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Algal blooms have a wide variety of detrimental efects on both the aquatic environment and human activities unfortunately,
including a decrease in dissolved oxygen levels in water. In this study, a nonlinear mathematical model has been developed to
study the efects of algal bloom on the depletion of dissolved oxygen in eutrophic water sources considering nutrient con-
centrations, density of algal population, detritus, and concentration of dissolved oxygen as variables. Te model’s existence and
uniqueness, stability at the equilibrium points, and characteristics with respect to state variables have been performed as some
parts of analytical solution, whereas the numerical solution has been performed using the Runge–Kutta 4th order technique. Te
fndings of this research reveal that an increase in the quantity of nutrients causes an algal bloom, which in turn lowers the
equilibrium level of dissolved oxygen. However, higher levels of detritus (> 4.7mg/litre) are hazardous to the generation of
dissolved oxygen in water systems. Maximum detritus of 1.0mg/liter is required for fast algal and dissolved oxygen growth in
water bodies; beyond that, algal and dissolved oxygen growth rates are lower.Terefore, increasing public awareness is an essential
step in controlling this growing issue; failing to do so will result in problems for our water supply, which will in turn pose a danger
to our ecosystem.

1. Introduction

In this era of modernization, it is evident that most of the
lakes around us are nutrients dense (nitrogen, phosphorus,
etc.), mostly by chemical wastes from diferent factories,
wastewater outfow from agricultural areas, as well as res-
idential drainage. Tis excess amount of nutrients causes
algal bloom which results in eutrophication of water bodies.
Algal bloom is a dense layer of tiny green plants that occur
on the surface of lakes and other bodies of water when there
is an overabundance of nutrients (primarily phosphorus) on
which algae depend [1]. It afects the water bodies severely
and ends up in the depletion of dissolved oxygen. Nowadays,
it has become a matter of great concern in both urban and
rural areas. More than 40% of the world’s water bodies
undergo eutrophication at varying amounts, based on the
ffth Global Environment Outlook (GEO-5) [2], and it is
increasing year after year at an alarming rate. As

a consequence of eutrophication, the water bodies become
unft for the survival of living organisms which hampers the
aquatic ecosystem. Recently, the efect of budget allocation
for controlling algal bloom in a lake has been discussed by
Misra et al. [3]. Here, the interactions of concentration of
nutrients, density of algal population, detritus, and dissolved
oxygen levels are considered in this model. Te objectives of
our study are to analyze and fnd the characteristics among
those variables with respect to some parameters that we will
be considering.

Algal bloom is a rapid growth of microscopic algae or
cyanobacteria in water, often resulting in a colored scum on
the surface. Tese so-called algal blooms can lead to a release
of toxins, taste, and odor problems and fnally the depletion
of dissolved oxygen in water bodies [4, 5]. Eutrophication is
characterized by a signifcant growth of algae due to the
overabundance of one or more growth factors necessary for
photosynthesis, such as sunlight, carbon dioxide, and
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nutrients (nitrogen and phosphorus) [6, 7]. When algae are
starting to grow in an unrestrained manner, an increasingly
large biomass is formed, which is destined to demote. A huge
quantity of organic matter collects in deep water, indicating
that algae have reached the end of their life cycle. To con-
sume all of the dead algae, microbes have to use a large
amount of oxygen; in some instances, nearly all of it.
Oxygen-free environment in aquatic bodies is thus created
on the bottom. Without treatment, the algae will grow more
every year, resulting in an unbalanced ecosystem. In order to
get a clear concept of the model, the diagram in Figure 1
shows the synopsis of our work.

A research study showed that the quantity of dissolved
oxygen in the water fuctuates on a regular basis, i.e., on
a daily basis, since oxygen is created by photosynthesis
(when there is light) and consumed by respiration (when
there is darkness) (all the time) [8]. Controlling algal bloom
is a much needed step for a healthy aquatic ecosystem
nowadays. Tere were several studies about the efects of the
discharge of nutrients in water bodies, causing eutrophi-
cation, conducted by some investigators. Smith presented
a concept of algal deposition in his research [9]. Voinov and
Tonkikh proposed a model on eutrophication in macrophyte
lakes based on the assumption which is nutrient is supplied
only by the detritus of algae and macrophytes [10]. Tey did
not take the additional supply of nutrients either from
household drainage or from water due to agricultural lands.
Jorgenson discussed an eutrophication model on a lake
using ecological concepts [11, 12]. Jayaweera and Asaeda
illustrated mathematically biomanipulation in shallow eu-
trophic lakes related to phytoplankton, zooplankton, de-
tritus, bacteria, and fsh population, but the supply of
nutrients from outside was not considered there [13].
Various ecological modeling studies included phytoplank-
ton, zooplankton, and nutrients have also been conducted by
Busenburg et al. [14] and Hallam [15].Tey had not assumed
the density of dissolved oxygen for the modeling process.
Hulla et.al. studied about the dynamics of dissolved oxygen
on coastal lagoons [16]. Shukla et al. also analyzed algal
bloom and eutrophication [17]. Misra also analyzed the
eutrophication caused by nutrients only and analyzed the
depletion of dissolved oxygen [18]. A laboratory simulation
revealed that the depletion of bloom-forming algae had an
efect on the dissolved oxygen levels in coastal waters also
[19]. After all of these, a new mathematical model is pro-
posed to study the efects of increasing nutrients and algae
with decreasing dissolved oxygen on the survival of fsh
populations using Holling type II interaction. Tis model is
based on the assumption that nutrients are constantly re-
leased into water bodies from diferent sources, which makes
algae grow in large numbers, depleting the dissolved oxygen,
and hurting marine life, and then some mathematical
analysis has been conducted [20]. But our goal is to study the
efects of algal bloom on the depletion of dissolved oxygen
and to fnd the characteristics of the considered state var-
iables with respect to diferent parameters. Te main pur-
pose of our study is to construct a nonlinear mathematical
model to analyze the efects of algal bloom on the depletion
of dissolved oxygen in water bodies corresponding to the

current situation of Bangladesh. We will be focusing on
fnding out the characteristics of concentration of nutrients,
density of algal population, detritus, and concentration of
dissolved oxygen with respect to diferent parameters nu-
merically as well as graphically.

2. Formulation of the Mathematical Model

Bangladesh is a riverine country, and fsh and rice are their
primary food. At the same time, many people of this country
are directly and indirectly dependent on the river and the
fsh derived from the river but most of the zooplankton
cannot survive in rivers and streams [21]. Te majority of
people in our nation are unaware, and as a result, they
constantly throw away waste referred to as detritus which
poses a serious danger to the environment’s water resources.
So, in the context of this country, this model plays a sig-
nifcant role on nutrients, algae, detritus, and dissolved
oxygen. In continuation of this, we have considered a water
resource such as canal which is being afected due to the
overgrowth of algae caused by the discharge of nutrients
from domestic drainage as well as from water runof, in-
dustrial wastage, and also from nutrients formed from de-
tritus. Te bilinear interactions of variables such as the
concentration of nutrients, density of algae (phytoplankton),
density of detritus, and concentration of dissolved oxygen
are considered. Due to domestic drainage, industrial wastage
as well as water runof from agriculture felds, various nu-
trients are supplied into the water body.Tese nutrients may
also be supplied by the death of algae. We assumed that the
phytoplankton population is wholly dependent on nutrients.
It is further assumed that the level of dissolved oxygen in the
water body increases by other various resources like difu-
sion, photosynthesis, or respiration by algae.We are going to
consider concentration of nutrients, density of algae, density
of detritus, and concentration of dissolved oxygen in the
absence of zooplankton.

Let us consider n to be the concentration of various
nutrients, a be the density of algae, s be the density of
detritus, and c be the concentration of dissolved oxygen
(DO). We assume that the rate of discharge of nutrients into
the aquatic system from outside into water bodies is q due to
natural factors which is depleted with the rate α0n. Te
growth rate of nutrients due to detritus is π0δS and depletion
of nutrients by algae proportional to both the density of algae
as well as the concentration of nutrients (i.e.na).

dn

dt
� q + π0δs − α0n − β1na. (1)

Tus, the growth rate of algae is proportional to na as it is
assumed to be wholly depended on the nutrients.Te natural
depletion rate of algae is assumed to be proportional to its
density a.

da

dt
� θ1β1na − α1a. (2)

Since some part of natural depletion of algae is converted
into detritus, it is assumed to be proportional to α1a, and its
natural depletion rate is assumed to be proportional to s.
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ds

dt
� π1α1a − δs. (3)

Te rate of growth of dissolved oxygen by various
sources qc is assumed to be constant and its natural depletion
rate is proportional to its concentration c. Te rate of growth
of dissolved oxygen by algae is proportional to a and the
depletion of dissolved oxygen caused by decomposing the
detritus is proportional to its concentration s.

dc

dt
� qc − α2c + ηa − δ1s. (4)

With the abovementioned assumptions, the algal bloom
model is proposed in formulation of a nonlinear ordinary
diferential equation system [18] as follows:

dn

dt
� q + π0δs − α0n − β1na � f(n, a, s, c), (5)

da

dt
� θ1β1na − α1a � g(n, a, s, c), (6)

ds

dt
� π1α1a − δs � h(n, a, s, c), (7)

dc

dt
� qc − α2c + ηa − δ1s � p(n, a, s, c), (8)

with non-negative initial conditions:
n(0)≥ 0, a(0)≥ 0, s(0)≥ 0, c(0)≥ 0 Here, the positive co-
efcients αi; i � 0, 1, 2 are depletion rate coefcients.
β1, θ1, δ, andδ1 are proportionality constants which are
positive. Te positive η is the proportional constant for the
growth rate of dissolved oxygen due to algae and
0< π0, π1 < 1.

3. Mathematical Analysis

Te boundedness of state variables and the positivity of the
system of nonlinear diferential equations ((5)–(8)) have
been tested in this section. Finding the equilibrium points,

we have analyzed stability at the equilibrium points.
Moreover, the analysis of the characteristics of state variables
with respect to various parameters of the system ((5)–(8)) is
presented in here.

3.1. Positivity

Theorem 1. Considering n(0)> 0, a(0)> 0, s(0)> 0, c(0)> 0,
it must be proved that n(t), a(t), s(t), c(t) will be always
positive for all tϵ[0, T] in R+

4 where T> 0.

Proof. Taking all parameters of the system and all initial
values to be positive, we have to prove that
n(t), a(t), s(t), c(t) will be positive for all t ϵ [0, T] in R+

4 .
From the equation, we can write as follows:

da

dt
� θ1βna − α1a,

⟹
da

a
� θ1βn − α1( dt.

(9)

Integrating both sides of the above equation, we have

ln a � θ1βndt − α1dt,

⟹ a(t) � e
θ1βndt− α1t

> 0.

(10)

Again,

ds

dt
� π1α1a − δs. (11)

Since a(t)> 0, tϵ[0, T] where T> 0, we can write

⟹
ds
dt
> − δs,

⟹ s(t)> e
− δt+ξ > 0,

(12)

where ξ is an arbitrary constant.

Nutrients n

Dissolved Oxygen c

Detritus sAlgae a

q

α0n

π0δs

β1na

θ1β1na
α1a

π1α1a

δs

qc

α2c

ηa

δ1s

Figure 1: A diagram that shows the fow of the factors in eutrophic water bodies.
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Now,

dn
dt

� q + π0δs − α0n − β1na. (13)

As a(t)> 0, s(t)> 0, tϵ[0, T] where T> 0, then we can
write,

⟹
dn

dt
> α0 − β1a( dt,

⟹ n(t)> e
− α0t− β1adt

> 0.

(14)

Finally,

dc

dt
� qc − α2c + ηa − δ1S,

⟹ c(t)> e
− α2t > 0.

(15)

Tis completes the proof. □

3.2. Boundedness of State Variables

Theorem 2. If 0< π0, π1 < 1, then the state variables (cu-
mulative concentration of various nutrients, the density of
algae, and detritus) are bounded.

Proof. Adding equations (5)–(7), we have

dn

dt
+
da

dt
+
ds

dt
� q − 1 − π0( δs − α0n − 1 − θ1( na − 1 − π1( α1a

≤ q − 1 − π0( δs − α0n − 1 − π1( α1a.

(16)

Let υ � min (1 − π0)δ, α0, (1 − π1)α1  for maximum of
nutrients, algae, and detritus, 0< π0, π1 < 1

Taking the limit supremum, we get

lim
t⟶∞

Sup n(t) + a(t) + s(t){ }≤
q

υ
. (17)

Hence, the state variables nutrients, algae, and detritus
are bounded (Proved). □

3.3. Existence and Uniqueness of the Model’s Solution

Theorem 3. For all non-negative initial conditions, the so-
lutions of the system exists, and they are also unique at the
same time for all time T≥ 0.

Proof. It has been decided to follow the Lipschitz criterion
for the existence and uniqueness of a solution recommended
by the suggested theorem [22]. For the purposes of our

model, it is necessary to demonstrate that the partial de-
rivative of the system exists and that it is continuous.
Consider

f(n, a, s, c) �
dn

dt
� q + π0δs − α0n − β1na,

g(n, a, s, c) �
da

dt
� θ1βna − α1a,

h(n, a, s, c) �
ds

dt
� π1α1a − δs,

p(n, a, s, c) �
dc

dt
� qc − α2c + ηa − δ1S.

(18)

Using abovementioned system’s equation, the partial
derivative of f, g, h, p with respect to compartments n, a, s, c

are obtained as follows:
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zf

zn
� − α0 − β1a,

zf

zn




� α0 + β1a≤

q

υ
<∞,

zf

za
� − β1n,

zf

za




� β1n≤

q

υ
<∞,

zf

zs
� π0δ,

zf

zs




� π0δ ≤

q

υ
<∞,

zf

zc
� 0,

zf

zc




� 0≤

q

υ
<∞.

(19)

Again,

zg

zn
� θ1β1a,

zf

zn




� θ1β1a≤

q

υ
<∞,

zg

za
� θ1β1n − α1,

zf

za




� α1 − θ1β1n≤

q

υ
<∞,

zg

zs
� 0,

zf

zs




� 0≤

q

υ
<∞,

zg

zc
� 0,

zf

zc




� 0≤

q

υ
<∞.

(20)

Now,

zh

zn
� 0,

zh

zn




� 0≤

q

υ
<∞,

zh

za
� π1α1,

zh

za




� π1α1 ≤

q

υ
<∞,

zh

zs
� − δ,

zh

zs




� δ ≤

q

υ
<∞,

zh

zc
� 0,

zh

zc




� 0≤

q

υ
<∞.

(21)

Finally,

zp

zn
� 0,

zp

zn




� 0≤

q

υ
<∞,

zp

za
� η,

zp

zn




� η≤

q

υ
<∞,

zp

zs
� − δ1,

zp

zn




� δ1 ≤

q

υ
<∞,

zp

zc
� − α2,

zp

zn




� α2 ≤

q

υ
<∞.

(22)

According to the associated theorem [22], it is shown
that f, g, h, p is locally continuous in R+

4 and has a unique
solution since all partial derivatives exists and are
continuous. □

3.4. Equilibrium Analysis of the Model. Te mathematical
model is governed by diferential equations ((5)–(8)). Now,
for fnding the equilibrium points of the model, the fol-
lowing relations are considered:

dn

dt
 

n∗,a∗,s∗ ,c∗( )

� q + π0δs
∗

− α0n
∗

− β1n
∗
a
∗

� 0, (23)

da

dt
 

n∗ ,a∗,s∗ ,c∗( )

� θ1β1na
∗

− α1a
∗

� 0, (24)

ds

dt
 

n∗ ,a∗,s∗,c∗( )

� π1α1a
∗

− δs
∗

� 0, (25)

dc

dt
 

n∗ ,a∗,s∗,c∗( )

� qc − α2c
∗

+ ηa
∗

− δ1s
∗

� 0. (26)

From equation (24), we have a∗(θ1β1n∗ − α1) � 0

∴ a
∗

� 0 or n
∗

�
α1
θ1β1

. (27)

Substituting a∗ � 0 in equation (25), we have

s
∗

� 0. (28)

Substituting the values a∗ � 0 and s∗ � 0 in equation
(23), we have

q + 0 − α0n
∗

− 0 � 0

∴ n
∗

�
q

α0
.

(29)

Substituting the values a∗ � 0 and s∗ � 0 in equation
(26), we have

∴ c
∗

�
qc

α2
. (30)

Hence, the frst equilibrium point is

E1 n
∗
, a
∗
, s
∗
, c
∗

(  �
q

α0
, 0, 0,

qc

α2
 . (31)

Now, from equation (25), we can write

a
∗

�
δs
∗

π1α1
. (32)
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Now, for n∗ from equation (27), we have in equation
(23),

q + π0δs
∗

− α0
α1
θ1β1

  − β1
α1
θ1β1

 a
∗

� 0,

⟹ qθ1β1 − α0α1 − α1β1a
∗

+ π0θ1β1δs
∗

� 0.

(33)

Substituting the value of a∗ from (32) in the above
equation, we have

qθ1β1 − α0α1 − α1β1
δs
∗

π1α1
  + π0θ1β1δs

∗
� 0,

∴ s
∗

�
π1c
δβ1

,

(34)

where

c �
α0α1 − qθ1β1
π0π1θ1 − 1

. (35)

Putting the value of s∗ from equation (34) in (32), we get

a
∗

�
δ π1 α0α1 − qθ1β1( /β1δ π0π1θ1 − 1(  

π1α1
,

∴ a
∗

�
c

α1β1
.

(36)

Putting the values a∗ and s∗ from equations (34) and
(36), respectively, in equation (26), we have

qc − α2c
∗

+ η
α0α1 − qθ1β1

α1β1 π0π1θ1 − 1( 
  − δ1

π1 α0α1 − qθ1β1( 

β1δ π0π1θ1 − 1( 
  � 0,

⟹ c
∗

�
qc

α2
+

cσ
α1α2δβ1

,

(37)

where σ � ηδ − δ1π1α1
Hence, the other equilibrium point is

E2 n
∗
, a
∗
, s
∗
, c
∗

(  �
α1
θ1β1

,
c

α1β1
,
π1c

δc
,
qc

α2
+

cσ
α1α2δβ1

 . (38)

Case 1. E1(q/α0, 0, 0, qc/α2): Tis equilibrium point states
that algae is absent in the water resource. As detritus is
formed due to natural death of algae, which is absent, so
detritus is also absent. In this case, the concentrations of
nutrients and dissolved oxygen reach their respective
equilibrium values.

Case 2. E2(n∗, a∗, s∗, c∗): Tis equilibrium point is the most
fascinating equilibrium in which all the system variables are
present. In this case, the concentration of nutrients is less
than the concentration of nutrients in E1 because nutrients
will be utilized for the growth of algae. Here, the concen-
tration of dissolved oxygen will be less in comparison to the
abovementioned case. Here, it may also be noted that we will
get the positive values of n∗, a∗, s∗ and c∗ when α0α1 > qθ1β1,
π0π1θ1 > 1, and ηδ > δ1π1α1.

3.5. Future Status of Algae Populations. We shall determine
the future status of algae population through the use of the
next generation matrix operator R0. Tis class is taken into

consideration for the discussion in order to investigate the
behavior and dynamics of the algae compartments.

Consequently, we take

da

dt
� θ1βna − α1a. (39)

Terefore, two matrices M and D which represent the
raise and decline of algae population are M � θ1β1n∗ and
D � α1. Ten, we get

R0 �
M

D
,

⟹R0 �
θ1β1n

∗

α1
.

(40)

Now we can say that a decrease in the number of algae
will occur if θ1β1n∗ < α1, but an increase will be seen if
θ1β1n∗ > α1.

3.6. Stability Analysis of the Model. We can check the sta-
bility of diferent equilibrium points of the model by
computing the eigenvalue or applying Routh–Hurwitz cri-
terion. Here, fn(n∗, a∗, s∗, c∗) denotes the derivative of
f(n, a, s, c) with respect to n at the point (n∗, a∗, s∗, c∗) and
the rest are similar to this one. Now, the Jacobian matrix of
the model ((5)–(8)) is
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J n∗,a∗,s∗,c∗( ) �

fn n
∗
, a
∗
, s
∗
, c
∗

(  fa n
∗
, a
∗
, s
∗
, c
∗

(  fs n
∗
, a
∗
, s
∗
, c
∗

(  fc n
∗
, a
∗
, s
∗
, c
∗

( 

gn n
∗
, a
∗
, s
∗
, c
∗

(  ga n
∗
, a
∗
, s
∗
, c
∗

(  gs n
∗
, a
∗
, s
∗
, c
∗

(  gc n
∗
, a
∗
, s
∗
, c
∗

( 

hn n
∗
, a
∗
, s
∗
, c
∗

(  ha n
∗
, a
∗
, s
∗
, c
∗

(  hs n
∗
, a
∗
, s
∗
, c
∗

(  hc n
∗
, a
∗
, s
∗
, c
∗

( 

pn n
∗
, a
∗
, s
∗
, c
∗

(  pa n
∗
, a
∗
, s
∗
, c
∗

(  ps n
∗
, a
∗
, s
∗
, c
∗

(  pc n
∗
, a
∗
, s
∗
, c
∗

( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⟹ J n∗,a∗,s∗,c∗( ) �

− α0 − β1a
∗

− β1n
∗ π0δ 0

θ1β1a
∗ θ1β1n

∗
− α1 0 0

0 π1α1 − δ 0

0 η − δ1 − α2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(41)

At the equilibrium point E1(q/α0, 0, 0, qc/α2), (41)
becomes

J

E1

q

α0
, 0, 0,

qc

α3
 

�

− α0 −
β1q
α0

π0δ qc − α3

0
θ1β1q
α0

− α1 0 0

0 π1α1 − δ 0

0 η − δ1 − α2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (42)

Now, the characteristics equation of the Jacobian matrix
is

|J − λI| �

− α0 −
β1q
α0

π0δ qc − α3

0
θ1β1q
α0

− α1 0 0

0 π1α1 − δ 0

0 η − δ1 − α2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

λ 0 0 0

0 λ 0 0

0 0 λ 0

0 0 0 λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠





� 0,

⟹ α0 + λ( 
− θ1β1q
α0

+ α1 + λ (δ + λ) α2 + λ(  � 0.

(43)

∴ λ � − α0, λ � − δ, λ � − α2 and λ � − (α0α1 − θ1β1q)/α0
Hence, the eigenvalues λ � − α0, − δ, − α2, − (α0α1

− θ1β1q)/α0

Lemma 1. For α0α1 > θ1β1q, the equilibrium point
E1(q/α0, 0, 0, qc/α2) is asymptotically stable.

Proof. It is known that if the eigenvalues of the characteristic
equation at an equilibrium point of any system are negative,
then the system is considered as asymptotically stable at that
point. Te eigenvalues for the equilibrium point
E1(q/α0, 0, 0, qc/α2) are λ � − α0, − δ, − α2, − (α0α1 − θ1β1q)

/α0. Since, all the parameters used here are positive.
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Terefore, the system will be asymptotically stable if and
only if α0α1 > θ1β1q (Proved).

Now, at the equilibrium point E2(n∗, a∗, s∗, c∗), the
Jacobian (41) becomes

JE2 n∗ ,a∗,s∗,c∗( ) ��

− α0 −
α0α1 − qθ1β1
α1 π0π1θ1 − 1( 

−
α1
θ1

π0δ 0

θ1 α0α1 − qθ1β1( 

α1 π0π1θ1 − 1( 
0 0 0

0 π1α1 − δ 0

0 η − δ1 − α2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(44)

Now, the characteristics equation of the Jacobian matrix
is

|J − λI| �

− α0 −
c

α1
−
α1
θ1

π0δ 0

θ1c
α1

0 0 0

0 π1α1 − δ 0

0 η − δ1 − α2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

λ 0 0 0

0 λ 0 0

0 0 λ 0

0 0 0 λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠





� 0,

⟹ λ + α2(  α1λ
3

+ c + α0α1 + α1δ( λ2 + α1c + cδ + α0α1δ( λ + α1δc − α1δcπ0π1θ1  � 0.

(45)

Terefore,

λ � − α2,

α1λ
3

+ c + α0α1 + α1δ( λ2 + α1c + cδ + α0α1δ( λ

+ α1δc − α1δcπ0π1θ1 � 0.

(46)

Comparing the above equation with

A1λ
3

+ A2λ
2

+ A3λ + A4 � 0, (47)

we get

A1 � α1,

A2 � c + α0α1 + α1δ,

A3 � α1c + cδ + α0α1δ,

A4 � α1δc − α1δcπ0π1θ1,

A2A3 − A4A1 � α1c
2

+ δc2 + 2α0α1c δ + α1(  + α20α
2
1δ + α1δ

2
c + α21δcπ0π1θ1.

(48)

□
Lemma 2. Te equilibrium point E2(n∗, a∗, s∗, c∗) will be
asymptotically stable if and only if α0α1 > qθ1β1 and
π0π1θ1 > 1.

Proof. It is known that the Routh–Hurwitz criterion for
asymptotically stable of a dynamical system of the equation
is A1 > 0, A2 > 0 and A2A3 − A4A1/A2 > 0. Tese conditions
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are satisfed completely if and only if α0α1 > qθ1β1 and
π0π1θ1 > 1. Ten, the system at the equilibrium point
E2(n∗, a∗, s∗, c∗) is asymptotically stable (Proved). □

3.7. Characteristics of State Variables

3.7.1. Characteristics of the Concentration of Dissolved Ox-
ygen (c∗) and the Density of Algae (a∗) with respect to η.
Substituting the values of n∗ and s∗ in the model ((5)–(8)),
we have

j c
∗
, a
∗
, η(  � qc − α2c

∗
+ ηa
∗

−
δ1π1α1a

∗

δ
,

k c
∗
, a
∗
, η(  �

β1θ1a
∗
q

α0 + β1a
∗ +

π0π1α1a
∗2θ1β1

α0 + β1a
∗ − α1a

∗
,

∴
dc
∗

dη
�

zj/za
∗

(  (zj/zη)

zk/za
∗

(  (zk/zη)





zj/zc
∗

(  zj/za
∗

( 

zk/zc
∗

(  zk/za
∗

( 





�
zj/za

∗
(  · (zk/zη) − (zj/zη) · zk/za

∗
( 

zj/za
∗

(  · zk/za
∗

(  − zj/za
∗

(  · zk/za
∗

( 
.

(49)

Here, (zj/za∗) � η − δ1π1α1/δ, (zj/zc∗) �

− α2, (zk/zc∗) � 0, (zj/zη) � a∗, (zk/zη) � 0,

zk

za
∗ �

α0 + β1a
∗

( β1θ1q − β1
2θ1qa

∗

α0 + β1a
∗

( 
2 +

α0 + β1a
∗

( π0π1α12a
∗θ1β1 − π0π1α1a

∗2θ1β1
2

α0 + β1a
∗

( 
2 − α1

·
zj

za
∗ ·

zk

zη
−

zj

zη
·

zk

za
∗

� − a
∗ α0 + β1a

∗
( β1θ1q − β1

2θ1qa
∗

α0 + β1a
∗

( 
2 +

α0 + β1a
∗

( π0π1α12a
∗θ1β1 − π0π1α1a

∗2θ1β1
2

α0 + β1a
∗

( 
2 − α1

⎧⎨

⎩

⎫⎬

⎭,

(50)

and now, the denominator of (dc∗/dη) is as follows:

zj

zc
∗ ·

zk

za
∗ −

zj

za
∗ ·

zk

zc
∗

� − α2
α0 + β1a

∗
( β1θ1q − β1

2θ1qa
∗

α0 + β1a
∗

( 
2 +

α0 + β1a
∗

( π0π1α12a
∗θ1β1 − π0π1α1a

∗2θ1β1
2

α0 + β1a
∗

( 
2 − α1

⎧⎨

⎩

⎫⎬

⎭

� X.

(51)
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Terefore,

dc
∗

dη
�

a
∗

α2
> 0. (52)

Here, the change is positive which shows a proportional
relation.

Terefore, when the growth rate of dissolved oxygen due
to algae (η) increases, the concentration of dissolved oxygen
also increases which is shown in Figure 2(b).

Again,

da
∗

dη
�

(zj/zη) zj/zc
∗

( 

(zk/zη) zk/zc
∗

( 





zj/zc
∗

(  zj/za
∗

( 

zk/zc
∗

(  zk/za
∗

( 





�
zj/zc
∗

(  · (zk/zη) − (zj/zη) · zk/zc
∗

( 

zj/zc
∗

(  · zk/za
∗

(  − zj/za
∗

(  · zk/zc
∗

( 
.

(53)

Now,

zj

zc
∗ ·

zk

zη
−

zj

zη
·

zk

zc
∗ � 0.a

∗
+ 0.α2

� 0,

(54)

and the denominator of (da∗/dη) has been already calcu-
lated in (52)

∴
da
∗

dη
� 0. (55)

Tere is no change of the density of algae.
Terefore, when the growth rate of dissolved oxygen due

to η increases or decreases, there will be no change in the
density of algae.

Now using (25), we obtain

π1α1
da
∗

dη
� δ

ds
∗

dη
⟹

ds
∗

dη
� 0; ∵

da
∗

dη
� 0 . (56)

Tere is no change of detritus.
Terefore, when the growth rate of dissolved oxygen due

to algae (η) increases, there would be no change in detritus.
And from (23),

π0δ
ds
∗

dη
� α0

dn
∗

dη
+ β1n

da
∗

dη
+ β1a

dn
∗

dη
⟹

dn
∗

dη
� 0. (57)

Tere is no change of nutrient.
Terefore, when the growth rate of dissolved oxygen due

to algae (η) increases, there would be no change in nutrient.

3.7.2. Characteristics of the Concentration of Dissolved Ox-
ygen (c∗) and the Density of Algae (a∗) with respect to q.

j c
∗
, a
∗
, q(  � qc − α2c

∗
+ ηa
∗

−
δ1π1α1a

∗

δ
,

k c
∗
, a
∗
, q(  �

β1θ1a
∗
q

α0 + β1a
∗ +

π0π1α1a
∗2θ1β1

α0 + β1a
∗ − α1a

∗
,

∴
dc
∗

dq
�

zj/za
∗

(  (zj/zq)

zk/za
∗

(  (zk/zq)





zj/zc
∗

(  zj/za
∗

( 

zk/zc
∗

(  zk/za
∗

( 





�
zj/za

∗
(  · (zk/zq) − (zj/zq) · zk/za

∗
( 

zj/zc
∗

(  · zk/za
∗

(  − zj/za
∗

(  · zk/zc
∗

( 
.

(58)

Here, (zj/za∗) � η − δ1π1α1/δ, (zj/zc∗) � − α2,
(zk/zc∗) � 0, (zj/zq) � 0, (zk/zq) � (β1θ1a∗)/(α0 + β1a∗),

zk

za
∗ �

α0 + β1a
∗

( β1θ1q − β1( 
2θ1qa

∗

α0 + β1a
∗

( 
2 +

α0 + β1a
∗

( π0π1α12a
∗θ1β1 − π0π1α1a

∗2θ1 β1( 
2

α0 + β1a
∗

( 
2 − α1. (59)

Now,

zj

za
∗ ·

zk

zq
−

zj

zq
·

zk

za
∗ � η −

δ1π1α1
δ

 
β1θ1a

∗

α0 + β1a
∗ , (60)

and the denominator of (dc∗/dq) is same as (52).
Now,

dc
∗

dq
�

η − δ1π1α1/δ( (  β1θ1a
∗/α0 + β1a

∗
( 

X
. (61)

Case 1: For δ1π1α1 > δη, (dc∗/dq)> 0.

Ten, the concentration of dissolved oxygen increases
with the increase of q.
Case 2: For δ1π1α1 < δη, (dc∗/dq)< 0

Ten, the concentration of dissolved oxygen decreases
with the increase of q. Terefore, when the rate of
discharge of nutrients from outside (q) increases, the
concentration of dissolved oxygen also increases but
after a certain period of time, the concentration of
oxygen starts decreasing due to algal bloom which has
been graphically shown in Figure 2(a).
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Figure 2: (a) Initially, a higher nutrient discharge rate leads to higher concentration of dissolved oxygen, but over a period of time, the
reverse efect happens for water toxicity. (b) Dissolved oxygen concentration in water improves when the rate of dissolved oxygen
production by algae rises. (c) Te concentration of dissolved oxygen is negatively proportional to the rate at which algae deplete. (d)
Monotonically raising dissolved oxygen concentrations are favorably impacted by various sources of dissolved oxygen.
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Again,

da
∗

dq
�

(zj/zq) zj/zc
∗

( 

(zk/zq) zk/zc
∗

( 





zj/zc
∗

(  zj/za
∗

( 

zk/zc
∗

(  zk/za
∗

( 





�
zj/zc
∗

(  · (zk/zq) − (zj/zq) · zk/zc
∗

( 

zj/zc
∗

(  · zk/za
∗

(  − zj/za
∗

(  · zk/zc
∗

( 
,

zj

zc
∗ ·

zk

zq
−

zj

zq
·

zk

zc
∗ � α2

β1θ1a
∗

α0 + β1a
∗

(62)

and the denominator of (da∗/dq) has already been calcu-
lated in (52).

Ten,

da
∗

dq
�

β1θ1a
∗ α0 + β1a

∗
( 

2α0α1β1a
∗ 1 − π0π1θ1(  + β21a

∗2α1 1 − π0π1θ1(  + α0 α0α1 − qβ1θ1(  

. (63)

So,
da
∗

dq
�
β1θ1a

∗ α0 + β1a
∗

( 

ξ
, (64)

where ξ � 2α0α1β1a∗(1 − π0π1θ1) + β21a
∗2α1 (1 − π0π1θ1)

+ α0(α0α1 − qβ1θ1)}. Here, the change is positive
for α0(α0α1 − qβ1θ1)> (π0π1θ1 − 1)[β1a∗α1(2α0 + β1a∗)]
which shows a proportional relation. Terefore, the rate of
discharge of nutrient from outside (q) increases, and the
density of algae also increases (see the Figure 3(b)).

Now using (25), we obtain

π1α1
da
∗

dq
� δ

ds
∗

dq
,

⟹
ds
∗

dq
�
π1α1β1θ1a

∗ α0 + β1a
∗

( 

ξ
> 0,

(65)

(using the same condition described at subsection 3.7.2).
Here, the change is positive which shows a proportional

relation. Terefore, the rate of discharge of nutrient from

outside (q) increases, and the density of detritus also in-
creases which is shown in Figure 4(a). And from (23),

π0δ
ds
∗

dq
� α0

dn
∗

dq
+ β1n

da
∗

dq
+ β1a

dn
∗

dq
,

⟹
dn
∗

dq
�
π0π1α1α2β1θ1a

∗

α0 + β1a
∗

( 
2 +

β1
2
nθ1a
∗

ξ
,

∴
dn
∗

dq
> 0,

(66)

(using the same condition described at subsection 3.7.2).
Here, the change is positive which shows a proportional

relation. Terefore, when the rate of discharge of nutrient
from outside (q) increases, and the density of nutrients also
increases (see Figure 5(a)).

3.7.3. Characteristics of the Concentration of Dissolved Ox-
ygen (c∗) and the Density of Algae (a∗) with respect to qc.

j c
∗
, a
∗
, qc(  � qc − α2c

∗
+ ηa
∗

−
δ1π1α1a

∗

δ
,

k c
∗
, a
∗
, qc(  �

β1θ1a
∗
q

α0 + β1a
∗ +

π0π1α1a
∗2θ1β1

α0 + β1a
∗ − α1a

∗
,

dc
∗

dqc

�

zj/za
∗

(  zj/zqc( 

zk/za
∗

(  zk/zqc( 





zj/zc
∗

(  zj/za
∗

( 

zk/zc
∗

(  zk/za
∗

( 





�
zj/za

∗
(  · zk/zqc(  − zj/zqc(  · zk/za

∗
( 

zj/zc
∗

(  · zk/za
∗

(  − zj/za
∗

(  · zk/zc
∗

( 
.

(67)
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Here, (zj/za∗) � η − δ1π1α1/δ, (zj/zc∗) � − α2,
(zk/zc∗) � 0, (zj/zqc) � 1 , (zk/zqc) � 0,

zk

za
∗ �

α0 + β1a
∗

( β1θ1q − β1
2θ1qa

∗

α0 + β1a
∗

( 
2 +

α0 + β1a
∗

( π0π1α12a
∗θ1β1 − π0π1α1a

∗2θ1β1
2

α0 + β1a
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Now,
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Terefore,
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∗
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α2

,

∴
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�
1
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> 0.

(70)

Here, the change is positive which shows a proportional
relation.

Terefore, if the growth rate of dissolved oxygen (qc)

increases, the concentration of dissolved oxygen also in-
creases which is shown in Figure 2(d).

Again,
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Here,
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(72)

Here, there is no change of the density of algae.
Terefore, if the growth rate of dissolved oxygen (qc)

increases or decreases, there would be no change in the
density of algae.

Now using (25), we get
π1α1a∗ � δs∗⟹ (ds∗/dqc) � 0; [∵(da∗/dqc) � 0]

Here, there is no change of detritus.

Terefore, the growth rate of dissolved oxygen (qc)

increases, and there would be no change in detritus. And
from (23),
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,⟹
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∗
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� 0. (73)

Here, there is no change of nutrient.
Terefore, if the growth rate of dissolved oxygen (qc)

increases, there would be no change in nutrient.

3.7.4. Characteristics of the Concentration of Dissolved Ox-
ygen (c∗) and the Density of Algae (a∗) with respect to α1
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Figure 3: (a)Temore algae are depleted, the less the density of algae can rise. (b)Te rate of discharged nutrients has a favorable impact on
the population of algae, which is monotonously expanding. (c) Algae get denser as their growth rate due to nutrients goes up.
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Terefore,
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Case: Here, π0π1a
∗θ1β1 < α0 + β1a∗. So, using the

previous condition, (dc∗/dα1)< 0.

Here, the change is negative which shows an inversely
proportional relation.

Terefore, if the depletion rate of algae α1 increases, the
concentration of dissolved oxygen decreases (see
Figure 2(c)).

Again,
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Figure 4: (a) When nutrient discharge rates are increased, detritus density is also enhanced. (b) Detritus is denser when algae are growing
more rapidly. (c) Te rate at which algae consume detritus is inversely related to the density of detritus in the environment. (d) When algae
are depleted at a more natural rate, more density of detritus accumulates.
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(using the same condition described at subsection 3.7.2).
Here, the change is negative which shows an inversely

proportional relation.

Terefore, if the depletion rate of algae (α1) increases,
the density of algae decreases (see Figure 3(a)). Now using
(25), we obtain
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(using the same condition described at subsection 3.7.2).
Here, the change is positive which shows a proportional

relation.

Terefore, if the depletion rate of algae (α1) increases,
the density of detritus also increases, which is shown in
Figure 4(d).
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Figure 5: (a) More nutrient fow increases nutrient concentration; however, after a while, algal population begins to consume nutrients and
lowers the concentration. (b) Concentration of nutrients decreases less with the higher depletion rate of algae.
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And from (23),
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Here, the change is positive which shows a proportional
relation.

Terefore, if the depletion rate of algae (α1) increases,
the concentration of nutrient also slightly increases (see
Figure 5(b)).

3.8. Numerical Results and Discussion. To analyze the efects
of algal bloom on the depletion of dissolved oxygen in water
bodies, the model have been numerically solved for the
values of parameters which are used in this simulation from
Table 1 which is related to the work of Misra [23].

Te initial value of the concentration of nutrients (n) is
1mg/litre, the density of algae (a) is 1mg/litre, the density of
detritus (s) is 1mg/litre, and the concentration of dissolved
oxygen (c) is 15mg/litre, which are considered according to
the work of Misra [23]. We have used MATLAB(R2018a) to
fnd the result of the model by the Runge–Kutta method.Te
table containing the values of the parameters is given in this
section. While calculating the numerical result, we have
considered the time period t from 0 to 100 days because in
this time interval we have found signifcant changes of our
dynamical system. On the other hand, in some related works
[17, 18, 23], the numerical results were calculated for 90 days
or 120 days. However, 100 days are taken for illustrating the
situation.

In Figure 2(a), the behavior of the concentration of
dissolved oxygen for diferent values of the rate of discharge
of nutrients q with respect to time (t) has been discussed.Te
values of q were taken 0.5, 0.8, and 1, respectively. It is clear
from the graph that the concentration of dissolved oxygen
has been increased gradually with respect to time. When the
nutrient is discharged to the water body, it increases the
amount of dissolved oxygen. Te amount of dissolved ox-
ygen is increasing for around 40 days as shown in the fgure
and after that it started to decrease because when algae and
other plants die, a huge amount of oxygen is used to de-
compose the dead plant and algae. Tese three curves met at
a point and after that it started to decrease. When q � 0.8,
dissolved oxygen increases rapidly in comparison with
q � 0.5, and after a certain period of time, it also decreases
rapidly. Similarly, when q � 1, dissolved oxygen has been
increased sharply in comparison with q � 0.8, and after
a certain period of time, it has been decreased rapidly.

Hence, if the value of the rate of discharge of nutrients
increases, then the concentration of dissolved oxygen de-
creases. After a certain period, the water bodies
become toxic.

Te variation of the concentration of dissolved oxygen
for diferent values of the increasing rate of dissolved oxygen
due to algae η with respect to time (t) is depicted in
Figure 2(b). Tree values of η have been taken in order to
discuss. For η � 0.08, it is simple to understand that algae
will contribute some amount of oxygen into the system
which compels the curve in going upward. But after a certain
period of time, it will start to decrease when increasing the
rate η of dissolved oxygen due to algae is less or equal to 0.02.
Because when algae will start to be produced more, then it
will cause algal bloom and there will be shortage of dissolved
oxygen in water bodies. A huge amount of oxygen is used to
decompose the dead plant and algae. In both cases, η � 0.05
and η � 0.02, and the concentration of dissolved oxygen has
been acted the same way, although in lesser quantities as the
value of η is being decreased. Consequently, the concen-
tration of dissolved oxygen grows together with the rate of
dissolved oxygen owing to algae.

Figure 2(c) shows the fuctuation of the concentration of
dissolved oxygen for various values of the rate of algae α1
degradation with respect to time (t). With the increase of the
depletion rate of algae, the amount of dissolved oxygen in
water bodies decreases. Te more the depletion rate of algae
increases, the more the concentration of dissolved oxygen
decreases because to decompose algae a huge amount of
oxygen is used. For this reason, when the depletion rate is
smaller, the dissolved oxygen increases. In short, the con-
centration of dissolved oxygen is inversely proportional to
the depletion rate of algae.

Figure 2(d) depicts the time-dependent behavior of
dissolved oxygen concentration for a variety of rising dis-
solved oxygen rates qc. It is normal that if the increasing rate
of dissolved oxygen by various sources increases, then the
amount of dissolved oxygen in water bodies will also in-
crease. Oxygen can be produced in many ways, including
from photosynthesis by aquatic plants or it can be increased
by difusion of oxygen into the water bodies. Tese are the
various sources that results in the increasing concentration
of dissolved oxygen. As a result, the dissolved oxygen
concentration rises as the rate at which it is released from
diferent sources increases.

Te variation of the density of algae is shown for dif-
ferent values α1 � 0.025, α1 � 0.050, and α1 � 0.075 with
respect to time in Figure 3(a). If the depletion rate of algae is
greater, the density of algae will not increase so much faster.
For α1 � 0.050 and α1 � 0.075, the time for increasing the
density of algae is 50 days and 25 days, respectively, and after
that, it will be balanced and behaved like a straight line
parallel to the horizontal axis. Te curve for α1 � 0.025 also
behaves in the same way.

Hence, if the depletion rate of algae increases, the density
of algae will decrease gradually.
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At the same time, Figure 3(b) illustrates the fuctuation
in the algae density with respect to time for various values of
q � 0.5, q � 0.8, and q � 1. If the concentration of the dis-
charge of nutrients increases, the density of algae will also
increase rapidly.

So, if the concentration of discharge of nutrients in-
creases, then the density of algae increases rapidly and causes
algal bloom.

Similarly, Figure 3(c) helps us to know that the density of
algae increases when the values of θ1 improves. So, there is
no doubt to say that the density of algae is directly pro-
portional to θ1.

Terefore, the change in Figure 3(a) is inversely
proportional, where Figures 3(b) and 3(c) show com-
pletely diferent behavior with their corresponding pa-
rameters. A complete idea on algae has been generated in
Figure 3.

In Figure 4(a), we have discussed the variation of the
density of detritus s for diferent values of the rate of dis-
charge of nutrients q with respect to time t. We took the
values q � 0.5, q � 0.8, and q � 1 which makes a change in
the graph. Te density of detritus increases gradually with
respect to time, as we can see from the fgure that the amount
of detritus is increasing.When algae and other plants die, the
density of detritus increases. When q � 0.8, the density of
detritus increases rapidly in comparison with q � 0.5.
Similarly, when q � 1, the density of detritus increases
rapidly in comparison with q � 0.8.

Te behavior of the density of detritus for diferent
values of the growth rate of detritus due to algae π1 with
respect to time t is shown in Figure 4(b). For increasing
values of π1, s is increasing.

Figure 4(c) shows the change of the density of detritus
for diferent values of the depletion rate of detritus due to
decomposing δ with respect to time t. For increasing values
of δ, s is decreasing.

Figure 4(d) behaves in the same way as Figure 4(b) does.
Te variation of the density of detritus s increases with the
increasing values of the natural depletion rate of algae α1.

Te density of detritus are increased for increment of the
rate of discharge of nutrients, growth rate of detritus due to
algae, and natural depletion rate of algae (see Figures 4(a),
4(b), 4(d)). But opposite behavior of detritus is shown for δ
which is presented in Figure 4(c) because δ is the depletion
rate of detritus due to decomposing.

Lastly Figure 5(a) shows the change of the concentration
of nutrients n for diferent values of the cumulative rate of
discharge of nutrients q. When the values of q increases, n

starts to increase at the initial phase but after a certain period
of time, it starts to decrease drastically and comes to its
lowest value over the time period. It decreases because the
algal population starts to increase by consuming nutrients
more and more.

In Figure 5(b), variation of the concentration of nutri-
ents n for diferent values of the natural depletion rate of
algae α1 has been discussed. It has been observed that the
value of n goes down with respect to α1, but when α1 is
higher, the decreased rate of n is lower.

Now, some interesting results have been presented here
with the help of Figure 6. When algae start to be produced
more, then it will cause algal bloom and there will be
shortage of dissolved oxygen in water bodies (Figure 6(a)).
Moreover, a huge amount of oxygen will be used to de-
compose the dead plant and algae. Observing critically
Figure 6(b), the deletion of nutrients will produce algae.
When the density of algae cross a level (14.5mg/litre), the
direction of dissolved oxygen is downward. For throwing of
detritus (>1.0mg/litre) in water bodies, the nutrients will be
decreased (Figure 6(d)) as well as the density of algae will be
produced slowly, and crossing the level (12.75mg/litre) is
a barrier of increment of dissolved oxygen (Figure 6(c)).

Table 1: Parameter values and their descriptions.

Sl. nos. Descriptions
of the parameter Notation Values

1 Rate of discharge of nutrients q 0.5mgl− 1day− 1

2 Natural depletion rate of nutrients α0 0.005 day− 1

3 Natural depletion rate of algae α1 0.025 day− 1

4 Natural depletion rate of dissolved oxygen α2 0.01 day− 1

5 Depletion rate of nutrients due to algae β1 0.4mg− 1lday− 1

6 Growth rate of nutrients due to detritus π0 0.02
7 Growth rate of detritus due to algae π1 0.9
8 Depletion rate of detritus due to decomposing δ 0.04 day− 1

9 Depletion rate of dissolved oxygen due to detritus δ1 0.06 day− 1

10 Growth rate of algae due to nutrients θ1 0.9
11 Increasing rate of dissolved oxygen due to algae η 0.02 day− 1

12 Increasing rate of dissolved oxygen by various sources qc 0.2mgl− 1day− 1
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Figure 6: (a) Initially, the growth of density of algae increases the concentration of dissolve oxygen but after times, it decreases. (b) Density
of algae grows when nutrients are depleted, yet released oxygen falls and then rises again at some point and falls again. (c) Density of oxygen
and oxygen dissolved increases with detritus growth although after a period, it reduces the oxygen concentration. (d)Te increase of detritus
causes a diminishing of the available nutrients.
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4. Conclusion

In water bodies, to get the rapid growth of algae as well as
dissolved oxygen, maximum detritus is 1.0mg/litre. How-
ever, more detritus (>4.7mg/litre) are harmful for the
production of dissolved oxygen in water bodies. Besides,
analysis of the model shows that the equilibrium level of
dissolved oxygen decreases if the rate of concentration of
nutrients increases which results in algal bloom. It is shown
both numerically and graphically in our analysis that de-
pletion of the concentration dissolved oxygen in water
bodies is caused by algal bloom. From our analysis, it is
evident that a huge amount of nutrient is discharged from
various mills, industries, and factories, which is alarming for
the humanity as well as the environment. If this continues,
there will be a huge loss economically as well as environ-
mentally. Humans and animal life will also sufer from
various water contaminated diseases. Terefore, raising
public awareness is a much needed step to control this rising
problem.Wewish to fnd the optimal solution to control this
problem in the extended version of our research work too.
So, it is concluded that the regulatory system of our study
will save water from being polluted.
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