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Te fractional population difusion model is crucial for pest prevention. Tis paper presents an adaptive hierarchical collocation
method for solving this model, enhancing the efciency of algorithms based on Low-Complexity Shannon-Cosine wavelet derived
from combinatorial identity theory. Tis function, an improvement over previous constructs, mitigates the need for iterative
computation of parameters and boasts advantages like interpolation, symmetry, and compact support. Te method’s extension to
other time-fractional partial diferential equations (PDEs) is also possible. Te algorithm’s complexity analysis illustrates the
concise function’s efciency advantage over the original expression when solving time-fractional PDEs. Comparatively, the
method exhibits superior numerical performance to alternative wavelet spectral methods like the Shannon–Gabor wavelet.

1. Introduction

Fisher, in his 1937 article, “Te wave of advance of ad-
vantageous genes,” proposed the population difusion
model, which is utilized in population dynamics to describe
the spatial spread of an advantageous allele, and explored its
traveling wave solutions [1]. In recent years, the population
difusion model has found broad applications in numerous
felds such as epidemics [2], population growth prediction,
and propagation of invasive species [3], among others.
While the population difusion model falls under the cat-
egory of reaction-difusion equations, obtaining its analyt-
ical solution remains challenging despite it being one of the
simplest nonlinear reaction-difusion equations.

In the case of the population difusion model, many
diferent numerical methods have been proposed to ap-
proximate the solution, such as the homotopy perturbation
method (HPM) [4] and the residual power series method
(RPSM) [5]. Compared with the above methods, the spectral
method [6] ofers higher accuracy but lower efciency.
Wavelet analysis [7], which has emerged since the mid-80s,
serves as a set of mathematical tools to solve a variety of
problems in signal and image analysis [2, 8]. As an efcient

and efective tool, wavelets [9] have been widely used in
many areas, playing a crucial role, especially in signal
analysis.

Te Shannon wavelet [10] possesses many excellent
numerical properties, such as orthogonality, interpolation,
smoothness, vanishing moments, and symmetry, but lacks
compact support. Te property of compact support is useful
in improving numerical precision and efciency. To over-
come the shortcoming of the Shannon wavelet function, Mei
and Gao [11] constructed the Shannon-Cosine wavelet. It
acts as a real wavelet function that retains most of the ex-
cellent properties of the Shannon wavelet. Moreover, the
proposed wavelet function overcomes the shortcoming of
the common windowed or truncated Sinc function, that is,
the approximation error does not vanish as the sampling
step tends to zero.

Te Shannon-Cosine wavelet, widely used in various
felds such as image denoising [8, 12], inpainting [13], ge-
ometry modeling [14], signal processing [15], option pricing
[16], computational mathematics, and control engineering
[14], includes a trigonometric series. Interval theory has
excellent versatility in describing imprecise data. Te theory
has been continuously improved and developed, and it has

Hindawi
Journal of Mathematics
Volume 2023, Article ID 2323418, 12 pages
https://doi.org/10.1155/2023/2323418

https://orcid.org/0000-0002-3180-2810
mailto:meishuli@cau.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/2323418


now become an active branch in the feld of computational
mathematics. Combining interval theory with wavelet
function optimization can efectively improve wavelet per-
formance. Mei et al. [17] proposed an interval wavelet
construction method with interpolation properties based on
the generalized variational principle.

More specifcally, the constructed wavelet contains the
trigonometric series; however, the coefcients of the cosine
function need to be calculated in advance, and there is
indeed a possibility to avoid the calculation of coefcients.
To overcome this shortcoming, Low-Complexity Shannon-
Cosine wavelet is proposed, and it has been proved that the
Low-Complexity Shannon-Cosine wavelet is equivalent to
the Shannon-Cosine wavelet of trigonometric series by using
the relevant properties of combinatorial numbers. As a re-
sult, the number of types of parameters in the Shannon-
Cosine wavelet function is successfully reduced.

To make the distinction clear, our convention is to use
italic fonts for scalar functions, roman fonts for vector
functions, and bold roman fonts for matrix functions. We
thus follow the notation described below:

scalar: H(z) � 􏽘
n

hnz
n
,

vector: H(z) � 􏽘
n

hnz
n
,

matrix: H(z) � 􏽘
n

hnz
n
.

(1)

Te rest of the article is organized as follows. Te
Shannon-Cosine wavelet and Low-Complexity Shannon-
Cosine wavelet are introduced in Section 2, and the prop-
erties of the Low-Complexity Shannon-Cosine wavelet and
the proof process, demonstrating that it is essentially
equivalent to the Shannon-Cosine wavelet in the trigono-
metric series, are given in Section 3. In Section 4, numerical
results are provided. Finally, Section 5 focuses on the
conclusions.

2. Definitions of the Shannon-Cosine
Wavelet and Low-Complexity
Shannon-Cosine Wavelet

Mei and Gao [11] successfully constructed the Shannon-
Cosine wavelet by applying the windowed function to the
Shannon wavelet. Te Shannon-Cosine kernel function is
a real wavelet function, which difers from the Shan-
non–Gabor wavelet that can only be regarded as a quasi-
wavelet.

Tis kernel function is a compactly supported func-
tion that preserves the interpolation property and sat-
isfes the wavelet normalization requirement. It
overcomes the limitations of other functions like the
Shannon–Gabor wavelet and truncated Sinc functions,
specifcally the nonvanishing reconstruction error as
sampling approaches zero. Ofering high precision and
efciency, the Shannon-Cosine function is particularly

efective for solving various partial diferential equations
and can be generalized for multiscale cases.

Te Shannon-Cosine scale function SO is composed of
three parts: the Sinc function, the weighting function, and
the Heaviside function, which is defned as follows:

SO(x) �
sin(πx)

πx
T

m
O(x)RN(x),

T
m
O(x) � 􏽘

m

n�0
an cos

2nπx

N
􏼒 􏼓,

(2)

where

an �
(−1)

n
􏽑

n−1
i�1 i

2
a0 − 􏽐

m
k�n+1 (−1)

k
􏽑

n−1
j�1 k

2
− j

2
􏼐 􏼑ak

(− 1)
n

􏽑
n−1
t�1 n

2
− t

2
􏼐 􏼑

,

􏽘

m

n�0
an � 1,

(3)

and RN(x) � χ(x + N/2) − χ(x − N/2), N is a constant
that satisfes 􏽒

+∞
−∞ SO(x) � 1, the value of N is not unique,

and χ(x) is the Heaviside function, which is defned as
follows:

χ(x) �

0, x< 0,

1
2

, x � 0,

1, x> 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Te contrasts between functions SO(x) and Sinc(x) are
illustrated in Figure 1. When compared to Sinc(x), SO(x)

demonstrates the compact support property and adheres to
the partition of unity.

Te simplifed Shannon-Cosine scale function SN(x) is
obtained by modifying the original Shannon-Cosine scale
function, specifcally by raising the cosine function to
a positive even power number. Tis modifcation highlights
the scale’s dependence on cosine similarity and results in
a more streamlined function, i.e.,

SN(x) �
sin(πx)

πx
T

m
N(x)RN(x),

T
m
N(x) � cos2m πx

N
􏼒 􏼓.

(5)

To facilitate diferentiation from the simplifed form of
the Shannon-Cosine wavelet below, the Shannon-Cosine
wavelet [11] and the simplifed Shannon-Cosine wavelet
are denoted as SO and SN. Te diference between the two
forms of the Shannon-Cosine wavelet function is just the
diference between Tm

N and Tm
O . Tm

N is a power function with
respect to cos(πx/N). So, the time complexity of Tm

N is
O(logm). For the original Shannon-Cosine wavelet
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Figure 1: Comparison between Sinc(x) and Shannon-Cosine scaling function SO(x). (a) Shannon scaling function. (b) Shannon-Cosine
scaling function m � 1. (c) Shannon-Cosine scaling function m � 2. (d) Shannon-Cosine scaling function m � 3. (e) Shannon-Cosine
scaling function m � 4. (f ) Shannon-Cosine scaling function m � 5. (g) Shannon-Cosine scaling function m � 6. (h) Shannon-Cosine
scaling function m � 7.
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function, the corresponding Tm
O expressed in equation (2)

can be rewritten as follows. For convenience, let α � πx/N;
then,

T
m
O(x) � 􏽘

m

n�0
an cos(2nα)

� a0 + a1 cos(2α) + a2 cos(4α)

+ a3 cos(6α) + · · · + an cos(2nα)

+ · · · + am cos(2mα).

(6)

To improve the numerical efciency, cos(2nα) can be
calculated employing the recurrence formula as follows:

cos(2α) � 2 cos2(α) − 1,

sin(2α) �

�����������

1 − cos2(2α)

􏽱

,

cos(4α) � cos2(α) − sin2(α),

sin(4α) � 2 sin(2α)cos(2α),

cos(6α) � cos(4α + 2α)

� cos(4α)cos(2α) − sin(4α)sin(2α),

sin(6α) � sin(4α + 2α)

� sin(4α)cos(2α) + cos(4α)sin(2α),

⋮

cos(2nα) � cos((2n − 1)α + 2α)

� cos((2n − 1)α)cos(2α)

− sin((2n − 1)α)sin(2α),

sin(2nα) � sin((2n − 1)α + 2α)

� sin((2n − 1)α)cos(2α)

+ cos((2n − 1)α)sin(2α),

⋮

cos(2mα) � cos((2m − 1)α + 2α)

� cos((2m − 1)α)cos(2α)

− sin((2m − 1)α)sin(2α),

sin(2mα) � sin((2m − 1)α + 2α)

� sin((2m − 1)α)cos(2α)

+ cos((2m − 1)α)sin(2α).

(7)

Terefore, the time complexity of the original Shannon-
Cosine wavelet function is 5m, that is, O(m) in big O notation.
It is straightforward to see that the time complexity of the new
formof the Shannon-Cosine wavelet ismuch lower than that of
the original format. Tis is the reason why we propose a new
form of the Shannon-Cosine wavelet in this research.

To more clearly demonstrate the advantages of the
constructed wavelet, the simplifed Shannon-Cosine wavelet
is renamed as the Low-Complexity Shannon-Cosine
wavelet.

T
0
O(x) � T

0
N(x) � cos

0πx

N
􏼒 􏼓,

T
1
O(x) � T

1
N(x) �

1
2
cos

0πx

N
􏼒 􏼓 +

1
2
cos

2πx

N
􏼒 􏼓,

T
2
O(x) � T

2
N(x) �

3
8
cos

0πx

N
􏼒 􏼓 +

1
2
cos

2πx

N
􏼒 􏼓

+
1
8
cos

4πx

N
􏼒 􏼓.

(8)

Indeed, it is easy to see that Tm
N � Tm

O does hold for some
not too large m, which seems to imply

∀m ∈ Z+
, T

m
N(x) ≡ T

m
O (x). (9)

3. Equivalence Proof of Two Forms of Shannon-
Cosine Wavelets

Te diferences between the two forms of Shannon-Cosine
wavelet mainly appear in the window function, that is,
Tm

N(x) and Tm
O(x), the latter is a trigonometric series, and

the former is a positive even power of the cosine function.
In this section, it will be proved that the two forms of the

Shannon-Cosine wavelet are equivalent, and the Low-
Complexity form possesses smaller time complexity than
the original form.

Te relevant properties of combinatorial numbers Cn
m �

m!/(n!(m − n)!) are introduced in reference [18], the dif-
ference method is an efective method for proving certain
combinatorial constants. Te diference operator of an ar-
bitrary function f(x) is defned as Δf(x) � f(x + 1)−

f(x), which is called the value of the frst-order diference of
f at x.

Te multiorder diference operator deduced from the
frst-order diference operator is Δ2f(x) � Δ(Δf(x)),
Δnf(x) � Δ(Δn− 1f(x)).

Te other two operators also need to be introduced in
this paper, one for the constant operator If(x) � f(x) and
the other for the displacement operator Ef(x) � f(x + 1).

It is easy to know the following formula, Enf(x) �

f(x + n) and Inf(x) � f(x), so Δf(x) � Ef(x) − If(x) �

(E − I)f(x).
In other words, Δ � E − I, from which we obtain

Δn
� (E − I)

n

� 􏽘
n

k�0
C

k
n(−I)

k
E

n− k

� 􏽘
n

k�0
(−1)

k
C

k
nI

k
E

n− k

� 􏽘
n

k�0
(−1)

n− k
C

k
nE

k
I

n− k
.

(10)
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Lemma 1. Let f(x) be any function; then,

Δn
f(x) � 􏽘

n

k�0
(− 1)

k
C

k
nf(x + n − k)

� 􏽘
n

k�0
(−1)

n− k
C

k
nf(x + k).

(11)

Proof. By using two diferent representations Δn, the fol-
lowing equation holds:

Δn
f(x) � 􏽘

n

k�0
(−1)

k
C

k
nE

n− k
I

k⎛⎝ ⎞⎠f(x)

� 􏽘
n

k�0
(−1)

k
C

k
nE

n− k
I

k
f(x)

� 􏽘
n

k�0
(−1)

k
C

k
nE

n− k
f(x)

� 􏽘
n

k�0
(−1)

k
C

k
nf(x + n − k),

Δn
f(x) � 􏽘

n

k�0
(−1)

n− k
C

k
nE

k
I

n− k⎛⎝ ⎞⎠f(x)

� 􏽘
n

k�0
(−1)

n− k
C

k
nE

k
I

n− k
f(x)

� 􏽘
n

k�0
(−1)

n− k
C

k
nE

n− k
f(x)

� 􏽘
n

k�0
(−1)

n− k
C

k
nf(x + k).

(12)

Let an􏼈 􏼉 be a series; if its p-order diference series Δpan􏼈 􏼉

is not a zero series and its p + 1-order diference series
Δp+1an􏼈 􏼉 is a zero series, then an􏼈 􏼉 is said to be a p-order
equivariant series. □

Lemma 2. If P(x) � 􏽐
p

k�0akxp− k is a p-order polynomial,
then the series P(n){ } is an equivariant series of the order p.

Proof

Δp
P(n) � Δp

􏽘

p

k�0
akx

p− k⎛⎝ ⎞⎠

� 􏽘

p

k�0
akΔ

p
x

p− k

� a0p!,

(13)

and Δp+1P(n) � 0.
Tus, the series P(n){ } is an equivariant series of

p order. □

Lemma 3. If a ak􏼈 􏼉 is an equivariant series of order p and
n>p, then

􏽘

n

k�0
(−1)

k
akC

k
n � 0. (14)

Proof. From Lemmas 1 and 2, it can be derived that
􏽐

n
k�0(−1)kCk

nak � (−1)nΔna0 � 0. □

Lemma 4. If P(x) � a0x
p + a1x

p− 1 + · · · + ap is a poly-
nomial of order p and n>p, then 􏽐

n
k�0(−1)kP(k)Ck

n � 0.

Proof. Assuming that P(k) is a polynomial of order p, we
can conclude from Lemma 2 that P(k) is an equivariant
series of order p, and the conclusion above holds based on
Lemma 3. □

Theorem 5. Te original Shannon-Cosine scale function
SO(x) and the Low-Complexity scale function SN(x) are
equivalent, i.e., ∀m ∈ Z+, SO(x) ≡ SN(x).

Proof. Let B � (1, 0, . . . , 0)T and

M � M0, M1, M2, M3, . . . , Mr, . . . , Mm􏼂 􏼃
T
. (15)

Te column vector consisting of the coefcients ai of
Tm

O (x) in the scale function SO(x) satisfes the equation
[11]

MX � B. (16)

When � 1, 2, 3, det(M) � −2, −8, 384≠ 0.
When m> 3, some mathematical notations are defned

in advance:

Z
n
m ≔ 1≤ i< j≤m, i, j ∈ Z\n􏼈 􏼉,

V
n
m ≔ 􏽙

i,j∈Zn
m

j
2

− i
2

􏼐 􏼑, n � 0, 1, 2, . . . , m. (17)

Expand the determinant det(M) by the frst row
according to the rules for calculating determinants.

If m is an arbitrary even number and > 2, the value of the
determinant of the matrix M is

det(M) � (−1)
m/2

V
0
m + 􏽘

m

j�1
(− 1)

j
(− 1)

m/2−j(m!)
2

j
2 V

j
m

� (−1)
m/2

V
0
m + 􏽘

m

j�1

(m!)
2

j
2 V

j
m

⎛⎝ ⎞⎠.

(18)

If m is an arbitrary odd number and > 1, the value of the
determinant of the matrix M is

det(M) � (−1)
m+1/2

V
0
m

+ 􏽘
m

j�1
(−1)

j
(−1)

m+1/2− j(m!)
2

j
2 V

j
m

� (−1)
m+1/2

V
0
m + 􏽘

m

j�1

(m!)
2

j
2 V

j
m

⎛⎝ ⎞⎠.

(19)
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Because Vn
m > 0, n � 0, 1, · · ·, ∀m> 0, det(M)≠ 0 and the

rank of the matrix M is m + 1 and the equation MX � B has
a unique solution.

Regarding the expansion of the high power of the cosine
function, there is a conclusion that holds 2n cosn(x) �

􏽐
n
k�0C

k
n cos(n − 2k)x, and let c0 � 2− 2mCm

2m, ck � 21− 2mCm−k
2m ,

k � 1, · · · m, so

T
m
N(x) � cos2m πx

N
􏼒 􏼓

� 2− 2m
􏽘

2m

k�0
C

k
2m cos(2m − 2k)

πx

N

� 2− 2m
C

m−n
2m cos

0πx

N
􏼒 􏼓

+ 􏽘
m

n�1
21− 2m

C
m−n
2m cos

2nπx

N
􏼒 􏼓

� 􏽘
m

n�0
cn cos

2nπx

N
􏼒 􏼓.

(20)

Consider the frst row of the matrix:

M0C � 􏽘
m

k�0
ck � c0 + 􏽘

m

k�1
ck

� 2− 2m
C

m
2m + 􏽘

m

k�1
2C

m−k
2m

⎛⎝ ⎞⎠

� 2− 2m
C

m
2m + 􏽘

m

k�1
C

m−k
2m + C

m+k
2m􏼐 􏼑⎛⎝ ⎞⎠

� 2− 2m
􏽘

2m

k�0
C

k
2m � 1.

(21)

Consider the second row of the matrix:

M1C � 􏽘
m

k�0
(−1)

k
ck

� 2− 2m
C

m
2m + 􏽘

m

k�1
2(−1)

k
C

m−k
2m

⎛⎝ ⎞⎠

� 2− 2m
C

m
2m + 􏽘

m

k�1
(−1)

k
C

m−k
2m + C

m+k
2m􏼐 􏼑⎛⎝ ⎞⎠

� 2− 2m
􏽘

2m

k�0
(−1)

k
C

k
2m

� 0.

(22)

Consider the third to m + 1 row of the matrix,
∀r ∈ Z, 1< r<m + 1,

MrC � 21− 2m
􏽘

m

k�1
(−1)

k
C

m−k
2m k

2
􏼐 􏼑

r− 1
. (23)

Te validity of Teorem 5 can be established due to

􏽘

m

k�1
(−1)

k
C

m−k
2m k

2
􏼐 􏼑

r− 1

� 􏽘
m

k�1

C
m−k
2m + C

m+k
2m

2
(−1)

k
k
2

􏼐 􏼑
r− 1

� 0 × C
m
2m + 􏽘

m

k�1

C
m−k
2m + C

m+k
2m

2
(−1)

k
k
2

􏼐 􏼑
r− 1

�
1
2

􏽘

2m

k�0
(−1)

k
C

k
2m(m − k)

2r− 2
,

(24)

and(m − k)2r− 2 � p(k)is a2r − 2order polynomial to the
variablek, which satisfes the conditions of Lemma 4 so
MrC � 0, sinceM0C � 1, M1C � 0, MrC � 0, r � 2, . . . , m,
henceMC � B, the equation (16) has a unique solution
andMA � B, Tm

N(x) ≡ Tm
O(x), thenA � C, and the rest of the

Original Shannon-Cosine wavelet scale function and the
Low-Complexity Shannon-Cosine wavelet scale function are
equal, so Teorem 5 holds. □

Specifc parameter values can be used to verify Teorem
5, and for the case when m< 8, the parameter values ci are
provided in Table 1. By comparing the values ai in the
literature [11], the two coefcients are found to be
exactly equal.

4. Multiscale Shannon-Cosine Wavelet
Interpolation Operator

In this section, a multiscale wavelet interpolation operator is
constructed frstly based on the interpolation property of the
Shannon-Cosine wavelet, which can be used to represent the
smooth signal sparsely. Terefore, it can be used to solve
time-fractal PDEs efciently. Ten, we analyze the time
complexity of the interpolation operators constructed based
on the two forms of the Shannon-Cosine wavelet,
respectively.

4.1. Construction of the Multiscale Wavelet Interpolation
Operation. Te two forms of Shannon-Cosine wavelet
and the Low-Complexity Shannon-Cosine wavelet
function SO(x) and SN(x) have been introduced in
Section 2, and the sequence of scale functions and the
sequence of wavelet functions are, respectively, defned
as

ϕj,k(x) � SN

x − xn( 􏼁

Δ
􏼠 􏼡,

φj,k(x) � ϕj+1,2k+1(x),

(25)

where xj,n � xmin + nxmax − xmin/2j, n � 0, 1, 2, . . . , 2j,
Δ � xmax − xmin/2j, k � 0, 1, 2, . . . , 2j.

Defne the mapping s: (j, k)↦n as follows:
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s(j, k) � k2J− j
+ 2J− j− 1

,

j0 ≤ j< 2J
− 1, 0≤ k< 2j

− 1.
(26)

Te inverse function of the function s in this paper is
denoted by s− 1, when mod (n, 2J− j0) � 0, the defnition of
s− 1(n) is complemented by s− 1(n) � (j0, n2J− j0), and then

there is a unique (j, k) corresponding to any integer
0≤ n≤ 2J. We denote this mapping relationship by the
following notation � s−1

j (n), k � s−1
k (n).

Te defnition of R
l,j

i,m is

R
l,j
i,m �

1, xl,i � xj,m,

0, other,
􏼨

W0 �

ws−1(0) xJ,0􏼐 􏼑 ws−1(1) xJ,0􏼐 􏼑 ws−1(2) xJ,0􏼐 􏼑 · · · ws−1 2J( ) xJ,0􏼐 􏼑

ws−1(0) xJ,1􏼐 􏼑 ws−1(1) xJ,1􏼐 􏼑 ws−1(2) xJ,1􏼐 􏼑 · · · ws−1 2J( ) xJ,1􏼐 􏼑

ws−1(0) xJ,2􏼐 􏼑 ws−1(1) xJ,2􏼐 􏼑 ws−1(2) xJ,2􏼐 􏼑 · · · ws−1 2J( ) xJ,2􏼐 􏼑

⋮ ⋮ ⋮ ⋮ ⋮
ws−1(0) xJ,2J􏼐 􏼑 ws−1(1) xJ,2J􏼐 􏼑 ws−1(2) xJ,2J􏼐 􏼑 · · · ws−1 2J( ) xJ,2J􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

W1 �

ws−1(0)
′ xJ,0􏼐 􏼑 ws−1(1)

′ xJ,0􏼐 􏼑 ws−1(2)
′ xJ,0􏼐 􏼑 · · · ws−1 2J( )

′ xJ,0􏼐 􏼑

ws−1(0)
′ xJ,1􏼐 􏼑 ws−1(1)

′ xJ,1􏼐 􏼑 ws−1(2)
′ xJ,1􏼐 􏼑 · · · ws−1 2J( )

′ xJ,1􏼐 􏼑

ws−1(0)
′ xJ,2􏼐 􏼑 ws−1(1)

′ xJ,2􏼐 􏼑 ws−1(2)
′ xJ,2􏼐 􏼑 · · · ws−1 2J( )

′ xJ,2􏼐 􏼑

⋮ ⋮ ⋮ ⋮ ⋮
ws−1(0)
′ xJ,2J􏼐 􏼑 ws−1(1)

′ xJ,2J􏼐 􏼑 ws−1(2)
′ xJ,2J􏼐 􏼑 · · · ws−1 2J( )

′ xJ,2J􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

W2 �

ws−1(0)
″ xJ,0􏼐 􏼑 ws−1(1)

″ xJ,0􏼐 􏼑 ws−1(2)
″ xJ,0􏼐 􏼑 · · · ws−1 2J( )

″ xJ,0􏼐 􏼑

ws−1(0)
″ xJ,1􏼐 􏼑 ws−1(1)

″ xJ,1􏼐 􏼑 ws−1(2)
″ xJ,1􏼐 􏼑 · · · ws−1 2J( )

″ xJ,1􏼐 􏼑

ws−1(0)
″ xJ,2􏼐 􏼑 ws−1(1)

″ xJ,2􏼐 􏼑 ws−1(2)
″ xJ,2􏼐 􏼑 · · · ws−1 2J( )

″ xJ,2􏼐 􏼑

⋮ ⋮ ⋮ ⋮ ⋮
ws−1(0)
″ xJ,2J􏼐 􏼑 ws−1(1)

″ xJ,2J􏼐 􏼑 ws−1(2)
″ xJ,2J􏼐 􏼑 · · · ws−1 2J( )

″ xJ,2J􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

H �

H
s−1

j
(0),J

s−1
k

(0),0 H
s−1

j
(0),J

s−1
k

(0),1 H
s−1

j
(0),J

s−1
k

(0),2 · · · H
s−1

j
(0),J

s−1
k

(0),2J

H
s−1

j
(1),J

s−1
k

(1),0 H
s−1

j
(1),J

s−1
k

(1),1 H
s−1

j
(1),J

s−1
k

(1),2 · · · H
s−1

j
(1),J

s−1
k

(1),2J

H
s−1

j
(2),J

s−1
k

(2),0 H
s−1

j
(2),J

s−1
k

(2),1 H
s−1

j
(2),J

s−1
k

(2),2 · · · H
s−1

j
(2),J

s−1
k

(2),2J

⋮ ⋮ ⋮ ⋮ ⋮

H
s−1

j
2J( ),J

s−1
k

2J( ),0 H
s−1

j
2J( ),J

s−1
k

2J( ),1 H
s−1

j
2J( ),J

s−1
k

2J( ),2 · · · H
s−1

j
2J( ),J

s−1
k

2J( ),2J

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

H
s−1

j
(m),J

s−1
k

(m),n
�

1, mod n, 2J− j0􏼐 􏼑 � 0, m � n,

0, mod n, 2J− j0􏼐 􏼑 � 0, m≠ n,

C
s−1

j
(m),J

s−1
k

(m),n
, mod n, 2J− j0􏼐 􏼑≠ 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C
j,J

k,n � R
j+1,J

2k+1,n − 􏽘

2j0

k0�0
R

j0 ,J

k0 ,nϕj0 ,k0
xj+1,2k+1􏼐 􏼑 − 􏽘

j−1

j1�j0

􏽘

2j1−1

k1�0
C

j1,J

k1,nφj1 ,k1
xj+1,2k+1􏼐 􏼑,

ws−1(n)(x) �
φs−1(n)(x), mod n, 2J−j0􏼐 􏼑≠ 0,

ϕs−1(n)(x), mod n, 2J−j0􏼐 􏼑 � 0.

⎧⎨

⎩

(27)

Table 1: Value of coefcient ci in Low-Complexity Shannon-Cosine wavelet kernel function.

m c0 c1 c2 c3 c4 c5 c6 c7

0 1
1 1/2 1/2
2 3/8 1/2 1/8
3 5/16 15/32 3/16 1/32
4 35/128 7/16 7/32 1/16 1/128
5 63/256 105/256 15/64 45/512 5/256 1/512
6 231/1024 99/256 495/2048 55/512 33/1024 3/512 1/2028
7 429/2048 303/8192 1001/4096 1001/8192 91/2048 91/8192 7/4096 1/8192
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Te data F � [f(xJ,0), f(xJ,1), . . . , f(xJ,2J )]
T, along with

its frst-order derivative D1(F) and second-order derivative
D2(F), can be represented in matrix format as follows:

F � W0HF,

D
1
(F) � W1( 􏼁HF,

D
2
(F) � W2( 􏼁HF,

(28)

where W0,W1, and W2 are defned as equation (34).
Let f(x) ∈ L2(R), which represents the space of mea-

surable square-integrable functions. Ten, the infnite series
expansion of f(x) with Shannon-Cosine wavelet converges
uniformly to f(x), i.e.,

f(x) � 􏽘
k

bkϕk(x) + 􏽘
j≥0;k;

aj,kψj,k(x).
(29)

4.2. Fractional Population DifusionModel. To compare and
illustrate the advantages of the new Shannon-Cosine
wavelet, we applied the multiscale Shannon-Cosine wave-
let collocation method to obtain the numerical solutions of
the time-fractional population difusion model. Te difer-
ences in key algorithms for implementing two Shannon-
Cosine wavelets are frst introduced and analyzed in terms of
time complexity.

Te Time-Fractional Population Difusion Model
(TFPDM) is a well-defned fractional partial diferential
equation (PDE) that highlights the spatial and temporal
propagation of a virile gene in an infnite medium [19]. Te
TFPDM can be described as follows:

D
α
t u(x, t) � Dxxu(x, t)

+ λu(x, t) 1 − u
n
(x, t)( 􏼁 + q(x, t).

(30)

Te initial and boundary conditions are

u(x, 0) � f(x), u(0, t) � y1(t), u(1, t) � y2(t), (31)

where x ∈ R, 0≤x≤ 1, t> 0, 0< α≤ 1, Dα
t denotes the Caputo

[20] fractional derivative in time, and y1(t), y2(t), f(x), and
q(x, t) are some known functions. Te following specifc
TFPDM is considered forλ � 1, n � 3and

q(x, t) � −2t − xt(t + x) 1 − t
3
x
3
(t + x)

3
􏼐 􏼑

+
x
2
t
1− α

Γ(2 − α)
+

2xt
2− α

Γ(3 − α)
,

(32)

with the initial and boundary con-
ditionsf(x) � 0, y1(t) � 0, y2(t) � t + t2, which has an ex-
act solution [1]

uexa(x, t) � xt
2

+ tx
2
. (33)

Te fnite diference format [21] of the fractional order
derivative part of equation (36) is given by

z
α
u x, tn+1( 􏼁

zt
α �

τ− α

Γ (2 − α)
􏽘

n

k�0
bk u x, tn+1−p􏼐 􏼑 − u x, tn−k( 􏼁􏼐 􏼑

+ O τ2− α
􏼐 􏼑,

(34)

where bk � (k + 1)1− α − k1− α, Using the wavelet allocation
method, the diferential form of the right-hand side of
equation (36) is obtained. Moreover, the nonlinear term is
linearized by the method introduced by Rubin and Graves
[22]. Te resulting expressions are as follows:

z2u

zx2 + u

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌 xi,tn+1( )
� uxx + uj xm, tn+1( 􏼁,

u
4

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌 xi,tn+1( )

� 4 u
n
i( 􏼁

3
u

n+1
i − 3 u

n
i( 􏼁

4
+ O(τ)

2
.

(35)

Bringing the diference form to the equation (36), ig-
noring the infnitesimal terms gives the fnite diference form
of the equation.

τ− α

Γ (2 − α)
􏽘

n

k�0
bk u xi, tn+1−p􏼐 􏼑 − u xi, tn−k( 􏼁􏼐 􏼑

� uxx + u
n+1
i − 4 u

n
i( 􏼁

3
u

n+1
i + 3 u

n
i( 􏼁

4

+ q xi, tn+1( 􏼁.

(36)

Te solution of the general iterative method of TFPDM
in matrix form is given by

4r V
n
j􏼐 􏼑

3
V

n+1
j +(1 − r)V

n+1
j − r V

″
􏼒 􏼓

n+1

j

� bnV
0
j + 3r V

n
j􏼐 􏼑

4
+ 􏽘

n−1

p�0
bp − bp+1􏼐 􏼑V

n−p

j

+ rQ
n+1

.

(37)

Te boundary conditions generate other equations for
uj(x0, tn) and uj(x2j , tn):

uj x0, tn+1( 􏼁 � y1 tn+1( 􏼁,

uj x2j , tn+1( 􏼁 � y2 tn+1( 􏼁.
(38)

Let

r � ταΓ(2 − α), F � diag 4r V
n
j􏼐 􏼑

3
􏼒 􏼓,

V
n
j � uj x0, tn( 􏼁, uj x1, tn( 􏼁, . . . , uj x2j , tn( 􏼁􏼐 􏼑

T
,

Q
n

� q x0, tn( 􏼁, q x1, tn( 􏼁, . . . , q x2j , tn( 􏼁( 􏼁
T
.

(39)

Te matrix form of the equation (36) based on the
multiscale wavelet allocation method [23] is
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F + (1 − r)I − rW2( 􏼁V
n+1
j

� bnV
0
j + 3r V

n
j􏼐 􏼑

4
+ rQ

n+1

+ 􏽘
n−1

k�0
bk − bk+1( 􏼁V

n−k
j ,

(40)

and where W2 is defned by equation (34), both φs−1(n)(x)

and ϕs−1(n)(x) within that formula refer either to the
Shannon-Gabor wavelet function [24] or the Shannon-
Cosine wavelet function.

Te solution to equation (40) is given by

V
n+1

� An+1
􏼐 􏼑

− 1
B

n+1
, (41)

where

A
n+1

� F +(1 − r)I − rW2( 􏼁

B
n+1

� bnV
0
j + 3r V

n
j􏼐 􏼑

4
+ rQ

n+1

+ 􏽘

n−1

k�0
bk − bk+1( 􏼁V

n−k
j .

(42)

Te calculation of the relative numerical error is given by

e �
1

2j
+ 1

������������������������

􏽘

2j

i�0
unum xi, t( 􏼁 − uexa xi, t( 􏼁( 􏼁

2

􏽶
􏽴

. (43)

We use a combination of the multiscale Shannon-Cosine
wavelet spectral method and iteration technique for the
numerical solution of equations (30) and (40) compared to
Shannon–Gabor [24] wavelet.

Te core idea of this algorithm is to iteratively solve the
linear system by updating the matrix A and vector B at each
step, using the wavelet-based method to approximate the
solution. Te algorithm successively refnes the solution

until convergence is achieved. Te specifc process is shown
in Algorithm 1.

Table 2 presents the average error of the TFPDM ap-
proximate solution at t � 0.1 using the Shannon-Cosine
wavelet spectral method, with parameters m � 3, τ � 4e − 5,

J � 7, j0 � 6 for varying values of N and α. Tis indicates
that the Shannon-Cosine wavelet spectral method ofers an
approximation for TFPDM that is closely aligned with the
exact solution. Furthermore, the numerical error is notably
smaller for specifc values that meet the normalization
condition compared to those that round towards negative or
positive infnity.

Table 3 displays a comparison of error among two wavelet
spectral methods to approximate the solution of the TFPDM,
which demonstrates that the multiscale Shannon-Cosine
wavelet spectral method has better numerical stability com-
pared to Shannon–Gabor wavelet. Te fgure shown in Figure2
displays the numerical solution with parameters α � 0.4, J � 7,
j0 � 0, eps � 4e − 5, m � 3, and N � 15.18988168.

Figure 3 displays the numerical solutions and relative
numerical errors when using the multiscale Shannon-Cosine
wavelet spectral methods for the TFPDM, across diferent α
values. Te parameters adopted in this analysis are m � 3,
τ � 4e − 4, J � 7, and j0 � 6. Te fndings reinforce the su-
perior numerical stability provided by the multiscale Shannon-
Cosine wavelet spectral method under these conditions.

Figure 2 illustrates the numerical solutions using the
multiscale Shannon-Cosine wavelet spectral methods to
approximate the solution of TFPDM for diferent values of
x, when the time t � 0.02, 0.04, 0.06, 0.08, 0.10. Te com-
parison shows that the multiscale Shannon-Cosine wavelet
spectral method displays superior numerical stability.

According to the analysis of experimental results, an
increase in the scale parameter j is positively correlated with
a decrease in experimental error. Tis indicates that in-
creasing j can improve the stability and consistency of the
experiment. Similarly, an increase in the fractional-order

(1) Initialize: Given V0
j , n � 0

(2) while n<N do
(3) Compute An+1 Bn+1

(4) Solve An+1Vn+1
j � Bn+1

(5) Update Vn
j with Vn+1

j

(6) n � n + 1
(7) end while

ALGORITHM 1: Wavelet-based iterative solver.

Table 2: Relative numerical error of Shannon-Cosine wavelet spectral method to approximate the solution of the TFPDM at t � 0.1 with
m � 3, τ � 4e − 5 J � 7, j0 � 6 for diferent N and α.

N α � 0.2 α � 0.4 α � 0.6 α � 0.8
7 1.6479e− 01 1.6480e− 01 1.6515e− 01 1.6597e− 01
7.43733035 1.3534e− 01 1.1386e− 01 8.6807e− 02 5.8179e− 02
8 3.4742e− 01 3.4265e− 01 3.3926e− 01 3.3951e− 01
11 1.8052e− 01 1.5812e− 01 1.3251e− 01 1.1110e− 01
11.26119977 1.7245e− 01 1.4466e− 01 1.0889e− 01 6.8392e− 02
12 1.7906e− 01 1.5166e− 01 1.1687e− 01 7.8928e− 02
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Table 3: Comparison of relative numerical error among two methods to approximate the solution of the TFPDM at t � 0.1 with
m � 3, τ � 4e − 5, r � 3.2, J � j, j0 � 0, N � 63.04503351.

α j Shannon–Gabor wavelet Shannon-Cosine wavelet

0.2
6 1.8343e− 02 1.4200e− 02
7 9.7604e− 03 6.9733e− 03
8 5.0813e− 03 3.0169e− 03

0.4
6 1.7916e− 02 1.3815e− 02
7 9.6249e− 03 6.8486e− 03
8 5.0398e− 03 2.9763e− 03

0.6
6 1.7360e− 02 1.3318e− 02
7 9.4492e− 03 6.6877e− 03
8 4.9865e− 03 2.9244e− 03

0.8
6 1.6699e− 02 1.2732e− 02
7 9.2445e− 03 6.5028e− 03
8 4.9278e− 03 2.8689e− 03
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t=0.10

x

Figure 2: Numerical solution of TFPDM at t � 0.1.
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Figure 3: Continued.
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exponent parameter α also leads to a reduction in experimental
error, potentially reducing error sources and enhancing ex-
perimental accuracy. However, the increase in the time variable
t is positively associated with an increase in experimental error,
possibly due to system or condition variations. In summary, the
scale parameter j and the fractional-order exponent parameter
α have a positive impact on reducing experimental error, while
the increase in the time variable t is linked to error increase.
Tese fndings provide valuable insights into the reliability and
accuracy of the experimental results.

5. Conclusion

In this paper, we present the Low-Complexity Shannon-
Cosine wavelet by substituting the Original Shannon-
Cosine with the positive and even power of the cosine
function. It has been rigorously demonstrated that the
Low-Complexity Shannon-Cosine wavelet is equivalent to
the Original Shannon-Cosine wavelet via trigonometric
series, utilizing the pertinent properties of combinatorial
numbers.

Te primary advantage of the Low-Complexity Shannon-
Cosine wavelet lies in the elimination of certain parameter
calculations present in the earlier version, thereby enhancing
the efciency of programming. Numerical experiments have
established that the Shannon-Cosine wavelet serves as an in-
valuable technique for achieving high-precision numerical
solutions to various fractional-order partial diferential equa-
tion problems in engineering applications.
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Figure 3: Numerical solution and relative numerical error of TFPDM at t ∈ [0, 0.2]. (a) Numerical solution at α � 0.2. (b) Relative
numerical error at α � 0.2. (c) Numerical solution at α � 0.4. (d) Relative numerical error at α � 0.4. (e) Numerical solution at α � 0.6. (f )
Relative numerical error at α � 0.6. (g) Numerical solution at α � 0.8. (h) Relative numerical error at α � 0.8.
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