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In this paper, we consider positive steady-state solutions of a cross-difusions prey-predator model with Holling type II functional
response. We investigate sufcient conditions for the existence and the nonexistence of nonconstant positive steady state so-
lutions. It is observed that nonconstant positive steady states do not exist with small cross-difusion coefcients, and the constant
positive steady state is global asymptotically stable without cross-difusion. Furthermore, we show that if natural difusion
coefcient or cross-difusion coefcient of the predator is large enough and other difusion coefcients are fxed, then under some
conditions, at least one nonconstant positive steady state exists.

1. Introduction

In recent years, many researchers have studied population
models with cross-difusion terms [1–9]. Let u and v rep-
resent the densities of the prey and predator, respectively. A
general partial diferential prey-predator system with cross-
difusion is of the form [10]

ut − ∇ k11(u, v)∇u + k12(u, v)∇v( 􏼁 � ϕ(u) − p(u)v,

vt − ∇ k21(u, v)∇u + k22(u, v)∇v( 􏼁 � ψ(v) + cp(u)v,
􏼨

(1)

where K11, K22 and K12, K21 embody the difusion and
cross-difusion processes, respectively, ϕ(u) and ψ(v)

represent the self-growth of the two species, and p(u) is the
predator functional response, see [3, 6, 8, 11, 12]. Among
many possible choices of p(u), the Holling type II functional
response is the most commonly used in the ecological lit-
erature, which is defned by

p(u) �
u

1 + mu
, (2)

where m is a positive constant measuring the ability of
a generic predator to kill and consume a generic prey.

We are interested in the changes of behavior of the
predator-prey system with cross-difusion and Holling type
II functional response. In this work, we investigate the
following predator-prey model:
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ut − d1∆ 1 + d3v( 􏼁u􏼂 􏼃 � u − ku
2

−
uv

1 + mu
, (t, x) ∈ (0,∞) ×Ω,

vt − d2∆ 1 + d4u( 􏼁v􏼂 􏼃 � −av − bv
2

+
uv

1 + mu
, (t, x) ∈ (0,∞) ×Ω,

zu

z]
�

zv

z]
� 0, (t, x) ∈ (0,∞) × zΩ,

u(0, x) � u0(x)≥ 0, v(0, x) � v0(x)≥ 0, x ∈ Ω.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

Here, the two unknown functions u(t, x) and v(t, x)

represent the spatial distribution density of the prey and
predator, respectively. Te positive constants d1, d2 are the
natural difusion coefcients, nonnegative constants d3 and
d4 are the cross-difusion coefcients, a is the death rate of
the predator, the terms −ku2 and −bv2 represent the self-
limitation for the prey and predator, k and b are the positive
constants, Ω is a bounded domain with smooth boundary
zΩ, ] is the outward unit normal vector on zΩ, and we
impose a homogeneous Neumann-type boundary condition,
which implies that system (3) is a closed system and there is
no fux across the boundary zΩ. Te prey u and predator v

difuse with fux.

Ju � −d1d3u∇v − d1 + d1d3v( 􏼁∇u,

Jv � −d2d4v∇u − d2 + d2d4u( 􏼁∇v.
(4)

If d3 > 0, for the prey u, the term −d1d3u∇v of the fux is
directed towards the decreasing population density of v, and
the difusion of the predator v represents the tendency of
predator to move away from a large group of the preys. In
a certain kind of prey-predator relationships, a great number
of prey species form a huge group to protect themselves from
the attack of a predator [1, 11].

Our main concern focuses on the efects of cross-
difusion on the existence and nonexistence of non-
constant positive steady state solutions of system (3), that is
to say, the existence and nonexistence of nonconstant
positive solutions of the following strongly coupled elliptic
system.

−d1∆ 1 + d3v( 􏼁u􏼂 􏼃 � u − ku
2

−
uv

1 + mu
, x ∈ Ω,

−d2∆ 1 + d4u( 􏼁v􏼂 􏼃 � −av − bv
2

+
uv

1 + mu
, x ∈ Ω,

zu

z]
�

zv

z]
� 0, x ∈ zΩ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Wemainly discuss the efect of d2, d3, and d4 on positive
solutions of (5) by using the integral property and homotopy
invariance of the topological degree. We convert the cal-
culation of complex eigenvalues into judging the sign of
coefcients to a simple polynomial. Our results show that
system (5) has no noncontant positive steady state when

cross-difusions d3, d4 are sufciently small (even equal to
zero), while it has at least one nonconstant positive solution
if d2 or d4 is large enough.

If d3 � 0, the version of (5) with ratio-dependent
functional response [1] was studied, where the Holling
type II functional response uv/1 + mu was replaced by
uv/v + mu, it was observed that the cross-difusion could
create nonconstant positive steady states by using homotopy
invariance of the topological degree. If (d3 � d4 � 0), the
system (5) with homogeneous Dirichlet boundary condition
[12] was considered, and the existence and uniqueness of
coexistence states were proved by employing bifurcation
theory. Recently, strongly coupled elliptic systems with
cross-difusion terms have received increasing attention.
Some researchers have focused on Lotka–Volterra models
[1, 2, 4, 6, 7, 11] and the Sel’kov models [13, 14] with ho-
mogeneous Neumann boundary condition, and given the
existence of nonconstant positive steady states, while others
have also considered prey-predator models with Holling
type II functional response and homogeneous Dirichlet
boundary condition [3, 8, 9], and their main concern is the
structure of positive solutions.Tere are some other kinds of
models (refer to the above cited papers and references
therein). For the system with Holling type II functional
response and homogeneous Neumann boundary condition,
there are only a few results.

Motivated by above-cited works, we are concerned with
problem (5), which is a more difcult mathematical problem
for incorporating cross-difusion terms to both equations.
Tis paper is organized as follows: In Section 2, the upper
and lower bounds for positive solutions of (5) are estimated.
Ten, in Section 3, the nonexistence of the nonconstant
positive solutions is proved by using the integral property,
and it is observedthat the constant positive steady state is
global asymptotically stable without cross-difusion. In
Section 4, the sufcient conditions for the existence of
nonconstant positive solutions are obtained. In the last
section, we give a conclusion for the paper.

2. A Priori Estimate

In order to discuss the efect of cross-difusion on the ex-
istence of nonconstant positive solutions of system (5), we
provide a prior estimate in this section. For convenience, we
assume that the conditions ka + ma< 1 and m≤ k always
hold. We denote f(u) � (1 − ku)(1 + mu) and
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g(u) � 1/b(u/1 + mu − a). Ten, we have that f(u) is de-
creasing in [0, 1/k] and f(0) � 1, f(1/k) � 0, while g(u) is
increasing in [0, 1/k] and g(0) � −a/b. Note that
ka + ma< 1, we have g(1/k)> 0, and the problem (5) has an
unique positive constant steady-state solution, denoted by
(􏽥u, 􏽥v), which satisfes

􏽥u ∈ 0,
1
k

􏼒 􏼓, (1 − k􏽥u)(1 + m􏽥u) �
1
b

􏽥u

1 + m􏽥u
− a􏼒 􏼓,

􏽥v � (1 − k􏽥u)(1 + m􏽥u).

(6)

To obtain a priori estimate, we give a lemma frst.

Lemma 1. Let dij ∈ (0,∞), i � 1, 2, 3, 4, dij⟶ di ∈ [0,

∞], j⟶∞, u∗ and v∗ are constants. If the positive solution
(uj, vj) of (5) with di � dij uniformly converge to (u∗, v∗) on
Ω, then the following equalities hold:

1 − ku
∗

−
v
∗

1 + mu
∗ � 0,

−a − bv
∗

+
u
∗

1 + mu
∗ � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

And especially, if u∗ > 0 and v∗ > 0, then (u∗, v∗) � (􏽥u, 􏽥v).
For the sake of simplicity, a, b, m, k are denoted by Λ.

Theorem  . Suppose that (u, v) is a positive solution of (5),
D1, D2 are arbitrary fxed positive numbers, and d1, d2 ≥D1
and 0≤ d3, d4 ≤D2, then there exist two positive constants
C(Λ, D1, D2) and C(Λ, D1, D2) such that

C Λ, D1, D2( 􏼁< u(x), v(x)<C Λ, D1, D2( 􏼁, ∀x ∈ Ω.

(8)

Proof. First, we show that there exists C � C(Λ, D1, D2)> 0
such that

max
Ω

u≤Cmin
Ω

u,max
Ω

v≤Cmin
Ω

v. (9)

Let φ(x) � d1(1 + d3v)u,ψ(x) � d2(1 + d4u)v and set
φ(x1) � maxΩ φ,ψ(x2) � maxΩ ψ, by the maximum prin-
ciple [15], we have

u x1( 􏼁 − ku
2

x1( 􏼁 −
u x1( 􏼁v x1( 􏼁

1 + mu x1( 􏼁
≥ 0, −av x2( 􏼁 − bv

2
x2( 􏼁 +

u x2( 􏼁v x2( 􏼁

1 + mu x2( 􏼁
≥ 0. (10)

Ten, u(x1)≤ 1/k, v(x1)≤ 1 + mu(x1)≤ 1 + m/k; thus,

max
Ω

u≤ d
−1
1 max
Ω

φ � d
−1
1 φ x1( 􏼁≤ 1 +

d3(k + m)

k
􏼢 􏼣

1
k
≤
1 + 2d3

k
. (11)

By similar calculation, we have

v x2( 􏼁≤
1
b

u x2( 􏼁

1 + mu x2( 􏼁
<
1
b

u x2( 􏼁≤
1
b
max
Ω

u≤ 1 +
d3(k + m)

k
􏼢 􏼣

1
bk
≤
1 + 2d3

bk
, (12)

and

max
Ω

v≤ d
−1
2 max
Ω

ψ � d
−1
2 ψ x2( 􏼁≤

d4 1 + 2d3( 􏼁
2

+ k 1 + 2d3( 􏼁

bk
2 .

(13)

Due to (11) and (13), by the Lp theory and embedding
theorem regularity [16], we assert that

φ,ψ ∈ C
1+α

(Ω). (14)

Using the Schauder theory [16] again, we have

‖u, v‖C2+α ≤C Λ, D1, D2( 􏼁. (15)

Next, we want to estimate φ,ψ. Note that φ,ψ satisfy

−∆φ � 1 − ku −
v

1 + mu
􏼒 􏼓

φ
d1 1 + d3v( 􏼁

, x ∈ Ω,

−∆ψ � −1 − bv +
u

1 + mu
􏼒 􏼓

ψ
d2 1 + d4u( 􏼁

, x ∈ Ω,

zφ
z]

�
zψ
z]

� 0, x ∈ zΩ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

Set
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c1(x) � 1 − ku −
v

1 + mu
􏼒 􏼓

1
d1 1 + d3v( 􏼁

,

c2(x) � −a − bv +
u

1 + mu
􏼒 􏼓

1
d2 1 + d4u( 􏼁

.

(17)

We have

c1
����

����∞≤
d4 1 + 2d3( 􏼁

2
+ k 1 + 2d3( 􏼁 + bk

2 2 + 2d3( 􏼁

d1bk
2 , c2

����
����∞≤

1 + ma
d2m

+
d4 1 + 2d3( 􏼁

2
+ k 1 + 2d3( 􏼁

d2k
2 . (18)

Applying Harnack inequality [17], we can achieve that
there exists 􏽥C � 􏽥C(Λ, D1, D2) such that maxΩφ≤ 􏽥CminΩφ
and maxΩψ ≤ 􏽥CminΩψ. Ten,

maxΩu
minΩu
≤
maxΩφ
minΩφ

maxΩ d1 1 + d3v( 􏼁( 􏼁

minΩ d1 1 + d3v( 􏼁( 􏼁
≤C,

maxΩv
minΩv
≤
maxΩψ
minΩψ

maxΩ d2 1 + d4u( 􏼁( 􏼁

minΩ d2 1 + d4u( 􏼁( 􏼁
≤C, (19)

where C � max 1 + D2‖u‖∞, 1 + D2‖v‖∞􏼈 􏼉􏽥C. From those
argument, (9) holds.

Now, we prove (8) by contradiction. Suppose there exist
a sequence d1j, d2j, d3j, d4j􏽮 􏽯

∞
j�1 which satisfes

d1j, d2j ≥D1, 0≤ d3j, d4j ≤D2 and a sequence of corre-
sponding positive solutions (uj, vj) of (5) with
(d1, d2, d3, d4) � (d1j, d2j, d3j, d4j), such that

min
Ω

uj⟶ 0, or min
Ω

vj⟶ 0, as j⟶∞. (20)

Note that d1j, d2j ≥D1 and 0≤d3j, d4j ≤D2, and there
are subsequences, denoted by themselves, satisfying
dij⟶ di ∈ [D1,∞] for i � 1, 2 and dij⟶ di ∈ [0, D2] for
i � 3, 4. Taking into account of (15), we may assume that
(uj, vj)⟶ (u, v) in [C2+α(Ω)]2. Obviously, u, v are non-
negative, satisfying the estimate (15) and we obtain

min
Ω

u � 0, or min
Ω

v � 0. (21)

Moreover, if d1, d2 <∞, then we obtain (u, v) satisfes
(5). If d1 �∞, note that (uj, vj) satisfes (15), and then,
(u, v) satisfes ∆(1 + d3v)u � 0 in Ω and zu/z] � 0 on zΩ.
Tus, (1 + d3v)u≥ 0 is a constant. Similar conclusion holds
for d2.

We next give contradictions for each possible case.

Step 1. Te case d1, d2 <∞.
If minΩu � 0, it is followed that u � 0 on Ω by (9). In
that case, v satisfes

−d2∆v � −av − bv
2
, x ∈ Ω,

zv

z]
� 0, x ∈ zΩ.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(22)

By using the strong maximum principle and Hopf
boundary lemma [16], we have v � 0 on Ω. Terefore,
(uj, vj)⟶ (0, 0), which is contradictory to lemma 1.
So, minΩu> 0.
Similarly, if minΩv � 0, then v � 0 onΩ. And u satisfes

−d1Δu � u − ku
2
, x ∈ Ω,

zu

z]
� 0, x ∈ zΩ.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(23)

We can see that u � 1/k. So, we see that
(uj, vj)⟶ (1/k, 0). Note that ma + ka< 1, and it is
contradictory to lemma 1. So, minΩv> 0.
Step 2. Te cases d1 �∞ or d2 �∞.
Note that (uj, vj) satisfes

􏽚
Ω

uj − ku
2
j􏼐 􏼑dx � 􏽚

Ω

ujvj

1 + muj

dx,

􏽚
Ω

avj + bv
2
j􏼐 􏼑dx � 􏽚

Ω

ujvj

1 + muj

dx.

(24)

We obtain that

􏽚
Ω

u − ku
2

􏼐 􏼑dx � 􏽚
Ω

uv

1 + mu
dx,

􏽚
Ω

av + bv
2

􏼐 􏼑dx � 􏽚
Ω

uv

1 + mu
dx.

(25)

(1): d1 �∞. We can see that (1 + d3v)u � C1 is
a nonnegative constant. If C1 � 0, then u � 0. Taking
into account of (25), we obtain v � 0. Hence,
(uj, vj)⟶ (0, 0). Tis is a contradiction to lemma 1.
So, C1 > 0.
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(1a): d2 <∞. Let

􏽢vj �
vj

vj

�����

�����∞

. (26)

Ten, uj, vj, 􏽢vj satisfy

−d2∆ 1 + d4uj􏼐 􏼑􏽢vj􏽨 􏽩 � −a􏽢vj − bvj􏽢vj +
uj􏽢vj

1 + muj

, x ∈ Ω,

z􏽢vj

z]
� 0, x ∈ zΩ.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(27)

Similarly, there exists a subsequence of 􏽢vj􏽮 􏽯, denoted by
itself, such that 􏽢vj⟶ 􏽢v in [C2+α(Ω)]2, where 􏽢v is
nonnegative and ‖􏽢v‖∞ � 1.
If limj⟶∞‖vj‖∞≥ δ > 0, then we can see that u, v, 􏽢v

satisfy

−d2∆ 1 + d4u( 􏼁􏽢v􏼂 􏼃 + a􏽢v + bv􏽢v �
u􏽢v

1 + mu
, x ∈ Ω,

z􏽢v

z]
� 0, x ∈ zΩ.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(28)

Because min Ω􏽢v � 0, it follows that (1 + d4u)􏽢v � 0; so,
􏽢v � 0. Tis is contradictory to ‖􏽢v‖∞ � 1.
If limj⟶∞‖vj‖∞ � 0, then v � 0, u � C1, and from
lemma 1, C1 satisfes

1 − kC1 � 0, x ∈ Ω,

−a +
C1

1 + mC1
� 0, x ∈ zΩ.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(29)

Tis contradicts ma + ka< 1
(1b): d2 �∞. It is obvious that (1 + d4u)v � C2, here
C2 ≥ 0. Taking into account min Ωv � 0, (11), and
0≤d3, d4 ≤D2, we arrive at C2 � 0 and v � 0, so u � C1
and (uj, vj)⟶ (C1, 0). Note that ma + ka< 1, and we
see that it contradicts lemma 1.
(2): d1 <∞. In this case, we claim that u> 0 on Ω. In
truth, u � 0 can follow from min Ωu � 0 by (9). Note
that from (25), we can see that v � 0. Tis contradicts
lemma 1.

(2a): d2 �∞. Similar to case (1b), we obtain v � 0 and
u � C1. We can also obtain a contradiction by lemma 1.
Te proof is complete. □

3. The Nonexistence of Nonconstant
Positive Solutions

In this section, we will use the properties of integrals as in [5]
to obtainTeorem 3, which describes the nonexistence of the
nonconstant positive solution of the system (5) on some
conditions. Especially, if d3 � d4 � 0, then we can use the
method as in [18] to prove that the constant positive steady
state (􏽥u, 􏽥v) of the following developing system is global
asymptotically stable.

ut − d1Δu � u − ku
2

−
uv

1 + mu
, x ∈ Ω, t> 0,

vt − d2Δv � −av − bv
2

+
uv

1 + mu
, x ∈ Ω, t> 0,

zu

z]
�

zv

z]
� 0, x ∈ zΩ, t> 0,

u(0, x) � u0(x)≥ 0, v(0, x) � v0(x)≥ 0, x ∈ Ω.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

As a consequence, problem (5) with d3 � d4 � 0 has no
nonconstant positive solutions.

Theorem 3. Let D be a positive constant, and there exist C1
and C2 that depend on Λ and D. Te system (5) has no
nonconstant positive solution when d1 >C1, d2 >C2 and
0≤d3, d4 ≤D.

Proof. Let (u, v) be a nonconstant positive solution of
system (5), and g∗ � 1/|Ω|􏽒ωgdx. We denote

h1(u, v) � u − ku
2

−
uv

1 + mu
,

h2(u, v) � −av − bv
2

+
uv

1 + mu
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(31)

Multiplying (u − u∗) on both sides of h1(u, v) and in-
tegrating on Ω, we obtain

􏽚
Ω

d1 1 + d3v( 􏼁|∇u|
2

+ d1d3u∇u · ∇v􏼐 􏼑dx

� 􏽚
Ω

h1(u, v) u − u
∗

( 􏼁dx

� 􏽚
Ω

h1(u, v) − h1 u
∗
, v( 􏼁( 􏼁 + h1 u

∗
, v( 􏼁 − h1 u

∗
, v
∗

( 􏼁( 􏼁􏼂 􏼃 u − u
∗

( 􏼁dx

� 􏽚
Ω

1 − k u + u
∗

( 􏼁 −
v

(1 + mu) 1 + mu∗( 􏼁
􏼢 􏼣 u − u

∗
( 􏼁

2
−

u
∗

u − u
∗

( 􏼁 v − v
∗

( 􏼁

1 + mu∗
􏼨 􏼩dx.

(32)
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Analogously, multiplying (v − v∗) on both sides of
h2(u, v) and integrating on Ω, we have

􏽚
Ω

d2 1 + d4u( 􏼁|∇v|
2

+ d2d4v∇u · ∇v􏼐 􏼑dx

� 􏽚
Ω

v u − u
∗

( 􏼁 v − v
∗

( 􏼁

(1 + mu) 1 + mu∗( 􏼁
− a + b v + v

∗
( 􏼁 −

u
∗

1 + mu∗
􏼠 􏼡 v − v

∗
( 􏼁

2
􏼨 􏼩dx.

(33)

Adding the above two expressions, we obtain

􏽚
Ω

d1 1 + d3v( 􏼁|∇u|
2

+ d2 1 + d4u( 􏼁|∇v|
2

+ d1d3u∇u · ∇v + d2d4v∇u · ∇v􏽮 􏽯dx

� 􏽚
Ω

1 − k u + u
∗

( 􏼁 −
v

(1 + mu) 1 + mu∗( 􏼁
􏼢 􏼣 u − u

∗
( 􏼁

2

+
v

(1 + mu) 1 + mu∗( 􏼁
−

u
∗

1 + mu∗
􏼢 􏼣 u − u

∗
( 􏼁 v − v

∗
( 􏼁 − a + b v + v

∗
( 􏼁 −

u
∗

1 + mu∗
􏼠 􏼡 v − v

∗
( 􏼁

2
dx

≤􏽚
Ω

1 − k u + u
∗

( 􏼁 +
u
∗

1 + mu∗
􏼢 􏼣 u − u

∗
( 􏼁

2

− a + b v + v
∗

( 􏼁 −
2u
∗

1 + mu∗
−

v

(1 + mu) 1 + mu∗( 􏼁
􏼢 􏼣 v − v

∗
( 􏼁

2
dx.

(34)

Taking into account of (11) and (15), we have

1 − k u + u
∗

( 􏼁 +
u
∗

1 + mu∗

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ 2 + 2d3 +

1
m

,

a + b v + v
∗

( 􏼁 −
2u
∗

1 + mu∗
−

v

(1 + mu) 1 + mu∗( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ a +

2
m

+(2b + 1)
d4 1 + 2d3( 􏼁

2
+ k 1 + 2d3( 􏼁

bk
2 .

(35)

Denote

􏽥C1 �
1
λ1

2 + 2D +
1
m

􏼒 􏼓,

􏽥C2 �
1
λ1

a +
2
m

+(2b + 1)
D(1 + 2D)

2
+ k(1 + 2D)

bk
2􏼢 􏼣.

(36)

From Teorem 2, ε − Young inequality and Poincar é
inequality [19], we have
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􏽚
Ω

d1|∇u|
2

+ d2|∇v|
2

􏽮 􏽯dx

≤􏽚
Ω

􏽥C1λ1 u − u
∗

( 􏼁
2

+ 􏽥C2λ1 v − v
∗

( 􏼁
2

+ d1ε|∇u|
2

+
d
2
3u

2

4ε
|∇v|

2
+ d2ε|∇v|

2
+

d
2
4v

2

4ε
|∇u|

2
􏼨 􏼩dx

≤􏽚
Ω

􏽥C1|∇u|
2

+ 􏽥C2|∇v|
2

+ d1ε|∇u|
2

+
d
2
3u

2

4ε
|∇v|

2
+ d2ε|∇v|

2
+

d
2
4v

2

4ε
|∇u|

2
􏼨 􏼩dx.

(37)

Let ε � 1/2, then we have

􏽚
Ω

d1|∇u|
2

+ d2|∇v|
2

􏽮 􏽯dx

≤􏽚
Ω

2􏽥C1 + d
2
4v

2
􏼐 􏼑|∇u|

2
+ 2􏽥C2 + d

2
3u

2
􏼐 􏼑|∇v|

2
􏽮 􏽯dx.

(38)

Denote

C1 � 2􏽥C1 + D
2 D(1 + 2D)2 + k(1 + 2D)

bk2􏼢 􏼣

2

,

C2 � 2􏽥C2 + D
2 1 + 2D

k
􏼒 􏼓

2
.

(39)

If d1 >C1 and d2 >C2, then |∇u| � |∇v| � 0, x ∈ Ω; in
other words, u � u∗, v � v∗, x ∈ Ω. So the existence of C1, C2
makes that if d1 >C1, d2 >C2 and 0≤ d3, d4 ≤D, then the
system (5) has no nonconstant positive solutions. □

Theorem 4. If condition (1 − 4bm)􏽥u< 4b or 4mb> 1 holds,
then the constant positive steady state (􏽥u, 􏽥v) of (30) is global
asymptotically stable.

We omit the proof because it is analogous to that of
Teorem 2 in [18].

4. The Existence of Nonconstant
Positive Solutions

In this section, we shall obtain nonconstant solutions for
large d4 or for large d2 (with d4 > 0).

First, we discuss the linearized system of (5) at
􏽥Z � (􏽥u, 􏽥v). Denote Ψ(Z) � (d1(1 + d3v)u, d2(1 + d4u)v)T;
then, system (5) can be written as

−ΔΨ(Z) � G(Z),withG(Z) �

u − ku
2

−
uv

1 + mu

−av − bv
2

+
uv

1 + mu

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(40)

Applying the same method as in [18], it is obtained that

H(μ) � det Ψ−1
Z (􏽥Z)􏽮 􏽯 det μΨZ(􏽥Z) − GZ(􏽥Z)􏽮 􏽯. (41)

det Ψ−1
Z (􏽥Z)􏽮 􏽯 is positive, and

det μΨZ(􏽥Z) − GZ(􏽥Z)􏽮 􏽯 � C2μ
2

+ C1μ + C0

�
△
C d2, d3, d4; μ( 􏼁,

(42)

where

C2 � d1d2 1 + d3􏽥v + d4􏽥u( 􏼁,

C1 � d2
2km􏽥u

2
+(k − m)􏽥u

1 + m􏽥u
+ d2d4􏽥u

3km􏽥u
2

+ 2(k − m)􏽥u − 1
1 + m􏽥u

+ d1b 􏽥v + d3􏽥v
2

􏼐 􏼑 +
d1d3􏽥u􏽥v

(1 + m􏽥u)
2 ,

C0 � b􏽥v
2km􏽥u

2
+(k − m)􏽥u

1 + m􏽥u
+

􏽥u􏽥v

(1 + m􏽥u)
3 .

(43)

Next, we study the dependence of the solution for
C(d2, d3, d4; μ) � 0 on d4. We denote the solutions of
C(d2, d3, d4; μ) � 0 by 􏽥μ1(d4), 􏽥μ2(d4) with
Re􏽥μ1(d4)≤Re􏽥μ2(d4). Note that C0 > 0, and it is obvious that
􏽥μ1(d4)􏽥μ2(d4)> 0.

Consider the following limitations:

lim
d4⟶∞

C2

d4
� d1d2􏽥u �

△
a2 > 0,

lim
d4⟶∞

C1

d4
� d2􏽥u

3km􏽥u
2

+ 2(k − m)􏽥u − 1
1 + m􏽥u

�
△

a1,

lim
d4⟶∞

C0

d4
� 0.

(44)
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Tat is,

lim
d4⟶∞

C d2, d3, d4; μ( 􏼁

d4
� a2μ

2
+ a1μ � μ a2μ + a1􏼂 􏼃. (45)

If the condition,

b(2k + m)
2

+ 4ka(2k + m)< 4k, (46)

holds, we have f(1/2k)<g(1/2k), and then, 􏽥u< 1/2k.
Moreover, we can see a1 < 0, and hence, C1 < 0 when d4 is

large enough. By continuity, if d4 is large enough, then
􏽥μ1(d4)> 0 and 􏽥μ2(d4)> 0, satisfying

lim
d4⟶∞

􏽥μ1 d4( 􏼁 � 0, lim
d4⟶∞

􏽥μ2 d4( 􏼁 � −
a1

a2
�
△

􏽥μ> 0. (47)

Analogously, we consider the dependence of
C(d2, d3, d4; μ) on d2; then, we derive

lim
d2⟶∞

C2

d2
� d1 1 + d3􏽥v + d4􏽥v( 􏼁�

△
b2 > 0, lim

d2⟶∞

C0

d2
� 0,

lim
d2⟶∞

C1

d2
�
2km􏽥u

2
+(k − m)􏽥u

1 + m􏽥u
+ d4􏽥u

3km􏽥u
2

+ 2(k − m)􏽥u − 1
1 + m􏽥u

�
△

b1.

(48)

On the conditions (46) and

d4 >
2km􏽥u + k − m

−3km􏽥u
2

− 2(k − m)􏽥u + 1
, (49)

we have b1 < 0. We can obtain similar results to (47). μ1(d2)

and μ2(d2), and the solutions of C(d2, d3, d4; μ) � 0 are
positive and real for sufciently large d2, satisfying

lim
d2⟶∞

μ1 d2( 􏼁 � 0, lim
d2⟶∞

μ2 d2( 􏼁 � −
b2

b1
�
△ μ> 0. (50)

Remark 5. It is obvious that if (47) or (50) holds, then the
constant positive steady state (􏽥u, 􏽥v) for (1) is unstable.
Noting Teorem 4, we can easily see that introducing cross-
difusion can change the asymptotic behavior of solutions to
system (30).

If 􏽥μ and μ, determined by (47) and (50) respectively,
satisfy some conditions, then we can obtain the following
conclusions by using homotopy invariance of the topological
degree. We omit the proofs because they are analogous to
them of Teorem 4.1 in [20].

Theorem 6. Suppose condition (46) holds, there exists 􏽥d4 > 0;
if d4 ≥ 􏽥d4, 􏽥μ∈ (μj, μj+1) for some j≥ 2 and 􏽐

j

k�2dimE(μk) is
odd, then system (5) has at least one nonconstant positive
solution.

Theorem 7. Suppose conditions (46) and (49) hold, there
exists d2 > 0; if d2 ≥d2, μ∈ (μj, μj+1) and 􏽐

j

k�2dimE(μk) is
odd, then system (5) has at least one nonconstant positive
solution.

5. Conclusion

In this paper, we investigate a cross-difusion prey-predator
model with Holling type II functional response and homo-
geneous Neumann boundary condition and mainly discuss
the efect of d2, d3, and d4 on positive solutions of (5).
Furthermore, we fnd some interesting phenomenon of the

system (5). When cross-difusions d3 and d4 are small enough
(even equal to zero), the system (5) has no nonconstant
positive solution. When the natural difusion d2 or the cross-
difusion d4 is large enough and other difusions are fxed, the
system (5) has at least one nonconstant positive solution.Tis
shows that under certain hypotheses, cross-difusions can
create nonconstant positive steady states even though the
corresponding model without cross-difusion fails.

Tere are many ways that our model could be extended. It
may be more realistic for the variables to have species di-
versity, the cross-difusion to have diferent forms, and the
parameters to have space-dependence and/or time-
dependence. In future work, it will be of interest to explore
the impact of diferent cross-difusion rates and numerical
simulation, as in references [6–8, 21–23]. It would be in-
triguing to see how cross-difusion afects such ecosystems.
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