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In this article, we derived various identities between the degenerate poly-Daehee polynomials and some special polynomials by
using A-umbral calculus by finding the coefficients when expressing degenerate poly-Daehee polynomials as a linear combination
of degenerate Bernoulli polynomials, degenerate Euler polynomials, degenerate Bernoulli polynomials of the second kind,
degenerate Dachee polynomials, Changhee polynomials, degenerate Bell polynomials, and degenerate Lah-Bell polynomials.

1. Introduction

The special functions or special polynomials are important
and useful not only in pure or applied mathematics, but also
in all fields of applied mathematics, and many interesting
properties are investigated by many researchers even now
(see [1]). In [2], authors introduced a new type of generating
function of Appell-type Changhee-Euler polynomials and
derived the differential equations arising from the generating
function of the Appell-type Changhee-Euler polynomials.
Boussayoud-Boughaba-Araci found explicit formulas for the
k-Fibonacci numbers, k-Pell numbers, and the product of
those polynomials in [3]. Simsek constructed recurrence
relations for a new class of special numbers and polynomials
and obtained some new and interesting identities related to
the Bernoulli numbers and polynomials, the Euler numbers
and polynomials, and the Stirling numbers (see [4]). In [5],
authors introduced a new variant of type 2 Bernoulli
polynomials and numbers by modifying a generating
function and derived the explicit representations of the those
polynomials in terms of the degenerate Lah-Bell polynomials
and the higher-order degenerate derangement polynomials.

For a given nonzero real number A, the degenerate
exponential function is defined by the following equation:

el (1) = (1+ Ay and e, () = (1 + Ap)", (1)

By using the degenerate exponential function, Carlitz
defined the degenerate Bernoulli polynomials in [6], and
many degenerate versions of special functions are being
actively studied by many researchers. Typically, in [7], Kim
defined the degenerate Stirling numbers of the second kind,
and Kim-Kim investigated the symmetric properties of
degenerate Frobenius-Euler polynomials in [8]. The de-
generate Bernoulli polynomials and numbers were in-
troduced by Kim-Kim by using degenerate polylogarithm
functions in [9], and in [10], authors defined degenerate
polyexponential function and degenerate Bell polynomials
by using these functions and derived some interesting
identities. Another degenerate Bernoulli polynomials were
introduced in [11] arising from degenerate polylogarithm
function. The degenerate version of umbral calculus called
A-umbral calculus were introduced by authors in [12]. In
addition, Kwon-Wongsason-Kim-Kim defined modified
type 2 degenerate poly-Bernoulli polynomials arising from
polylogarithm function in [5].

For n,k € NU {0}, the Stirling numbers of the first kind
S, (n, k) and the Stirling numbers of the second kind S, (n, k),
respectively, are defined by the generating function to be as
follows:
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(x), = Zn: S, (n, k)x* and x"
o (2)
=Y S, (nk) ()

k=0

where (x), =1 and (x),=x(x-1)---(x-n+1),(n>1)
are the falling factorial sequences. By equation (2), we can
derive the generating function of these numbers as follows
(see [13-15]):

1 < t" 1 k
1 (log(1+ )" = stl (k) and ;5(e" - 1)

(3)

(o8] tfl
=) S (nk)—.
ek n.

Let log, (t) be the compositional inverse function. Then,
by the definition of compositional inverse function, we have
the following equation:

n

00 . ¢
logy(1+8)=> A l(l)n,llka’ (4)

n=1

where x; =1, (%), =x(x-A)(x=21)--- (x = (n—DA),
and (n>1) are degenerate falling factorial sequences.

As degenerate version of the Stirling numbers of the first
and second kind in equations (2) and (3), the degenerate
Stirling numbers of the first kind S, (n,k) and the de-
generate Stirling numbers of the second kind S, ; (1, k) are,

respectively, introduced by Kim-Kim (see [6, 7]) as follows:
1 S t" 1
E(log/\ (1 + t))k = Zk Sl,/\ (n, k) ﬁ and E(e)L (t) — l)k

(5)
(oe) tﬂ
= ;cs“ (mk) .

For a given integer k and a nonzero real number A, the
degenerate polylogarithm functions are defined by the fol-
lowing equation:

00 _ n—1
L= 3 EV Wy

= -

, (6)

andwhenk =2or3andA =0.9, 1, 1.9, 2, 2.9 or 3, the graphs
of L, (x) are shown in Figure 1.
By equations (4) and (6), we have the following equation:

Li;) (x) = —log, (1 — x) and lim Liy, (x)
A—0 (7)
= le (x)’

where Li, (x) are the polylogarithm functions which is
defined by the following equation:

Journal of Mathematics

(o) n

Lig(0) = Y = (xl < 1). (8)

n=1 1

By using polylogarithm functions, Lim-Kwon defined
the poly-Daehee polynomials by generating function to be as
follows:

log(1+1)
Lig(1-¢™)
By using equation (1), the higher-order degenerate

Bernoulli polynomials are defined by the generating func-
tion to be as follows:

(1+8) = i p® (x)t—'. (9)
= n!

o0 (r) i— 4 r .
Z%mﬂmm_(quy4>%“1 (10)

In the special case x =0, ﬁr(l')z =/3r(:)?(0) is called the
higher-order degenerate Bernoulli numbers.

As a generalization of degenerate Bernoulli polynomials,
Kim-Kim defined the degenerate poly-Bernoulli poly-
nomials in [9] as follows:

Ligg(1-ey(-1) + « > g, .t
e mor G- HZOBM (-5 an

When x = 0, Br(,ﬁ) (0) = Br(l];) is called the degenerate poly-
Bernoulli numbers.

Among the many tools that can be used to study the
properties of special functions, umbral calculus is one of the
very useful tools. A rigorous theoretical foundations of
umbral calculus are built by Rota in the 1970s based on
relatively modern ideas of linear functions, linear operators
(see [15, 16]).

Some different umbral calculus have been introduced
over the past 30years, and many interesting results have
been found by using these powerful tools, and even now,
studies using umbral calculus are being actively conducted
by many researchers (see [15, 16]). In particular, the modern
umbral calculus were introduced in [15-17], and authors in
[18] defined g-umbral calculus and gave some interesting
identities related some special functions. The A-umbral
calculus and its applications were introduced in
(5, 12, 15-17, 19, 20].

2. Review of the A-Umbral Calculus

From now on, we introduced some basic facts about the
A-umbral calculus which are introduced by Kim-Kim (see
(12, 19]).

Let C be the complex numbers field,

9={ﬂﬂ=2%;
n=0 °

akGC}, (12)

and let
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k=3,1=0.9
4t k=3,\=1.9 k=2
ko329 k=2 A=2 gl
T k=2,\=3
2+ 2t
" 5 2 4 . B > i
2t 2t
4t 4|
F1GURE 1: The shapes of degenerate polylogarithm functions Liy , (x).
(o)
P=Clx] = { Z akxk a;. € C with a; = 0 for all but finite number of k } (13)
k=0
: . e (1)|g >y =g (),
Let P* be the vector space of all linear functionals on P.
Then,' for each non-negative.real number /\,' the linear (e{ t) - l|g(x)>,1 =g(y)-g(0),
functional {f (¢)|-), on P which are called A-linear func- (19)

tional given by f (t) is defined by the following equation:

fOIX)02 = ay,, (n20). (14)
From equations (14), we see that
@1 =1l (mk20), (15)

where 6, is the Kronecker’s symbol.
Kim-Kim defined the differential operator on [P by the
following equation:

if k<n,

k _ (”)k (x)n,k,,p
(£, G = { 0, if k>n, (16)

for each nonzeor real number A and each non-negative
integer k. By equation (16), we see that for any
f@) = YRathlk! € F,

" /n
(f () (X1 = Z( )ak (Xt (17)
o \ k
Moreover, they showed that for each f (¢), g(t) € ¥ and
p(x) eP,

fDg@®lp(x))y =LgOI(f (Op ()
= OIgO)p (X))

By equations (14)-(17), we see that

(18)

e (t) -1 _ [
<%’g(x)>l JO p(u)du.

For given f (t) € # — {0}, the order of f(x) denoted by
o(f (t)) is the smallest positive integer k that the coeflicient
of t* does not zero. f (x) is called invertible if o (f (¢)) =0,
and delta series if o (f (t)) = 1. Note that, if f (¢) is invertible
then there is a multiplication inverse 1/ f (t), and if f (¢) is
a delta series then f (¢) has the compositional inverse ?(t) of
£ with £(f () = f(F(8) =t.

Let f(t) be a delta series and let g(¢) be an invertible
series. Then, there is the unique polynomial sequence S,, , (x)
of x with degS, , (x) = n satisfying the orthogonality con-
ditions as follows:

(GO (f@)*

S (X)) =nld,;,  (n,k=0). (20)

Here, S,,(x) is called the A-Sheffer sequence for
(g(t), f (1)), and denoted by S, ; (x) ~ (g(t), f (1)),. It is
well-known fact that the sequence S, (x) is the A-Sheffer
sequence for (g (t), f (t)) if and only if

1, — "
SGoa IO =250 (21)

for all y e C.
The following lemma and theorem are important results
in the A-umbral calculus.




Lemma 1 ([12, 19]). Let S, (x) be the A-Sheffer sequence of
(g (1), f (1) and let h(x) = Y a;S;) (x) € P. Then,

= 1<a (O (F O] (), (22)

Proof. Let S, (x) be the A-Sheffer sequence of (g (t), f ()
and let h(x) = Y ;S (x). Then,

9O O |rr = Y alg@®) (f 1) ]S (0N
i (23)
= klay.
Thus, our proof is completed. O

Theorem 1 ([12]). Let s, andr, ) be the A-Sheffer sequence
of (g(t), f(t)) and (h(t),1(t)), respectively. Then, we have
the following equation:

Sn,/\ = Z Cn)krk,)t’ (24)
where
1 RCFW) 7k
=1 o Gy (IO | @9)
Since

(x), ~ (L, (t) - 1), and (x),,, ~

by Theorem 1, we see that

(Lt),\) (26)

(x), = Y S (m k) (), and (x),3 = Y S5, (mk) (X (27)
k=0 k=0

In this article, we find some interesting identities among
degenerate poly-Daehee polynomials, degenerate Bernoulli
polynomials, degenerate Euler polynomials, degenerate
Bernoulli polynomials of the second kind, degenerate
Daehee polynomials, Changhee polynomials, degenerate
Bell polynomials, and degenerate Lah-Bell polynomials. In

%) _An 1
Lia(1-a(-e o) = 3 2 G ]

n=1

M8

N
I
—

n=1
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particular, we find the relationships among those special
polynomials by finding the coefficients when expressing
degenerate poly-Daehee polynomials as a linear combina-
tion of these polynomials which is motivated by the Kim-
Kim methods (see [12]).

3. Degenerate Poly-Daehee Polynomials

In view point of equations (1), (9), and (11), we defined the
degenerate poly-Daehee polynomials by the generating
function to be as follows:

log) (1 +1¢)

ma(logﬂlH)) ZDM() C@8)

In the special case x =0, Dr(lkA) (0) = D’Sﬁ) is called the
degenerate poly-Daehee numbers.

By equations (27) and (28), we get the following
equation:

ZD;?( ) (iD(k)t )(Z( )y ,)

n=0 n=|
n n
) t
Dr(z m/l(x) il
o\ m n!

m n tn
( . 12:0 < " >Df,k)m,,lsl,,\ (m,1) (x)l,)»> =
(29)

By comparing both sides of equation (29), we can obtain
the relationship between D& o (x) and the falling factorial
sequences as follows:

pHx=YY ( ; )D},’?WsM (m, ) () (120),

m=0 =0

o

ine
iD=

il gk
i M=

(30)

Note that, by equation (5), we get the following equation:

Sle(l-e®)-1)

b /\Vl—
Zﬂsu(b no (l—eut))b (31)

a

[\/]8

a

1b=1n=1

a b 1 b+1An 1 1 " "
¥y (-1) ( ) 1A, (b,1)S,, (a.b)—.
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Theorem 2. For each non-negative integer n, we have the
following equation:

As the inversion formula of equation (32), we have the

following equation:
n n n
Dﬁf‘f(ﬂ=Z<Z(r)sl,a<r,l)D“‘> ><x>u. (32)

n-r,A
1=0 \ r=I

n b+lqyc-1
(DA (),
D LA, (8,008 (n—m +1,0)S,, (m,1) |DY (x). (33)
m=l b=1 c=1 m ¢ (7’1 —m+ 1)

Proof. Note that, by equation (28), the A-Sheffer sequence of
degenerate poly-Daehee polynomials is as follows:

DY (x) ~ (Lik,l(l —e(l-e (1))

By equation (14), (16), (21), and (34), we get the fol-
e (t) - 1) . (34)
t )

lowing equation:

D® (x) = g1+
- <Lik,/\(1—e/\(—t))e/1 (log, (1 +1))

(x)n’)L>,{
=Y (o lom 10 |1 1
; T <Lik,A(1 —e) (-1)) (l! (logy (1+5)) )A(x)”’)‘ Py

" log, (1 +1) (35)
) og) L+
= l:o; < , >Su(n D ()1 <ml (x)nr,)t>A

n
< >S1,/1 (r, Z)D,(L’f)r,A (X)p-
,

Let (x),, = Z?zocn’lDl(f;) (x). By Theorem 1 and equa-
tions (26) and (31), we get the following equation:

(x)n,/l>)t
<Lik,A (1-e (- (1))

1
s (CURIEN)

M=
M=

T
[=}
i

T

and so our proof is completed.

nl

Lipy(1- 1-¢(t
l_1|< iea ( eAt( e ( )))(e/\(t)—l)l

|

) (36)
_ Z < n ) Sy, (m, 1)

LS (1-e (1= ex ()] (Domeran

S, (mD <Lik,A (1- eat(l -e (t)))' (x)nm,/\>/1

n (_1)b+1/\c—1(1)c
S, (6,008, (= m + 1,1)S, , (m, ]).
m=l b=1 c=1 m c (71 -m+ 1)



6 Journal of Mathematics

Thus our proofs are completed. O  Theorem 3. For each non-negative integer n, we have the
following equation:
By equation (10), we can know that the A-Sheffer se-
quences of degenerate Bernoulli polynomials are

B () ~ (e*“’ - 1,t) . (37)
t A

D;y;t) (x) = i < i y ( ! )( ! ;m )Su (m, l)br,/\Dr(zli)m—r,/\ >ﬁl,)t (x). (38)
iz

As the inversion formula of equation (38), we have the

following equation:
i Zb: < n > < L >
m=lr=0  b=1 c=1 r

(_1)b+lA’C*l (l)c
’1“) 8,2 (M1, (6,08, (n—m -1 +1,b)B,, |DY (x).

(39)

Th-m-r+1

Proof. Let D(k) (%) = Y 1Lo€uBia (x). By Theorem 1 and
equations (34) and (37), we get the following equation:

: (x)n,/\>/\

log) (1 +1) t |
<le)t(l —e)t( t)) log/l(l + t)l(l[(log)t(l +t)) ) (-7C);1),1>)L

& log, (1+1) | t

= ZI ( . >Sl,/\ (m, l) <Lik,A (1 —e, (_t))l<log)L (1 " t))/\(x)nm’/\>l (40)
A YA log, (1 +1)

“Z4 <m>< : >S<”“”b<L<1<t>>|”>

n n-m n n—m
= Z ( >< )Su(m l)men m-r\?
m=[ r=0 m r

(log, (1 +1))

1 t/log(1 +1)
nt = l_' Lik,)t (1 — € (—t))/log/\ (1 + t)
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where b, , are the degenerate Bernoulli numbers of the
second kind defined as follows:

S gt (41)
= Al log, (1+¢)°
e X Lig, (1 - /1(1 )/t
T e, (t) -

Ligy(1-e,(1-e (1) ¢

(er(t) - 1)

=(

t e, (t) - 1]

— €, (t) l

Conversely, we assume that f,, (x) = Y. c, lD(k)(x).
Then, by Theorem 1 and equations (31), (34), and (37) we
get the following equation:

(x)n)t>h

(ll,(mt) 1)) s

I
M=

3
s

n . _
< >Sm o l)<le’A . t
m

t
|(e/1 (t) — 1>/\(-x)nm,/\>)l

n n-m Li 1- 1- t

mz::l r=0 < > < >Sz,\ (m’ l)ﬂr)\< s ( el\t( . ( )))! (x)"*m""l%l (42)
n_ n-m S )1

= < >< ) e )[i”]@u(l—ek(l—ek(t) )| (€ Y

m=l r=0

3
3

M:

R

(_1)b+1/1c—1 (1)

ckil(n—m—r+1

)

3
il
<
i
(=]

The degenerate Daehee polynomials are defined by the

generating function to be as follows:

t log) (1 +t
ZDnA( _'_ gA( )

Ly (1 -ey(-1) = Z

I
Mg

S
[
—

I
Mg

S
I
—_

1 (logy (1 +1)), (n>0). (43)

S (=" Wn
S (-

A (Dyp 1
k1
n

n-1
-\ “%mzsu(l n)( t)

“”‘) Sy (M, 1)8,, (b,¢)S,, (n—m —7 + 1,b)B, ;.

O

When x =0, D,; =D,,(0) is called the degenerate
Daehee numbers. By equation (43), we see that

el(t) -1
t

Note that

ce, () - 1) ~ Dy (%), (44)
A

(1-¢ (-0)"

E(ea (-t)-1)"

1

gk

S
I
—_

n 1n+1/1m 1 1 n
Q%(> Um%umw>%.



8 Journal of Mathematics

Theorem 4. For each non-negative integer n, we have the As the inversion formula of equation (46), we have the
following equation: following equation:

n n-1 _l
DY) (x) = Z(Z(ZX . )b,,AD,i’ii_,,A>Du<x>. (46)

I=

. i nfl (- 1)" ke l(l)m AAs (n—1+1,m) |D® (x) (47)
» L(n- m x).

A =t m (l’l -1+1) > .

Proof. Let D(k) (%) = X Lo¢n Dy (x). Then, by Theorem 1 Conversely, we assume that D, (x) = Y. oanD(k)(x)

and equatlons (34) and (44), we get the following equation: Then, by Theorem 1 and equations (31), (34), (44), and (45),
we get the following equation:

t/log, (1 +1t)
“nt = l'<sz)l(1—e,1( t))/log/\(1+t) G
1 t log) (1 +1) |(tl) O
A n,

1 Mogy (1+£) Lig, (1 -, (-1))]

_ n logy (1 +1¢) | ¢
) < l ><Li’<’A (1-¢ (—t))|<logk(1 i t))ﬁx)muh
n—I n n—1
log, (1 +1) ‘
= b lom(1rn)
r=0 ( l )( r ) rll(Lik,A (1-e (-1)) () ntradn
n-1 n n-1
SN Pt
r=0 ) r

(48)

1 [Ligg(1-ey (= f))/loga(1+f)l
“nt = l' t/log, (1 +1)

=;<—Li"“( 2w, >M>

n Likyh(l eh( t)
] - ( )n LA (49)

1
> m(Lim (1= e ()| (®)piann

),

- /N
X

n-l+1 [/ n n-lym-1
(_1) A (1)m 1/A
= =S, (n=1+ 1,m).
< > mkil(n—l+ 1) A
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The Changhee polynomials are defined by the generating
function to be as follows:
2
Z Ch, (x) —5 ¥ (log, (1 +1)). (50)
In the special case of x = 0, Ch,, = Ch,, (0) is called the
Changhee numbers.

By the definition of the Changhee polynomials, we see
the A-Sheffer sequences of the Changhee polynomials are as

follows:
Ch,, (x) ~ (Ll(t),el(t) - 1) .
2 A

(51)

Note that, by equation (6), we get the following equation:

Ligg (1-e,(-8) _ (—1)”‘1)&”‘1(1)",1/»( e, (-1))"
log) (1 +1) = (n- D" ° log, (1 +1)

S A" W) 1 1

= _ t _
Z; n! ( (= -1y log, (1 +1)

» A" 1(1>MZS a1
= 2 I log, (1+1)
00 n n+tlym-1 n—1 (52)

_ Z Z (_1) A (l)m,I//\S ( m)t t
7l et ! 2 nl log, (1+1)

_ ozo:wrl (—l)nlmil(l)m,l//lszﬁ(n—f_ l,m) i ib i

fr ot w1 n+1 nl J\ &l
0 a r+l m—1 a
=D"A" (Dyin t

= Sy (r+1,mb,_., | —.

Z(;)mzl< > m 1 (r+ 1) 2 A al
Theorem 5. For each non-negative integer n, we have the
following equation:
W S (" \pw 1" ®
Dy (x)=) Dy + 3 (n—1D,_,, |Chi(x) + Ch, (). (53)
1=0 l I
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As the inversion formula of equation (53), we have the

following equation:
n n=l n-l-mr+l [N n-1 n-l-m
1=0 \ m=0 r=0 s=1 1 m r

y (~D)"A (D10 Sop (7 +1,m)

Sk_l r+1

n n m k b n k b+lqs-1
P,
S(EEEF ()
1=0 \ m=0k=0r=l b=1 s=1 m r N

“ S12 (m, k)S,, (1,1)S,, (b,5)S,, (k=1 +1,b) c
k—-r+1

k
Chmbn—l—m—r,)t )Dl(,)l) (x)

Proof. Let D}Elljt) (x) = Y€, Chy(x). By Theorem 1 and
equations (34) and (51), we get the following equation:

c = l< t+2/2 Wi (x) >
I L, (1 -y (=) logy (1 +1) |42

_Lp+2 log(+t) |
- l' 2 Lik,/\ (1 — 6/1 (—t))|(t )/\ (x)n,/\>/\

()2 log, (1+1¢)
_<l>< 2 l(Lik,A(l—eA(—t)))A(x)n—l,DA

n n—1
k t+2
l m

n—-1\ p®w
< ) Tm’l (<t| (x)n—l—m,)\>)t + 2<1| (x)n—l—m,)1>)\)

n-— l D k)
< > Tm)/‘ (81,n—l—m + 280,n—l—m)‘

(x)n—l—m,)t>)t

: (k) _
Since Do,/\ =1,

n—1 n n
ot - 5( (7 )oieg (7 om0 Jonn «cnio
=0

h, )D,{’f (x).

Journal of Mathematics

(54)

(55)

(56)
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Conversely, we assumed that Ch,, (x) = Z?zocn’lDl(,I;) (x).
Then, by Theorem 1 and equations (34), (51), and (52), we
get the following equation:

_ 1 Ligy (1 -y (=1))/log; (1 +1)

T ¢ t+2/2 £ (D
1,2 Lig(1-e (-1)]/ 4
I t+2 log) (1 +1) |(t )A(x)n,/\>A

T i (1-e(-1)|/ 2

) < l >< log) (1 +1) |<t + 2>)L 1222 .
nl [ n n-1 Lig, (1- e, (=)

mz=0 < I >< m >Chm<wl () ntemarn

n-l n-l-mr+1 n n-1 n—-Il-m (_l)r/\s_l(l)s,ll/\ Sz,,\ (1"+ 1,1’}’!)
Z Z Z — Chmbn—l—m—r A
I k-1 r+1 ’

m=0 r=0 s=1 m r N

In addition, by Lemma 1 and equations (5) and (27), we
have the following equation:

1 Ly, (1-¢,(1-¢, (1))
T P

(ey(t) - 1)1‘(3’7" (x>

n m n . _ _
=ZZ< >31,A(m’k)Chn—m<le’A(l 20=9OD (0 -1) )

m=0 k=0 m t
n m k n k i — —
= Z > S (m, K)S,, (. DCh,_,, <le’)\ 1-al-a®) (X)i-ra22 59
m=0k=0r=l \ m r t |

n om k k—r+l b n k b+lys—1
(DA (1),
=zzzzz()() g

r ) k-1 +1)

x 81, (m, k)8, (r,1)S,, (b, 5)S,, (k — 7 + 1,b)Ch,_,.
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The degenerate Bell polynomials are defined by the Bel, , (x) ~
generating function to be as follows: ’

X © t"
e} (e (t) = 1)) = ) Bel, (x) . (59) )
n=0 : E
Note that

Z Bel,, (x)% =¢) ((ey (1) - 1))
n=0 :

18
M3
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(1,1og) (1 +1)),. (62)

Note that, in addition, we know that

(log, (1 +logy (1+1))) =Y 8, (I, k)ll'(log,\(l +1))
1=k :

m

SA@RSL D (63)

T
i

1

o | 1

o t
- 1 1y = 81 (m k), (I m) .
= mz::O (%) o (ea()-1) lzzkmzzzk T

(60)

& e £ L
= Z (%) a Z S, m)l_' Theorem 6. For each non-negative integer n, we have the

m=0 I=m : following equation:

nl 1=0

- i ( Z S, (m,m) (x)w> £ DR =) <Z Y < Z >su (.S, (a, r)D,(lk)a!A>Bell,A (x).

n=0 \ m=0 a=l r=l
and thus (64)
Bel, ) (x) = Z Sy ) (1, m) (X)), (61) As the inversion formula of equation (64), we have the
m=0 following equation:
In addition, by the definition of Bell polynomials, the
A-Sheffer sequence of Bell polynomials is as follows
n n a n-an-a-m+l b s n n—a s+tlqyc-1
(=1D"7A (1),
wam-S(SEETETES(N)(" 1) O e
1=0 \a=l r=Im=0 b=1 s=lc=1 \ a m c
N 8,0 (5,6)8,) (b,5)8,5, (n—a—m+1,b)S,, (r,1)S, (a, r)Bm,/\>Dl(,];) )
n—a-m+1
(65)
~ i(gn: im—aﬂi <m> (_l)hHAr—l(l)th
- k-1
1=0 \m=0a=l b=1 r=1 a r
% SZ,A (7’1, m)SM (a, l)SZ,/l (b, r)SZ,/l (m —a+ 1, b))D](];) (x)
m—-a+1 ”
Proof. Let Dfﬁ) (x) = Yl ocBel;, (x). By Theorem 1 and
equations (34), (63), and (62), we get the following equation:
1 1 I
Cnl = ﬁ <Lik)/\ (1 —e (—t))/log) (1+1) (logl (1 + 10g/\(1 + t))) (x)n,/l>)L
log (1 +1) 1 I
= <m’(ﬁ(log,l(l +log) (1+1))) )/‘(x)m>)L
(66)

(x)n,a,)k > 1

na fn log, (1 +1¢)
= Z Z < >Sl,/1 (r,1)S,,(a,1) <m

n oa n
53 (" Jsaeasswnnt,
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Conversely, we assume that Bel, ; (x) = Z?zocn’lDl(,I;) (x). and
Note that

ll!(ea(e)t(t)— 1)-1)

_Zsu(r D (eA(t)—l)r

r=l
o (67)
= ZS“(r ) Z S“(m,r)—
ZZ LD, (@)
a=l r=l :

%Li(l —e(1—-e(e(t)-1))

_1 < (_A)n_l(l)n,lm n

_?n;—(n—l)!nk (1-e(l-e(e(t)-1))
1S A (D) 1 .

:?MTM —le(l-e(e(®-1)-1)

ii (_1)a+1An—1(1)n)1//1

k-1
n

S, (a, n)

b=1a=1n=1s=b n

¢=0b=1a=1n=1 1)

1 & X _An—l ln 1 .

' > %Su(m»”)%(l —e(e(t)-1))

(e(e(l‘) - 1)

1 & b a (_1)a+1/1n—1(1)n)1//\ 1 ,

W) S @)y (b,) (e (0 - 1)
1 & b a oo (_l)qul/\n—l(l)nlM ¢

Tt Z Z Z Z 920 (4,18, (b,a)S, (s, b) K

1< b a (_1)a+lAn—1(1)n 0 £

222D e S (@S, (b, @S, (0b)

b a a+lyn—1
(-1) /\ (1)n t
>y LG, (a,1)S,, (b, a)S,, (¢ + 1,b) 5

13

(68)
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Then, by Theorem 1 and equations (31), (34), (62), (67),
and (68), we get the following equation:

1 Ligp(1-e(1- @A(eA(t)—l)))(

T € e (-1 er(e ()= 1) = 1) (%))
L (1-g(l-e(a®-1) t |1 !
=< ; NOE 1|<ﬁ(ex () -1)-1) )A(X)n,)))t
RSk " Lik,)t(l_e)t(l_e/\(e/\(t)_1)))|< t )
=2 25 hS e r><a >< . eEARR

a n-a n n-—a
2. <>< %MNMAWWM !
a=lr=Im=0 \ a m

y Lik,)t(l — e)t(l —e (ek(f) - 1)))| (x)niaimﬁ/\

Zb:i n n—a (_l)ﬁ—l/lc_l(l)c,l//\
a=lr=Im=0 b=1 s=lc=1 \ a m Ck71 n-a-m+1)

X 81 (5,0)8,, (b,8)8,, (n—a-m+1,b)S,,(r,1)S,, (a, 1),

On the other hand, by Lemma 1 and equation (31), we
have the following equation:

1 Lig, (1-¢)(1-¢ (1))

=g . (ex (£) = 1)/|Bel,,; (),
u Li , (1—¢,(1—¢(t) 1
= Y S onmy il *t( : ))I(l—,(em) 1)) s
= !
(70)
nomofm Lip (1 —e)(1—e)(t)
M) ( )su s @z allza Ol g, |,
m=0 q=| a
n m m-a+l b m b+lyr-1
(=D7A (),
=Yy Y — LG (1,m)S,, (a,1)S,, (B,7)S,, (m —a + 1,b).
m=0a=] b=1 r=1 \ a r(m-a+l)
O
The degenerate Euler polynomials are defined by the In the special case of x =0, &, , = &, (0) is called the
generating function to be as follows: degenerate Euler numbers. By equation (71), we see that

t 1
Z%M ) (t)ﬂq 0] 71) 5 (0~ (el(;+ ”f)x (72)
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Theorem 7. For each non-negative integer n, we have the
following equation:

|
—

n

h n—-m
< >Sl,/\ (m, l)<anm,A + Tanmfl,)L> + SM (T’l, l)>%l,)t (X)

m

D) (x) = Z(
1=0

1

3
il

As the inversion formula of equation (73), we have the
following equation:

n n n-mn-m-r+l b n n—-m
o SEETHC)
=0 \m=Ilr=0 b=1 c¢=1 \ ' m r

(_l)b+1/\57 1 (1)6)1//\

ck_l(n—m—r+1

Sy, (M, D)S,, (b,0)Sy, (n—m—1+1, b)%,,)t)Dl(f;) (x).

Proof. Let Dflﬁ)(x) = Y16y (x). By Theorem 1 and
equations (34) and (72), we get the following equation:

3 l< t+2/2
nl =1 L, (1— ey (—£))/logy (1 + 1)

(lOg/\ (1 + t))l (x)n,/1>/1

_ t+2 logy (1+1) |(l
T2 Lig (1-e (-0)|\I!

n t+2|( log (1+1) )
S ,1 -
<m> O 2 |<Lik,a(1—ea(—t)) A(x),, ma)

n n—m
( > < )su (m, DD <t + 20 (), pmora0
m r

n
n—m
( >su DDy + 2D, 12) + S0 (1),

m

(logy (1 +1)') (W10

]

m=l

3

SIS

m=l 1

N | —
Jii
S

0
L

3
i,

because of Déﬁ) =1.
Conversely, we assume that &, (x) = Z;’:Ocn’lDl(j) (x).
Then, by Theorem 1 and (31), (34), and (72), we get the

following equation:

15

(73)

(74)

(75)
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_ l Lik,/\(l - e/\(l - e/\ (t)))/t
T e, (t)+1/2

C

Lig(1-e(1-g®) 2

(e () - 1)

=<

t e, (t) + 1]

Journal of Mathematics

()12

(ex(t) - 1)l>/\(x)n,)t>)t

t

(_1)b+lAc—l (1)

ckil(n—m—r+1)

The unsigned Lah number L (1, k) counts the number of
ways a set of n elements can be partitioned into k nonempty
linearly ordered subsets and has the explicit formula as

follows:
n-— 1 !
L(nk) =< )% (77)
k-1 )k

By equation (77), we can derive the generating function
of L(n, k) to be as follows:

k 00 n
%(%r) - Zk””’ k) % (k=0). (78)

Recently, Kim-Kim introduced the degenerate Lah-Bell
polynomials as follows:

e"<L>—§BL ( )i 79
1-t) & A (79)
n=0

In the special case of x = 1, Bt = BL (1) is called Lah-Bell

numbers.
Note that

-y ( ” >52/\(m ptallzal _eh(t)))l( )

n-m-r+1

n—m
< >52,A (m,D&,,< ;
,

n-m > sz’/\ (m, l)%r)/\

e, (t) T 1)/1(x)nm,)\>/\

Lig, (1-¢)(1-¢, (1))
I (x)n—m—r,A>A (76)

(Ligy (1 -y (1= ey (1)) () mriipa

S, (D), (b,0)S,, (n—m—r1+1,b)E,,.

0 . e . ¢
2 Bt =)
- 1/t \"
=2 Gy (5)
(80)
o0 o0 tm
= 7;) ()1 mZ:nL(m, -

= z < Z L(n,m) (x)m))t> t—'
n=0 \ m=0 n

Thus, we get the following equation:
By, (x)= ) L(n,m)(x),,,. (81)
m=0

In addition, by the definition of Lah-Bell polynomials,
the A-sheffer sequence of Lah-Bell polynomials is as follows:

Bﬁj(x)~<1 ! )A. (82)

41
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Note that, for a given non-negative integer [,

1 log1+n \_& A o
E<1+logl(1+t)) ‘;0('1) <l>f< 1 Gapioa )

0 a r+l tu+l
:zz(—l) <l>r< l )SI)A(G'FZ,T'FZ)W_I)!,

(83)
a=0r=0

where <x>;=1, <x>,=x(x+1)---(x—-n+1), and  Theorem 8. For each non-negative integer n, we have the
(n>1) are rising factorial sequences. following equation:

a=0r=0

n n-l a 1
PO =Z< Z(a”)(r; )(_1) <I> su(a+lr+1)DM”>Bb(x). (84)

As the inversion formula of equation (84), we have the
following equation:

n n m m-r+l m -1 b+1/1a—1 1
s -3( 575 B () B
r

)<L (1’1, m)Sz,A (b) a)SZ,/l (T', Z)Sz)/\ (m -r+ 1: b))Dl(I;) (X)
m-r+1 ”

(85)

Proof. Let D(k)(x) =31 Cn IB (x). By Theorem 1 and
equations (34) (82) and (83), we get the following equation:

C

_l< 1 log, (1 +1¢)
™ Ligy (1- e, (=1))/logy (1 + 1) \ 1+ log, (1 +1)

_, logy(1+1) |f1( log(1+¢) !
_<Lika(1 - eh(—t))|<l! (1 +log) (1 + t)) >A(x)”’)t>)L

n-l a r+1 n
:ZZ(—1)Y<1>,< >< >Su(a+l,r+l) (86)
a=0r=0

I a+l

‘( Jna22

log, (1 +£)
Ll.k)/\ (1 - e/\ (—t))

n-l1 a n r+l
= Z Z ) (-1 <I>.8,(a+Lr+ Z)Dr(L}j)a—l,)\'

I

x<

() p-acia )1
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Conversely, we assume that B, (x) = Z?zocn,lDl(’I;) (x).
Then, by Lemma 1 and equations (31) and (34), we get the
following equation:

_1 L (1-e(1-e(1))

C =
T t

(e () - 1)

Journal of Mathematics

Bfl,,x ('x)>)t

t

n o m m
>y ( )L(n, m)S,, (r, 1)<

i s (1-e(l-¢ (t)))!(%(«a ) - 1)z>)t(x)m>A

Ly (1= (1-¢, (1))

n [Caa (87)

a* Ym-r+1)

x L(n,m)S,, (b,a)S,, (r,)S,, (m —r + 1,b).

4. Conclusion

Degenerate exponential function was first defined by Carlitz
(see [6]), and their relationships and properties with various
special polynomials are being actively studied by many
researchers. In addition, its extension is also being studied
a lot (see [19-22]).

In this article, we find some relationships between some
special polynomials and degenerate poly-Daehee poly-
nomials by expressing linear combinations of degenerate
Bernoulli polynomials, degenerate Euler polynomials, de-
generate Bernoulli polynomials of the second kind, de-
generate Daehee polynomials, Changhee polynomials,
degenerate Bell polynomials, degenerate Lah-Bell poly-
nomials, and vice versa.

Research on the generalization of various special func-
tions using the polylogarithm function has been studied by
many researchers. In the near future, we will continue re-
search to obtain new and interesting identities between the
special functions and other polynomials by using the tools
used in this study.
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