+1, ς2k( 􏼁( 􏼁
p

􏽨

+a3 􏽢μ ς2k+1, ς2k( 􏼁( 􏼁
p

+ a4 􏽢μ ς2k+1, ς2k( 􏼁( 􏼁
p
􏽩
1/p

� a1 + a2 + a3 + a4( 􏼁􏽢μ ς2k+1, ς2k( 􏼁
p

􏽨 􏽩
1/p

� 􏽢μ ς2k+1, ς2k( 􏼁 􏽘

4

i�1
ai

⎛⎝ ⎞⎠

1/p

� 􏽢μ ς2k+1, ς2k( 􏼁.

(27)

Hence, from (12) and (27), we have

􏽢μ ς2k+1, ς2k( 􏼁≤ 􏽢φ 􏽢μ ς2k+1, ς2k( 􏼁( 􏼁. (28)

Given that 􏽢φ is a b-comparison function, (28) implies

􏽢μ ς2k+1, ς2k( 􏼁< 􏽢μ ς2k+1, ς2k( 􏼁, (29)

which is a contradiction. Whence, it follows that
􏽢μ(ς2k+1, ς2k)≤ 􏽢μ(ς2k, ς2k−1). Tus, from (28), we obtain

􏽢μ ς2k+1, ς2k( 􏼁≤ 􏽢φ 􏽢μ ς2k, ς2k−1( 􏼁( 􏼁. (30)

Setting ℘ � 2k ∈ N in (30), yields

􏽢μ ς℘+1, ς℘􏼐 􏼑≤ 􏽢φ 􏽢μ ς℘, ς℘−1􏼐 􏼑􏼐 􏼑

≤ 􏽢φ2
􏽢μ ς℘−1, ς℘−2􏼐 􏼑􏼐 􏼑

≤ 􏽢φ3
􏽢μ ς℘−2, ς℘−3􏼐 􏼑􏼐 􏼑

⋮ ⋮

≤ 􏽢φ℘ 􏽢μ ς1, ς0( 􏼁( 􏼁.

(31)

From (31), by triangle inequality on ([, 􏽢μ, 􏽢η), for all
k≥ 1, we have

􏽢μ ς℘+k, ς℘􏼐 􏼑≤ 􏽢η 􏽢μ ς℘+k, ς℘+1􏼐 􏼑 + 􏽢μ ς℘+1, ς℘􏼐 􏼑􏼐 􏼑

≤
1

􏽢η℘− 1 􏽘

℘+k−1

i�℘
􏽢ηk

􏽢μ ςi, ςi+1( 􏼁

≤
1

􏽢η℘− 1 􏽘

℘+k−1

i�℘
􏽢ηk

􏽢φk
􏽢μ ς1, ς0( 􏼁( 􏼁

≤
1

􏽢η℘− 1 􏽘

∞

i�℘
􏽢ηi

􏽢φi
􏽢μ ς1, ς0( 􏼁( 􏼁.

(32)
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Letting ℘⟶∞ in (32) and applying Lemma 2, we fnd
that lim℘⟶∞􏽢μ(ς℘+k, ς℘) � 0. Whence, ς℘􏽮 􏽯℘∈N is a Cauchy
sequence of points of ([, 􏽢μ, 􏽢η). Te completeness of this
space implies that we can fnd u ∈ [ such that

lim
℘⟶∞

􏽢μ ς℘, u􏼐 􏼑 � 0. (33)

Now, we show that u is the anticipated common
intuitionistic fuzzy Fp of Υ and Ψ. First, assume that
u ∉ [Υu]

(α⌣,β
⌣

)Υ(u)

so that 􏽢μ(u, [Υu]
(α⌣,β

⌣

)Υ(u)

)> 0. Ten, by

Lemma 3 and for p> 0 in the contractive inequality (3.1), we
have

􏽢μ u, [Υu]
(α⌣,β

⌣

)Υ(u)

􏼒 􏼓≤ 􏽢η􏽢μ u, ς℘􏼐 􏼑 + 􏽢η􏽢μ ς℘, [Υu]
(α⌣,β

⌣

)Υ(u)

􏼒 􏼓≤ 􏽢η􏽢μ u, ς℘􏼐 􏼑 + 􏽢ηℵ [Υu]
(α⌣,β

⌣

)Υ(u)

, Ψς℘−1􏽨 􏽩
(α⌣,β

⌣

)Ψ ς℘−1( )

⎛⎝ ⎞⎠

≤ 􏽢η􏽢μ u, ς℘􏼐 􏼑 + 􏽢η􏽢φ C
p

(Υ,Ψ)􏼐 u, ς℘−1􏼐 􏼑􏼑 � 􏽢η􏽢μ u, ς℘􏼐 􏼑 + 􏽢η􏽢φ a1 􏽢μ u, ς℘− 1􏼐 􏼑􏼐 􏼑
p

+ a2 􏽢μ u, [Υu]
(α⌣,β

⌣

)Υ(u)

􏼒 􏼓􏼒 􏼓􏼔 􏼕􏼒 􏼓
p

+a3 􏽢μ ς℘− 1, Ψς℘− 1􏽨 􏽩
(α⌣,β

⌣

)Ψ ς℘−1( )

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

p

+ a4

􏽢μ ς℘− 1, [Υu]
(α⌣,β

⌣

)Υ(u)

􏼒 􏼓 + 􏽢μ u, Ψς℘− 1􏽨 􏽩
(α⌣,β

⌣

)Ψ ς℘−1( )

⎛⎝ ⎞⎠

2􏽢η

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 􏽢η􏽢μ u, ς℘􏼐 􏼑 + 􏽢η􏽢φ a1 􏽢μ u, ς℘− 1􏼐 􏼑􏼐 􏼑
p

+ a2 􏽢μ u, [Υu]
(α⌣,β

⌣

)Υ u( )

􏼒 􏼓􏼒 􏼓􏼒 􏼓
p

+ a3 􏽢μ ς℘− 1, ς℘􏼐 􏼑􏼐 􏼑
p

+a4

􏽢μ ς℘− 1, [Υu]
(α⌣,β

⌣

)Υ(u)

􏼒 􏼓 + 􏽢μ u, ς℘􏼐 􏼑

2􏽢η
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(34)

Letting ℘⟶∞ in (34), and using the properties of
􏽢φ ∈ Ω, gives

􏽢μ u, [Υu]
(α⌣,β

⌣

)Υ(u)

􏼒 􏼓< 􏽢η􏽢μ u, [Υu]
(α⌣,β

⌣

)Υ(u)

􏼒 􏼓 a2 + a4( 􏼁
1/p

, (35)

and as p⟶∞,

􏽢μ u, [Υu]
(α⌣,β

⌣

)Υ(u)

􏼒 􏼓< 􏽢η􏽢μ u, [Υu]
(α⌣,β

⌣

)Υ(u)

􏼒 􏼓, (36)

which is a contradiction for 􏽢η � 1 . Tus, 􏽢μ(u, [Υu]
(α⌣,β

⌣

)Υ(u)

)

� 0, which further implies that u ∈ [Υu]
(α⌣,β

⌣

)Υ(u)

. On similar

steps, by assuming that u is not an intuitionistic fuzzy Fp of
Ψ, and considering

􏽢μ u, [Ψu]
(α⌣,β

⌣

)Υ(u)

􏼒 􏼓≤ 􏽢η􏽢μ u, ς℘􏼐 􏼑 + 􏽢η􏽢μ ς℘, [Ψu]
(α⌣,β

⌣

)Υ(u)

􏼒 􏼓

≤ 􏽢η􏽢μ u, ς℘􏼐 􏼑 + 􏽢ηℵ Υς℘−1􏽨 􏽩
(α⌣,β

⌣

)Υ(u)

, [Ψu]
(α⌣,β

⌣

)Υ(u)

􏼒 􏼓

≤ 􏽢η􏽢μ u, ς℘􏼐 􏼑 + 􏽢η􏽢φ C
p

(Ψ,Υ) ς℘−1, u, (α⌣, β
⌣

)Ψ ς℘−1􏼐 􏼑, (α⌣, β
⌣

)Υ(u)􏼒 􏼓􏼒 􏼓,

(37)
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we can show that u ∈ [Ψu]
(α⌣,β

⌣

)Ψ(u)

. Whence, for p> 0, we
can fnd u ∈ [ such that u ∈ [Υu]

(α⌣,β
⌣

)Υ(u)

∩ [Ψu]
(α⌣,β

⌣

)Ψ(u)

.
Case 2. p � 0. Applying the inequality (25) on account of
b-comparison of 􏽢φ, we have

􏽢μ ς2k, ς2k−1( 􏼁≤ℵ Υς2k−1􏼂 􏼃
(α⌣,β

⌣

)Υ(2k−1)

, Ψς2k−2􏼂 􏼃
(α⌣,β

⌣

)Ψ(2k−2)

􏼒 􏼓

≤ 􏽢φ C
p

(Υ,Ψ) ς2k−1, ς2k−2( 􏼁, (α⌣, β
⌣

)Υ(2k−1), (α⌣, β
⌣

)Ψ(2k−2)􏼒 􏼓

< 􏽢μ ς2k− 1, ς2k− 2( 􏼁( 􏼁
a1 ς2k− 1, Υς2k− 1􏼂 􏼃

(α⌣,β
⌣

)Υ(2k−1)

􏼒 􏼓
a2

􏽢μ ς2k− 2, Ψς2k− 2􏼂 􏼃
(α⌣,β

⌣

)Ψ(2k−2)

􏼒 􏼓􏼒 􏼓
a3

×

􏽢μ ς2k− 2, Ψς2k− 2􏼂 􏼃
(α⌣,β

⌣

)Ψ(2k−2)

􏼒 􏼓 + 􏽢μ ς2k− 2, Υς2k− 1􏼂 􏼃
(α⌣,β

⌣

)Υ(2k−1)

􏼒 􏼓

2􏽢η
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

a4

� 􏽢μ ς2k− 1, ς2k− 2( 􏼁( 􏼁
a1 􏽢μ ς2k− 1, ς2k( 􏼁( 􏼁

a2 􏽢μ ς2k− 2, ς2k− 1( 􏼁( 􏼁
a3

×
􏽢μ ς2k− 1, ς2k− 1( 􏼁 + 􏽢μ ς2k− 2, ς2k( 􏼁

2􏽢η
􏼠 􏼡

a4

≤ 􏽢μ ς2k− 1, ς2k− 2( 􏼁( 􏼁
a1 􏽢μ ς2k− 1, ς2k( 􏼁( 􏼁

a2 􏽢μ ς2k− 2, ς2k− 1( 􏼁( 􏼁
a3

×
􏽢μ ς2k, ς2k− 1( 􏼁 + 􏽢μ ς2k− 1, ς2k− 2( 􏼁

2
􏼠 􏼡

a4

� 􏽢μ ς2k− 1, ς2k− 2( 􏼁( 􏼁
a1+a3 􏽢μ ς2k− 1, ς2k( 􏼁( 􏼁

a2

×
􏽢μ ς2k, ς2k− 1( 􏼁 + 􏽢μ ς2k− 1, ς2k− 2( 􏼁

2
􏼠 􏼡

1− a1− a2− a3

.

(38)

Assume that 􏽢μ(ς2k−1, ς2k−2)≤ 􏽢μ(ς2k, ς2k−1), then (3.14)
gives

􏽢μ ς2k, ς2k−1( 􏼁≤ 􏽢φ C
p

(Υ,Ψ) ς2k−1, ς2k−2, (α⌣, β
⌣

)Υ ς2k−1( ), (α⌣, β
⌣

)Ψ ς2k−2( )􏼒 􏼓􏼒 􏼓

< 􏽢μ ς2k, ς2k− 1( 􏼁( 􏼁
a1+a2+a3 􏽢μ ς2k, ς2k− 1( 􏼁( 􏼁

1− a1− a2− a3

� 􏽢μ ς2k, ς2k−1( 􏼁,

(39)

a contradiction. Whence,

􏽢μ ς2k, ς2k−1( 􏼁≤ 􏽢μ ς2k−1, ς2k−2( 􏼁. (40)

Using (38) and (40), we obtain

􏽢μ ς2k, ς2k−1( 􏼁≤ 􏽢φ 􏽢μ ς2k−1, ς2k−2( 􏼁( 􏼁. (41)

Note that, (41) is equivalent to (3.9). So, on similar steps,
we infer that the sequence ς℘􏽮 􏽯℘∈N is Cauchy in ([, 􏽢μ, 􏽢η).
Tus, the completeness of this space guarantees that
􏽢μ(ς℘, u)⟶ 0 as ℘⟶∞, for some u ∈ [.

To see that u is a common intuitionistic fuzzy Fp of Ψ
and Υ, we employ Lemma 3 and inequality (3.5) as follows:
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􏽢μ u, [Ψu]
(α⌣,β

⌣

)Ψ(u)

􏼒 􏼓≤ 􏽢η􏽢μ u, ς℘􏼐 􏼑 + 􏽢η􏽢μ ς℘, [Ψu]
(α⌣,β

⌣

)Ψ(u)

􏼒 􏼓

≤ 􏽢η􏽢μ u, ς℘􏼐 􏼑 + 􏽢ηℵ Υς℘−1􏽨 􏽩
(α⌣,β

⌣

)Υ ς℘−1( )
, [Ψu]

(α⌣,β
⌣

)Ψ(u)

⎛⎝ ⎞⎠

≤ 􏽢η􏽢μ u, ς℘􏼐 􏼑 + 􏽢η􏽢φ C
p

(Υ,Ψ) ς℘−1, u, (α⌣, β
⌣

)Υ(u), (α⌣, β
⌣

)􏼒 􏼓􏼒 􏼓,

(42)

where

C
p

(Υ,Ψ) ς℘−1, u, (α⌣, β
⌣

)Υ ς℘−1( 􏼁
, (α⌣, β

⌣

)Ψ(u)􏼒 􏼓

� 􏽢μ ς℘− 1, u􏼐 􏼑􏼐 􏼑
a1

􏽢μ ς℘− 1, Υς℘− 1􏽨 􏽩
(α⌣,β

⌣

)Υς℘−1

􏼠 􏼡􏼠 􏼡

a2

􏽢μ u, [Ψu]
(α⌣,β

⌣

)Ψ(u)

􏼒 􏼓􏼒 􏼓
a3

×

􏽢μ ς℘− 1, [Ψu]
(α⌣,β

⌣

)Ψ(u)

􏼒 􏼓 + 􏽢μ u, Υς℘− 1􏽨 􏽩
(α⌣,β

⌣

)Υς℘−1

􏼠 􏼡

2􏽢η

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

a4

� 􏽢μ ς℘− 1, u􏼐 􏼑􏼐 􏼑
a1

􏽢μ ς℘− 1, ς℘􏼐 􏼑􏼐 􏼑
a2

􏽢μ u, [Ψu]
(α⌣,β

⌣

)Ψ(u)

􏼒 􏼓􏼒 􏼓
a3

×

􏽢μ ς℘− 1, [Ψu]
(α⌣,β

⌣

)Ψ(u)

􏼒 􏼓 + 􏽢μ u, ς℘􏼐 􏼑

2􏽢η
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

a4

.

(43)

We see that lim℘⟶∞C
p

(Υ,Ψ)(ς℘−1, u, (α⌣, β
⌣

)Υ(ς℘−1),

(α⌣, β
⌣

)Ψ(u)) � 0. Hence, under this limiting case, (3.17)
becomes

􏽢μ(u,Ψu)≤ 􏽢η􏽢φ(0). (44)

By criterion (ii) of 􏽢φ, (3.18) implies that 􏽢μ(u,

[Ψu]
(α⌣,β

⌣

)Ψ(u)

) � 0. Whence, u ∈ [Ψu]
(α⌣,β

⌣

)Ψ(u)

. On similar

steps, we can show that u ∈ [Υu]
(α⌣,β

⌣

)Υ(u)

. Whence, we can

fnd (α⌣, β
⌣

)Υ(u), (α⌣, β
⌣

)Ψ(u) ∈ (0, 1] × t[0, 1) such that
u ∈ [Υu]

(α⌣,β
⌣

)Υ(u)

∩ [Ψu]
(α⌣,β

⌣

)Υ(u)

.

From Case 2 in the Proof of Teorem 1, we have also
proved the next result.

Theorem 2. Let ([, 􏽢μ, 􏽢η) be a complete b-metric space and
Υ ,Ψ: [⟶ (IFS)[ be intuitionistic fuzzy set-valued maps.
Suppose that for each ς ∈ [, we can fnd (α⌣, β

⌣

)Υ(ς),

(α⌣, β
⌣

)Ψ(ς) ∈ (0, 1] × t[0, 1) such that [Υς]
(α⌣,β

⌣

)Υ(ς)
and

[Ψς]
(α⌣,β

⌣

)Ψ(ς)
are nonempty bounded proximal subsets of [. If

the pair (Υ ,Ψ) forms a 0-hybrid intuitionistic fuzzy con-
traction, then Υ andΨ have a common intuitionistic fuzzy Fp
in [.

Next, we examine the idea of intuitionistic fuzzy
p-hybrid contractions in view of ( 􏽥M, 􏽥ϖ)-level set (see [13])
and 􏽢μ(∞,∞)-distance as some consequences of Teorem 1. It
is important to point out that the investigation of Fp of
intuitionistic fuzzy set-valued maps in the frame of
􏽢μ(∞,∞)-metric is of great signifcant in computing Hausdorf
dimensions. Tese dimensions aid us to grasp the basis of
ε∞-space which is of enormous signifcant in higher energy
physics. Consistent with Azam and Tabassum [12], we give
some needed auxiliary concepts in the framework of a
b-metric space as follows. Consider a b-metric space
([, 􏽢μ, 􏽢η) and take (α⌣, β

⌣

) ∈ (0, 1] × t[0, 1) such that
[ 􏽥∇ ]

(α⌣,β
⌣

)
, [ 􏽥△ ]

(α⌣,β
⌣

)
∈ Pr

b([). Ten, defne

p
(α⌣,β

⌣

)
( 􏽥∇ , 􏽥△ ) � inf

ς∈[􏽥∇ ]
(α⌣,tβ

⌣
)
,ω∈[ 􏽥△ ]

(α⌣,β
⌣

)

􏽢μ(ς,ω),

D
(α⌣,β

⌣

)
( 􏽥∇ , 􏽥△ ) � ℵ [ 􏽥∇ ]

(α⌣,β
⌣

)
, [ 􏽥△ ]

(α⌣,β
⌣

)
􏼒 􏼓,

p( 􏽥∇ , 􏽥△ ) � sup
(α⌣,β

⌣

)

p
(α⌣,β

⌣

)
( 􏽥∇ , 􏽥△ ),

􏽢μ(∞,∞)(
􏽥∇ , 􏽥△ ) � sup

(α⌣,β
⌣

)

D
(α⌣,β

⌣

)
( 􏽥∇ , 􏽥△ ).

(45)

Note that, 􏽢μ(∞,∞) is a metric on Pr
b([) (induced by the

Hausdorf metric ℵ) and the completeness of ([, 􏽢μ, 􏽢η)
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implies the completeness of the corresponding metric space
(KIFS([), 􏽢μ(∞,∞)). Moreover, ([, 􏽢μ, 􏽢η)↦(Pr

b([),ℵ)↦
(KIFS([), 􏽢μ(∞,∞), 􏽢η), are isometric embeddings via the
relations ς⟶ ς{ } and M⟶ χM, respectively; where

KIFS([) � 􏽥∇ ∈ (IFS)
[

: [ 􏽥∇ ]
(α⌣,tβ

⌣

)
∈ Pr

b([), for each α⌣, β
⌣

∈ (0, 1] × t[0, 1)},􏼚 (46)

and χM is the characteristic function of M.

Theorem 3. Let ([, 􏽢μ, 􏽢η) be a complete b-metric space and
Υ ,Ψ: [⟶ (IFS)[ be intuitionistic fuzzy set-valued maps.
Assume that the following criteria are obeyed:

(i) [Υς]
( 􏽥M,􏽥ϖ)Υ(ς)

and [Ψς]
( 􏽥M,􏽥ϖ)Ψ(ς)

are nonempty bounded
proximal subsets of [, for each ς ∈ [;

(ii) for each ς,ω ∈ [,

􏽢μ(∞,∞)(Υ(ς),Ψ(ω))≤ 􏽢φ C
p

(Υ,Ψ)ς,ω, ( 􏽥M, 􏽥ϖ)Υ(ς), ( 􏽥M, 􏽥ϖ)Ψ(ς)􏼐 􏼑,

(47)

where 􏽢φ ∈ Ω, p≥ 0, ai ≥ 0, i � 1, 2, 3, 4 with 􏽐
4
i�1 ai � 1 and

C
p

(Υ,Ψ) ς,ω, ( 􏽥M, 􏽥ϖ)Υ(ς), ( 􏽥M, 􏽥ϖ)Ψ(ω)􏼐 􏼑

�

a1(􏽢μ(ς,ω))
p

+ a2 􏽢μ ς( ), [Υς]
( 􏽥M,􏽥ϖ)Υ(ς)

􏼒 􏼓
p

􏼔

+a3 􏽢μ ω, [Ψω]
( 􏽥M,􏽥ϖ)Ψ(ω)

􏼒 􏼓
p

􏼒 􏼓 + a4

􏽢μ ω, [Υς]
( 􏽥M,􏽥ϖ)Υς

􏼒 􏼓
p

+ 􏽢μ ς, [Ψω]
( 􏽥M,􏽥ϖ)Ψ ω( )

􏼒 􏼓
p

2􏽢η
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/p

forp> 0, ς,ω ∈ [,

(􏽢μ(ς,ω))
a1 􏽢μ ς, [Υς]

( 􏽥M,􏽥ϖ)Υ(ς)
􏼒 􏼓􏼒 􏼓􏼒 􏼓

a2
􏽢μ ω, [Ψω]

( 􏽥M,􏽥ϖ)Ψ(ω)

􏼒 􏼓􏼒 􏼓
a3

×

􏽢μ ς, [Ψω]
( 􏽥M,􏽥ϖ)Ψ(ω)

􏼒 􏼓 + 􏽢μ ω, [Υς]
( 􏽥M,􏽥ϖ)Υ(ς)

􏼒 􏼓

2􏽢η
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

a4

forp � 0, ς,ω ∈ [∖Fix(Υ,Ψ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)

Ten, Υ and Ψ have a common intuitionistic fuzzy Fp in
[.

Proof. Let ς ∈ [. Ten, by assumption, [Υ(ς)](M,℘)Υ(ς) and
[Ψ(ς)](M,℘)Ψ(ς)

are nonempty bounded proximal subsets of
[. Hence, for each ς,ω ∈ [,

ℵ [Υ(ς)]
( 􏽥M,􏽥ϖ)Υ(ς)

, [Ψ(ω)]
(M,􏽥ϖ)Ψ(ω)

􏼒 􏼓

� D
( 􏽥M,􏽥ϖ)(Υ(ς),Ψ(ω))≤ 􏽢μ(∞,∞)(Υ(ς),Ψ(ω))

≤ 􏽢φ C
p

(Υ,Ψ) ς,ω, ( 􏽥M, 􏽥ϖ)Υ(ς), ( 􏽥M, 􏽥ϖ)Ψ(ω)􏼐 􏼑􏼐 􏼑.

(49)

Whence, it follows from Teorem 1 that Υ and Ψ have a
common intuitionistic fuzzy Fp in [. □

Theorem 4. Let ([, 􏽢μ, 􏽢η) be a complete b-metric space and
Υ ,Ψ: [⟶KIFS([) be intuitionistic fuzzy set-valued
maps such that

􏽢μ(∞,∞)(Υ(ς),Ψ(ω))≤ 􏽢φ G
p

(Υ,Ψ)(ς,ω)􏼐 􏼑, (50)

where 􏽢φ ∈ Ω, p≥ 0, ai ≥ 0, i � 1, 2, 3, 4 with 􏽐
4
i�1 ai � 1 and
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G
p

(Υ,Ψ)(ς,ω) �

a1(􏽢μ(ς,ω))
p

+ a2(p(ς,Υ(ς)))p
+ a3(p(ω,Ψ(ω)))

p
+ a4

p(ω,Υ(ς)) + p(ς,Ψ(ω))

2􏽢η
􏼠 􏼡

p

􏼢 􏼣

1/p

, forp> 0, ς,ω ∈ [,

(p(ς,ω))
a1(p(ς,Υ ς( )))

a2(p(ω,Ψ(ω)))
a3

p(ς,Ψ(ω)) + p(ω,Υ(ς))
2􏽢η

􏼠 􏼡

a4

, forp � 0, ς,ω ∈ [∖F∗ix(Υ,Ψ),

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(51)

where

F
∗
ix(Υ,Ψ) � ς,ω ∈ [: ς{ } ⊂ Υ(ς), ω{ } ⊂ Ψ(ω){ }. (52)

Ten, we can fnd u ∈ [ such that u{ } ⊂ Υ(u)∩Ψ(u).

Proof. Choose ς ∈ [. For each ς ∈ [, defne two functions
α⌣Υ, β

⌣

Ψ: [⟶ [0, 1] by α⌣Υ(ς): � α⌣(ς) � 1 and β
⌣

Ψ(ς): �

β
⌣

(ς) � 0. Ten, by hypothesis, [Υς](1,0) and [Ψς](1,0) are
nonempty bounded proximal subsets of [. Now, for all
ς,ω ∈ [,

D(1,0)(Υ(ς),Ψ(ω))≤ 􏽢μ(∞,∞)(Υ(ς),Ψ(ω))

≤ 􏽢φ G
p

(Υ,Ψ)(ς,ω)􏼐 􏼑.
(53)

Since [Υς](1,0)Υ(ς)
⊆[Υς]

(α⌣,β
⌣

)Υ(ς)
∈ Pr

b([) for each (α⌣,

β
⌣

)Υ(ς) ∈ (0, 1] × t[0, 1), then 􏽢μ(ς, [Υς]
(α⌣,β

⌣

)Υ(ς)
)≤

􏽢μ(ς, [Υς](1,0)Υ(ς)
) for each (α⌣, β

⌣

)Υ(ς) ∈ (0, 1] × t[0, 1). So,
p(ς,Υ(ς))≤ 􏽢μ(ς, [Υς](1,0)Υ(ς)

). Tis further implies that we

can fnd (α⌣, β
⌣

)Υ(ς), (α⌣, β
⌣

)Ψ(ω) ∈ (0, 1] × t[0, 1) for each
ς,ω ∈ [ :

ℵ [Υς](1,0)Υ(ς)
, [Ψω](1,0)Ψ(ω)

􏼒 􏼓

≤ 􏽢φ C
p

(Υ,Ψ) ς,ω, (1, 0)Υ(ς), (1, 0)Ψ(ω)􏼐 􏼑􏼐 􏼑.

(54)

Hence, Teorem 1 can be applied to fnd u ∈ [ such that
u ∈ [Υu](1,0)Υ(u)

∩ [Ψu](1,0)Ψ(u)
. □

Remark 3. By putting 􏽢η � 1, p � 1 and h � 1 − 􏽢μΥ − ]Ψ � 0,
Teorem 2 can be applied to deduce the main results of [27],
Teorems 10 and 11] as special cases. Also, Teorem 2 is a
proper extension of the results of [28, 29] and some ref-
erences therein.

Te following example is constructed to verify the hy-
potheses of Teorem 1.

Example 2. Let [ � [0,∞) and 􏽢μ(ς,ω) � |ς − ω|2 for all
ς,ω ∈ [. Ten, ([, 􏽢μ, 􏽢η � 2) is a complete b-metric space.
Note that ([, 􏽢μ, 􏽢η � 2) is not a metric space, since for ς �

1, ω � 4 and ξ � 2,

􏽢μ(ς,ω) � 9> 5 � 􏽢μ(ς, ξ) + 􏽢μ(ξ,ω). (55)

Take c, λ ∈ (0, 1]. Ten, for each ς ∈ [, consider two
intuitionistic fuzzy set-valued maps Υ,Ψ: [⟶ (IFS)[

defned as follows:
If ς � 0,

􏽢μΥ(ς)(t) � 􏽢μΨ(ς)(t) �

c

6
, if t � 0,

0, if t≠ 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

]Υ(ς)(t) � ]Ψ(ς)(t) �

0, if t � 0,

λ
2
, if t≠ 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(56)

If ς ∈ (0, 1],

􏽢μΥ(ς)(t) �

c

4
, if 0≤ t≤ ς −

ς2

40
,

c

6
, if ς −

ς2

40
< t≤ ς −

ς2

12
,

0, if ς −
ς2

12
< t<∞,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

]Υ(ς)(t) �

0, if 0≤ t≤ ς −
ς2

100
,

λ
4
, if ς −

ς2

100
< t≤ ς −

ς2

12

λ, if ς −
ς2

12
< t<∞,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(57)

􏽢μΨ(ς)(t) �

c

3
, if 0≤ t≤ ς −

ς2

50
,

c

6
, if ς −

ς2

50
< t≤ ς −

ς2

12
,

0, if ς −
ς2

12
< t<∞,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

]Ψ(ς)(t) �

0, if 0≤ t≤ ς −
ς2

70
,

λ
4
, if ς −

ς2

70
< t≤ ς −

ς2

12
,

λ
2
, if ς −

ς2

12
< t<∞.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(58)

If ς> 1,
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􏽢μΥ(ς)(t) � 􏽢μΨ(ς)(t) �

c

6
, if 0≤ t≤ 9,

0, if t> 9,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(59)

]Υ(ς)(t) � ]Ψ(ς)(t) �
0, if 0≤ t≤ 9,

λ, if t> 9.
􏼨 (60)

Defne the function 􏽢φ: R+⟶ R+ by

􏽢φ(t) �

t −
t
2

12
, if 0≤ t≤ 1,

1
12

, if t> 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(61)

Obviously, 􏽢φ(t)< t for all t> 0. Suppose that (α⌣,

β
⌣

) � (c/6, λ/4). Ten, clearly, we can fnd (α⌣, β
⌣

)Υ(ς),

(α⌣, β
⌣

)Ψ(ς) ∈ (0, 1] × t[0, 1) such that [Υς]
(α⌣,β

⌣

)Υ(ς)
and

[Ψς]
(α⌣,β

⌣
)Ψ(ς)

are nonempty bounded proximal subsets of [ for

each ς ∈ [. Now, to check the inequality 3.1, consider the
following possibilities:

Case 1. If ς � ω � 0, p � 0, then for all
ai ≥ 0 (i � 1, 2, 3, 4), we have [Υς](c/6,λ/4)Υ(ς)

� [Ψω](c/6,λ/4)Ψ(ς)
and hence,

ℵ [Υς](c/6,λ/4)Υ(ς)
, [Ψω](c/6,λ/4)Ψ(ς)

􏼒 􏼓

� 0≤ 􏽢φ C
p

(Υ,Ψ) ς,ω, (α⌣, β
⌣

)Υ(ς), (α⌣, β
⌣

)Ψ(ς)􏼒 􏼓􏼒 􏼓.

(62)

Case 2. If ς � 0,ω ∈ (0, 1], p � 1, a1 � 1 and
a2 � a3 � a4 � 0, we have

[Υ0](c/6,λ/4)Υ(0)
� 0{ }, [Ψω](c/6,λ/4)Ψ(ς)

� 0,ω −
ω2

12
􏼢 􏼣. (63)

Tus,

ℵ [Υ0](c/6,λ/4)Υ(0)
, [Ψω](c/6,λ/4)Ψ(ς)

􏼒 􏼓

� ω −
ω2

12

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

� 􏽢φ |ω − 0|
2

􏼐 􏼑

≤ 􏽢φ C
p

(Υ,Ψ) ς,ω,
c

6
,
λ
4

􏼠 􏼡
Υ(ς)

,
c

6
,
λ
4

􏼠 􏼡
Ψ(ω)

􏼠 􏼡􏼠 􏼡.

(64)

Note that, if ω � 0, ς ∈ (0, 1], p � 1, a1 � 1 and
a2 � a3 � a4 � 0, we obtain same conclusion as in Case 2.

Case 3. If ς,ω ∈ (0, 1], p � 1, a1 � 1 and a2 � a3 �

a4 � 0, we have

ℵ [Υς](c/6,λ/4)Υ(ς)
, [Ψω](c/6,λ/4)Ψ(ς)

􏼒 􏼓

� ℵ 0, ς −
ς2

12
􏼢 􏼣, 0,ω −

ω2

12
􏼢 􏼣􏼠 􏼡

� ς −
ς2

12
− ω +

ω2

12

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

� (ς − ω) −
1
12

ς2 − ω2
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

� (ς − ω) 1 −
|ς + ω|

12
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

≤ ς − ω 1 −
|ς + ω|

12
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

� ς − ω −
|ς + ω|

12

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

� 􏽢φ |ς − ω|
2

􏼐 􏼑

≤ 􏽢φ C
p

(Υ,Ψ) ς,ω,
c

6
,
λ
4

􏼠 􏼡
Υ(ς)

,
c

6
,
λ
4

􏼠 􏼡
Ψ(ω)

􏼠 􏼡􏼠 􏼡.

(65)

Case 4. If ς,ω ∈ (1,∞), then for all ai ≥ 0 (i � 1, 2, 3, 4),
p> 0, we get [Υς](c/6,λ/4)Υ(ς)

� [Ψω](c/6,λ/4)Ψ(ς)
and

ℵ [Υς](c/6,λ/4)Υ(ς)
, [Ψω](c/6,λ/4)Ψ(ς)

􏼒 􏼓

� 0≤ 􏽢φ C
p

(Υ,Ψ) ς,ω,
c

6
,
λ
4

􏼠 􏼡
Υ(ς)

,
c

6
,
λ
4

􏼠 􏼡
Ψ(ω)

􏼠 􏼡􏼠 􏼡.

(66)

Tus, all the assumptions of Teorem 1 are obeyed. It
follows that Υ and Ψ have a common intuitionistic fuzzy Fp
in [.

In what follows, we discuss further consequences of our
main results.

Corollary 1. Let ([, 􏽢μ, 􏽢η) be a complete b-metric space and
Υ : [⟶ (IFS)[ be an intuitionistic fuzzy set-valued map.
Suppose that for each ς ∈ [, we can fnd an (α⌣,

β
⌣

)Υ(ς) ∈ (0, 1] × t[0, 1) such that [Υς]
(α⌣,β

⌣

)Υ(ς)
is a nonempty

bounded proximal subsets of [. If

ℵ [Υς]
(α⌣,β

⌣

)Υ(ς)
, [Υω]

(α⌣,β
⌣

)Υ(ω)

􏼒 􏼓≤ 􏽢φ
1
4
C

p

(Υ)(ς,ω)􏼒 􏼓, (67)

for all ς,ω ∈ [, where 􏽢φ∈ Ω and

C
p

(Υ) � 􏽢μ(ς,ω) + 􏽢μ ς, [Υς]
(α⌣,β

⌣

)Υ(ς)
􏼒 􏼓 + 􏽢μ ω, [Υω]

(α⌣,β
⌣

)Υ(ω)

􏼒 􏼓

+

􏽢μ ω, [Υς]
(α⌣,β

⌣

)Υ(ς)
􏼒 􏼓 + 􏽢μ ς, [Υω]

(α⌣,β
⌣

)Υ(ω)

􏼒 􏼓

2􏽢η
.

(68)

then, we can fnd u ∈ [ such that u ∈ [Υu]
(α⌣,β

⌣

)Υ(u)

.
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Proof. Put Υ � Ψ, p � 1 and a1 � a2 � a3 � a4 � 1/4 in
Teorem 1. □

Corollary 2. Let ([, 􏽢μ, 􏽢η) be a complete b-metric space and
Υ ,Ψ: [⟶ (IFS)[ be intuitionistic fuzzy set-valued maps.
Suppose that for each ς,ω ∈ [, we can fnd (α⌣, β

⌣

)Υ(ς),

(α⌣, β
⌣

)Ψ(ω) ∈ (0, 1] × t[0, 1) such that [Υς]
(α⌣,β

⌣

)Υ(ς)
and

[Ψω]
(α⌣,β

⌣

)Ψ(ω)

are nonempty bounded proximal subsets of [. If

we can fnd λ ∈ [0, 1) :

ℵ [Υς]
(α⌣,β

⌣

)Υ(ς)
, [Ψω]

(α⌣,β
⌣

)Ψ(ω)

􏼒 􏼓≤ λ

·

�������������������������������������������������������������������������

􏽢μ(ς,ω)􏽢μ ς, [Υς]
(α⌣,tβ

⌣

)Υ(ς)
􏼒 􏼓􏽢μ ω, [Ψω]

(α⌣,tβ
⌣

)Ψ(ω)

􏼒 􏼓􏼒 􏼓

􏽢μ ς, [Ψω]
(α⌣,tβ

⌣

)Ψ(ω)

􏼒 􏼓 + 􏽢μ ω, [Ψω]
(α⌣,tβ

⌣

)Ψ(ω)

􏼒 􏼓

2􏽢η
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠
4

􏽶
􏽵
􏽴

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(69)

then Υ and Ψ have a common intuitionistic fuzzy Fp in [.

Proof. Take a1 � a2 � a3 � a4 � 1/4, 􏽢φ(t) � λt for all t≥ 0
and p � 0 in Teorem 1. □

Corollary 3. Let ([, 􏽢μ, 􏽢η) be a complete b-metric space and
Υ ,Ψ: [⟶ (IFS)[ be intuitionistic fuzzy set-valued maps.

Suppose that for each ς,ω ∈ [, we can fnd (α⌣, β
⌣

)Υ(ς),

(α⌣, β
⌣

)Ψ(ω) ∈ (0, 1] × t[0, 1) such that [Υς]
(α⌣,β

⌣

)Υ(ς)
and

[Ψω]
(α⌣,β

⌣

)Ψ(ω)

are nonempty bounded proximal subsets of [. If

ℵ [Υς]
(α⌣,β

⌣

)Υ(ς)
, [Ψω]

(α⌣,β
⌣

)Ψ(ω)

􏼒 􏼓≤ 􏽢φ max

􏽢μ(ς,ω), 􏽢μ ς, [Υς]
(α⌣,β

⌣

)Υ(ς)
􏼒 􏼓, 􏽢μ ω, [Ψω]

(α⌣,β
⌣

)Ψ(ω)

􏼒 􏼓

1
2

􏽢μ ς, [Ψω]
(α⌣,β

⌣

)Ψ(ω)

􏼒 􏼓 + 􏽢μ ω, [Υς]
(α⌣,β

⌣

)Υ(ς)
􏼒 􏼓􏼔 􏼕

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (70)

then, we can fnd u ∈ [ such that u ∈ [Υς]
(α⌣,β

⌣

)Υ(ς)∩ [Ψω]
(α⌣,β

⌣

)Ψ(ω)

.

Corollary 4. (Nadler-type (see [4])) Let ([, 􏽢μ, 􏽢η) be a
complete b-metric space and Υ: [⟶ (IFS)[ be an intui-
tionistic fuzzy set-valuedmap. Suppose that for each ς ∈ [, we
can fnd (α⌣, β

⌣

)Υ(ς) such that [Υς]
(α⌣,β

⌣

)Υ(ς)
is a nonempty

bounded proximal subsets of [. If there exists λ ∈ [0, 1) :

ℵ [Υς]
(α⌣,β

⌣

)Υ(ς)
, [Υω]

(α⌣,β
⌣

)Υ(ς)
􏼒 􏼓≤ λ􏽢μ(ς,ω), (71)

then, we can fnd u ∈ [ such that u ∈ [Υς]
(α⌣,β

⌣

)Υ(ς)
.

Proof. Put Υ � Ψ, a1 � p � 1, a2 � a3 � a4 � 0 and
􏽢φ(t) � λt, t≥ 0 in Teorem 1. □

Consistent with the proof of Teorem 2, the next result
can easily be obtained by applying Corollary 4.

Corollary  . (Heilpern-type (see [3])) Let ([, 􏽢μ, 􏽢η) be a
complete b-metric space and Υ: [⟶KIFS([) be an
intuitinoistic fuzzy set-valued map. Suppose that for each
ς,ω ∈ [, we can fnd λ ∈ [0, 1) :

􏽢μ(∞,∞)(Υ(ς),Υ(ω))≤ λ􏽢μ(ς,ω). (72)

Ten, we can fnd u ∈ [ such that u{ } ⊂ Υ(u).

4. Applications to Multivalued and Single-
Valued Mappings

In this section, we apply some results from previous the
section to deduce their corresponding crisp Fp results of
multivalued and single-valued mappings.

Corollary 6. Let ([, 􏽢μ, 􏽢η) be a complete b-metric space and
Θ,Λ: [⟶K([) be multivalued mappings. If for all
ς,ω ∈ [,

ℵ(Θς,Λω)≤ 􏽢φ max

􏽢μ(ς,ω), 􏽢μ(ς,Θς), 􏽢μ(ω,Λω),

1
2

[􏽢μ(ς,Λω) + 􏽢μ(ω,Θς)]

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(73)

then, we can fnd u ∈ [ such that u ∈ Θu∩Λu.

Proof. Consider the intuitionistic fuzzy set-valued maps
Υ,Ψ: [⟶ (IFS)[ defned by
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􏽢μΥ(ς)(t) �
1, if t ∈ Θς,

0, if t ∉ Θς,
]Υ(ς)(t) �

0, if t ∈ Θς,

1, if t ∉ Θς.
􏼨􏼨 (74)

and

􏽢μΨ(ς)(t) �
1, if t ∈ Λς,

0, if t ∉ Λς,
]Ψ(ς)(t) �

0, if t ∈ Λς,

1, if t ∉ Λς.
􏼨􏼨 (75)

Take (α⌣, β
⌣

) � (1, 0). Ten [Υς](1,0)Υ(u)
� Θς and [Ψς](1,0)Ψ(u)

� Λς for each ς ∈ [. Whence, Corollary 3.10 can be applied
to fnd a point u ∈ [ such that u ∈ [Υu](1,0)Υ(u)

∩
[Ψu](1,0)Ψ(u)

� Θu∩Λu. □

Following the Proof of Corollary 6, we can easily derive
the next result by applying Corollary 1.

Corollary 7. [30] Let ([, 􏽢μ, 􏽢η) be a complete b-metric space
and Θ: [⟶ Pr

b([) be a multivalued mapping:

ℵ(Θς,Θω)≤ 􏽢φ
1
4
C

p

(Θ)(ς,ω)􏼒 􏼓, (76)

for all ς,ω ∈ [, where 􏽢φ ∈ Ω and

C
p

(Θ) � 􏽢μ(ς,ω) + 􏽢μ(ς,Θς) + 􏽢μ(ω,Θω)

+
􏽢μ(ω,Θς) + 􏽢μ(ς,Θω)

2􏽢η
.

(77)

Ten, we can fnd u ∈ [ such that u ∈ Υu.

Corollary 8. [22], Teorem 1] Let ([, 􏽢μ, 􏽢η) be a complete
b-metric space and g: [⟶ [ be a single-valuedmapping. If

􏽢μ(gς, gω)≤ 􏽢φ C
p
g(ς,ω)􏼐 􏼑 (78)

for all ς,ω ∈ [, where 􏽢φ ∈ Ω, p≥ 0, ai ≥ 0, i � 1, 2, 3, 4 with
􏽐

4
i�1 ai � 1 and

C
p
g(ς,ω) �

a1(􏽢μ(ς,ω))
p

+ a2(􏽢μ(ς, gς))p
+ a3(􏽢μ(ω, gω))

p
+ a4

􏽢μ(ω, gς) + 􏽢μ(ς, gω)

2􏽢η
􏼠 􏼡

p

􏼢 􏼣

1/p

, forp> 0, ς,ω ∈ [

(􏽢μ(ς,ω))
a1(􏽢μ(ς, gς))a2(􏽢μ(ω, gω))

a3
􏽢μ(ς, gω) + 􏽢μ(ω, gς)

2􏽢η
􏼠 􏼡

a4

, forp � 0, ς,ω ∈ [∖Fix(g).

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(79)

where

Fix(g) � ς ∈ [: ς � gς􏼈 􏼉. (80)

Ten, we can fnd u ∈ [ such that u � gu.

Proof. Consider an intuitionistic fuzzy set-valued map
Υ: [⟶ (IFS)[ defned by

􏽢μΥ(ς)(t) �
1, if t ∈ Θς,

0, if t ∉ Θς,
]Υ(ς)(t) �

0, if t � gς,

1, if t≠gς.
􏼨􏼨 (81)

Put (α⌣, β
⌣

) � (1, 0). Ten [Υς](1,0)Υ(u)
� gς􏼈 􏼉. Obviously,

gς􏼈 􏼉 ∈ Pr
b([), for each ς ∈ [. Notice that in this case, for all

ς,ω ∈ [,

ℵ [Υς](1,0)Υ(ς)
, [Υω](1,0)Υ(ω)

􏼒 􏼓 � 􏽢μ(g(ς), g(ω)). (82)

Hence, by Teorem 1, we can fnd u ∈ [ such that
u ∈ [Υu](1,0)Υ(u)

� g(u)􏼈 􏼉; which further implies that
g(u) � u. □

By using the method of proving Corollary 7, we can
deduce the next Fp result due to Czerwik [21] by applying
Corollary 5.

(i) For 􏽢η � 1 and h � 1 − 􏽢μΥ − ]Υ � 0 in Corollary 6, we
deduce the result of [27], Teorem 7].

(ii) It is clear that if we let 􏽢η � 1 in all the above-given
results, we can deduce their analogues in the setting
of metric space. Also, by setting h � 1 − 􏽢μΥ − ]Υ � 0
all our main results reduce to their crisp analogues.

Corollary 9 [21]. Let ([, 􏽢μ, 􏽢η) be a complete b-metric space
and g: [⟶ [ be a point-valued mapping. If we can fnd
λ ∈ (0, 1) such that for all ς,ω ∈ [,

􏽢μ(g(ς), g(ω)) ≤ λ􏽢μ(ς,ω) (83)

then, there exists u ∈ [ such that g(u) � u.

Remark 4.
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