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Let G be a graph with V � V(G). A nonempty subset S of V is called an independent set of G if no two distinct vertices in S are
adjacent. Te union of a class {S: S is an independent set of G} and ∅{ } is denoted by I(G). For a graph H, a function
f: V⟶ I(H) is called an H− independent coloring of G (or simply called an H− coloring) if f(x)∩f(y) �∅ for any adjacent
vertices x, y ∈ V and f(V) is a class of disjoint sets. Let α(H, G) denote the maximum cardinality of the set{x∈V|f(x)|: f is an
H− coloring of G}. In this paper, we obtain basic properties of an H− coloring of G and fnd α(H, G) of some families of graphs G

and H. Furthermore, we apply them to determine the independence number of the Cartesian product of a complete graph Kn and
a graph G and prove that α(Kn□G) � α(Kn, G).

1. Introduction

In graph theory, the study of graph invariants is a worldwide
research related to a property of graphs that depends on the
abstract structure. Tis invariant property can be formalized
as a function from graphs to a class of values such that any
two isomorphic graphs have the same value. Two well-
known graph invariants or parameters are the in-
dependence number and the chromatic number of graphs
which indicate the maximum size and the minimum size of
independent sets and color sets of graphs, respectively. Teir
applications can be found in several felds such as computer
science, engineering, and optimization problems. Many
researchers study those parameters in various ways and
sometime combine their concepts together to model certain
new structures. For example, in 2011, Arumugam et al. [1]
investigated maximal independent sets in minimum col-
orings. In 2012, Wu and Hao [2] presented an efective
approach to coloring large graphs by using a preprocessing
method to extract large independent sets from the graphs. In
2016, Samanta et al. [3] introduced a new concept of coloring

of fuzzy graphs to color world political map mentioning the
strength of relationship among the countries. Later in 2020,
Mahapatra et al. [4] proposed the edge coloring of fuzzy
graphs to solve job oriented web sites and trafc light
problems. Recently, in 2022, Brešar and Štesl [5] presented
the independence coloring game of graphs and proved that
the independence game chromatic number of a tree can be
arbitrarily large. In this paper, we introduce a new parameter
of graphs, called the independent coloring, which is moti-
vated from the combination of the independence and col-
oring concepts. Moreover, prominent properties of the
independent coloring are provided. Furthermore, we apply
the result for studying the independence number of Car-
tesian product graphs. More information about other op-
erations and product of graphs can be found in [6–9].

2. Preliminaries and Notations

Troughout this paper, all graphs are considered to be fnite
and simple. Let G � (V, E) be a graph of order |V|. Two
vertices u and v are said to be adjacent, if uv ∈ E. For
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a nonempty subset S of V, the induced subgraph of G in-
duced by S, denoted by G[S], is a subgraph of G provided
that if u, v ∈ S and uv ∈ E, then uv ∈ E(G[S]), as well. A
subgraph H of G is said to be spanning if V(H) � V(G). We
remark that a graph without edges is called an empty graph.
For a non-negative integer n, we denote Kn, Cn, Pn, Wn, and
Sn to be a complete graph of order n≥ 1, a cycle of length
n≥ 0, a path of length n≥ 0, a wheel of order n≥ 4, and a star
of order n≥ 2, respectively. For other graph terminologies
and notations, we refer the reader to [10].

A set S of vertices of G is said to be an independent set of
G if no two distinct vertices in S are adjacent. Te maximum
cardinality of an independent set of G is called the in-
dependence number of G and is denoted by α(G). If S is an
independent set such that |S| � α(G), we say that S is an
α − set of G. For a positive integer n, an n− coloring of a graph
G means a surjection from V(G) to the set 1, 2, . . . , n{ } with
f(u)≠f(v) for every adjacent vertices u, v in G. Te
chromatic number χ(G) of G is defned to be the minimum
of i over all i− colorings of G, and we denote a χ(G)− coloring
of G by χ− coloring of G.

We now introduce a graph parameter. For a graph G, we
denote by I(G) the class {S: S which is an independent set
of G} ∪ ∅{ }. Let G and H be graphs with V � V(G). A
function f: V⟶ I(H) is called an H− independent
coloring of G (or simply called an H− coloring) if
f(x)∩f(y) �∅ for any adjacent vertices x, y ∈ V and
f(V) is a class of disjoint sets. An H− coloring f of G is said
to be trivial when f(x) �∅ for any vertex x ∈ V. In ad-
dition, we denote by α(H, G) the maximum cardinality of

the set {x∈V|f(x)|: f is an H − coloring of G}. If f is an
H− coloring of G such that x∈V|f(x)| � α(H, G), we say
that f is an α − H− coloring of G. It is not hard to see that
α(H, G)≥ 1. For a trivial case H � K1, we note that α(H, G)

is actually the independence number α(G) of G.

3. Independent Coloring of Graphs

We start this section by presenting the following two useful
lemmas which are referred in the proofs of other results.

Lemma 1. Let G and H be graphs and let f be anH− coloring
of G with f(V(G)) � D1, D2, . . . , Dm , where 1≤m≤
|V(H)| + 1. Ten, the following statements hold:

(1) f− 1( D{ }) is an independent set of G for each
D ∈ f(V(G))\ ∅{ }.

(2) f− 1( Di ) and f− 1( Dj ) are disjoint for i≠ j.
(3) x∈V(G)|f(x)| � 

m
i�1|Di||f

− 1( Di )|.

Proof. Let D ∈ f(V(G))\ ∅{ }. If there are adjacent vertices
x, y ∈ f− 1( D{ }), then ∅� f(x)∩f(y) � D≠∅, a contra-
diction. Hence, (1) holds. Next, we show that (2) holds. It is
clear for f(V(G)) � ∅{ }. Ten, we may assume that
f(V(G)) ≠ ∅{ }. Let Di, Dj ∈ f(V(G)) with i≠ j. If there is
a vertex v ∈ f− 1( Di )∩f− 1( Dj ), then Di � f(v) � Dj.
Terefore, ∅� Di ∩Dj � Di � Dj and this implies
f(V(G)) � ∅{ }, a contradiction. Hence, (2) holds. And this
leads to


x∈V(G)

|f(x)| � 

x∈f− 1 D1{ }( )

D1


 + 

x∈f− 1 D2{ }( )

D2


 + · · · + 

x∈f− 1 Dm{ }( )

Dm




� D1


 

x∈f− 1 D1{ }( )

1⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ + D2


 

x∈f− 1 D2{ }( )

1⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ + · · · + Dm


 

x∈f− 1 Dm{ }( )

1⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

� D1


 f
− 1

D1 ( 


 + D2


 f
− 1

D2 ( 


 + · · · + Dm


 f

− 1
Dm ( 




� 
m

i�1
Di


 f

− 1
Di ( 


,

(1)

and hence (3) holds. □

Lemma 2. Let G and H be graphs and let f be an H-coloring
of G. If g: V(H)⟶ I(G) is a function defned by

g(x) �
f

− 1
( D{ }), if  x ∈ D  for  some D ∈ f(V(G)),

∅, otherwise,

⎧⎨

⎩

(2)

for all x ∈ V(H), then the following statements hold:

(1) g is a G− coloring of H.
(2) x∈V(G)|f(x)| � x∈V(H)|g(x)|.

Proof. It is clear, by Lemma 1, that (1) holds. Let
f(V(G)) � D1, D2, . . . , Dm  where 1≤m≤ |V(H)| + 1.
Again by Lemma 1, we obtain that


x∈V(G)

|f(x)| � 
m

i�1
Di


 f

− 1
Di ( 


 � 

m

i�1
f

− 1
Di ( 


 Di




� 
m

i�1
f

− 1
Di ( 


 g

− 1
f

− 1
Di (  





� 
x∈V(H)

|g(x)|,

(3)

as required.
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We note that graphs G andH in α(H, G) can be switched
as in the following result. □

Proposition 3. Let G and H be graphs. Ten,

α(H, G) � α(G, H). (4)

Proof. Let f be an α − H − coloring of G and g be
a G − coloring of H defned in Lemma 2. Ten, by Lemma 2,
α(H, G) � x∈V(G)|f(x)| � x∈V(H)|g(x)|≤ α(G, H). Simi-
larly, α(G, H)≤ α(H, G). Hence, the equality follows. □

Proposition 4. Let G, H1, and H2 be graphs. Ten,
α(H1, G)≥ α(H2, G) if H1 is a spanning subgraph of H2.

Proof. Let f be an α − H2 − coloring of G. Defne
g: V(G)⟶ I(H1) by g(x) � f(x) for all x ∈ V(G).
Clearly, g is an H1− coloring of G. Hence,
α(H1, G)≥x∈V(G)|g(x)| � x∈V(G)|f(x)| � α(H2, G).

We now give some basic properties of an α − H− coloring
of G which are useful for describing the lower bound and the
upper bound of α(H, G). □

Lemma 5. Let G and H be graphs and f be an
α − H− coloring of G.

(1) If ∅∈f(V(G)), then f(V(G))\ ∅{ } is a partition
of V(H).

(2) If ∅ ∉ f(V(G)) and V(H)≠ ∪f(V(G)), then
α(H − ∪f(V(G)))≤minP∈f(V(G))|P|.

Proof. Assume that ∅∈f(V(G)). Let w ∈ V(G) with
f(w) �∅. We show that V(H)\∪f(V(G)) �∅. Suppose,
to the contrary, that there is a vertex v ∈ V(H)\∪f(V(G)).
Defne g: V(G)⟶ I(H) by

g(u) �
v{ }, if  u � w,

f(u), otherwise,
 (5)

for all u ∈ V(G). Obviously, g is an H− coloring of G.
However,

α(H, G) � 
x∈V(G)

|f(x)| � |f(w)| + 
x∈V(G)\ w{ }

|f(x)| � |∅| + 
x∈V(G)\ w{ }

|g(x)|

� 
x∈V(G)\ w{ }

|g(x)|< | v{ }| + 
x∈V(G)\ w{ }

|g(x)|

� |g(w)| + 
x∈V(G)\ w{ }

|g(x)| � 
x∈V(G)

|g(x)|,

(6)

which is impossible. Terefore, V(H) � ∪f(V(G))

� ∪ (f(V(G))\ ∅{ }). Hence, f(V(G))\ ∅{ } is a partition
of V(H).

Next, suppose that ∅ ∉ f(V(G)) and
V(H)\∪f(V(G)) ≠∅. Let S be an α − set of
H − ∪f(V(G)) and T ∈ f(V(G)) with
|T| �minP∈f(V(G))|P|. If

α(H − ∪f(V(G)))> minP∈f(V(G))|P|, then defne
g: V(G)⟶ I(H) by

g(x) �
S, if  f(x) � T,

f(x), otherwise,
 (7)

for all x ∈ V(G). It is easy to see that g is anH− coloring ofG.
However,

α(H, G) � 
x∈V(G)

|f(x)| � 
x∈f− 1( T{ })

|f(x)| + 
x∈V(G)\f− 1( T{ })

|f(x)|

≤ 
x∈f− 1( T{ })

|T| + 
x∈V(G)\f− 1( T{ })

|f(x)|< 
x∈f− 1( T{ })

|S| + 
x∈V(G)\f− 1( T{ })

|f(x)|

� 
x∈g− 1( S{ })

|S| + 
x∈V(G)\g− 1( S{ })

|g(x)| � 
x∈g− 1( S{ })

|g(x)| + 
x∈V(G)\g− 1( S{ })

|g(x)|

� 
x∈V(G)

|g(x)|,

(8)

which is impossible. Hence, α(H − ∪f(V(G)))

≤minP∈f(V(G))|P|.
We obtain the lower and upper bounds for α(H, G) in

terms of independence numbers and order of graphs. □
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Theorem 6. Let G and H be graphs. Ten,

α(G)α(H) +min |V(G)| − α(G), |V(H)| − α(H){ }≤ α(H, G)≤min α(G)|V(H)|, α(H)|V(G)|{ }. (9)

Proof. Let A be an α− set of G and B be an α− set of H.
Without loss of generality, we can assume that
|V(G)| − |A|≥ |V(H)| − |B|. We consider the following
two cases. □

Case 1. V(H)\B �∅.

Defne f: V(G)⟶ I(H) by

f(x) �
B, if  x ∈ A,

∅, otherwise,
 (10)

for all x ∈ V(G). Clearly, f is an H− coloring of G. Tus,

α(H, G)≥ 
x∈V(G)

|f(x)| � |A||B| � α(G)α(H) + 0� α(G)α(H) +min |V(G)| − α(G), 0{ }

� α(G)α(H) +min |V(G)| − α(G), |V(H)| − α(H){ }.

(11)

Case 2. V(H)\B≠∅.
Let v ∈ V(H)\B. Defne f: V(G)⟶ I(H) by

f(x) �

B, if  x ∈ A,

v{ }, if  x ∈ V(G)∖A,

∅, otherwise,

⎧⎪⎪⎨

⎪⎪⎩
(12)

for all x ∈ V(G). Clearly, f is an H− coloring of G. Tus,

α(H, G)≥ 
x∈V(G)

|f(x)| � |A||B| + |v||V(G)\A| � |A||B| +(|V(G)| − |A|)

� α(G)α(H) + |V(G)| − α(G)≥ α(G)α(H) +min |V(G)| − α(G), |V(H)| − α(H){ }.

(13)

Next, let f be an α − H− coloring of G and g be an
α − G− coloring of H with f(V(G)) � D1, D2, . . . , Dm  and

g(V(H)) � D1′, D2′, . . . , Dm′
′ , where 1≤m≤ |V(H)| + 1 and

1≤m′ ≤ |V(G)| + 1. By Lemma 1, it follows that

α(H, G) � 
x∈V(G)

|f(x)| � 
m

i�1
Di


 f

− 1
Di ( 


≤ 

m

i�1
Di


α(G) � α(G) 

m

i�1
Di


≤ α(G)|V(H)| , (14)

and similarly,

α(H, G) � α(G, H)≤ α(H)|V(G)|. (15)

Terefore, α(H, G)≤min α(G)|V(H)|, α(H)|V(G)|{ }.
Consequently, the result follows.

To establish the sharpness of the lower bound stated in
Teorem 6, consider an empty graph H. Obviously,
α(H, G) � α(G)|V(H)| + 0� α(G)α(H) +min |V(G)| −{

α(G), |V(H)| − α(H)}. Next, we investigate the sharpness of
the upper bound also stated in Teorem 6. Let G � C2m and
H � C2n, where m, n∈ N with m, n> 1. We see that
α(H, G) � 2mn �min m(2n), n(2m){ } � min α(G)|V(H)|,{

α(H)|V(G)|}.

Lemma 9 (see [10]). Let G be any graph. Ten,
|V(G)| ≤ χ(G)α(G).

Proof. Let f be a χ− coloring of G. Ten,
|V(G)| � 

χ(G)

i�1 |f− 1( i{ })|≤
χ(G)

i�1 α(G) � χ(G)α(G). □

Corollary 1 . Let G and H be graphs. Ten,

α(G)α(H)≤ α(H, G)≤min χ(G), χ(H) α(G)α(H).

(16)

Proof. By Teorem 6 and Lemma 9, we can conclude that
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α(G)α(H)≤ α(H, G)≤min α(G)|V(H)|, α(H)|V(G)|{ }

�min α(G)χ(H)α(H), α(G)α(H)χ(G)  �min χ(G), χ(H) α(G)α(H).
(17)

TeNordhaus–Gaddum bound is a sharp lower or upper
bound on the sum or product of a parameter of a graph and
its complement. By deriving of Corollary 10, we obtain sharp
bounds for α(G)α(G) in terms of α(G, G), χ(G), and χ(G).
Moreover, the graph families attaining the bounds in
Proposition 3 attain these bounds also. □

Corollary 11. For every graph G,

α(G, G)

min χ(G), χ(G) 
≤ α(G)α(G)≤ α(G, G). (18)

Now, we focus on a G − coloring of G. Before that, we
need the following lemma.

Lemma 12. For a positive integer n, let
x1, x2, . . . , xn, y1, y2, . . . , yn be real numbers. Ten,



n

i�1
xiyi ≤max 

n

i�1
x
2
i , 

n

i�1
y
2
i

⎧⎨

⎩

⎫⎬

⎭. (19)

Proof. For 1≤ i≤ n, we obviously have 2xiyi ≤ x2
i + y2

i .
Consequently,

2
n

i�1
xiyi ≤ 

n

i�1
x
2
i + y

2
i  � 

n

i�1
x
2
i + 

n

i�1
y
2
i

≤max 
n

i�1
x
2
i , 

n

i�1
y
2
i

⎧⎨

⎩

⎫⎬

⎭ +max 
n

i�1
x
2
i , 

n

i�1
y
2
i

⎧⎨

⎩

⎫⎬

⎭

� 2max 
n

i�1
x
2
i , 

n

i�1
y
2
i

⎧⎨

⎩

⎫⎬

⎭.

(20)

Terefore, 
n
i�1xiyi ≤max 

n
i�1x

2
i , 

n
i�1y

2
i .

Te following theorem shows that α(G, G) is a sum of
squares of positive integers. □

Theorem 13. For any graph G, we have

α(G, G) �max 
P∈P

|P|
2
: P  is a  class of  disjoint  independent  sets of  G

⎧⎨

⎩

⎫⎬

⎭. (21)

Proof. Let M �max P∈P|P|2: P  is a  class of  disjoint
  independent  sets of  G}. Furthermore, let P′ � D1,

D2, . . . , Dm} be a class of disjoint independent sets of G such
that 

P∈P′ |P|2 � M, where m is a positive integer. We frst
show that α(G, G)≥M. Defne g: V(G)⟶ I(G) by

g(x) �
P, if  x ∈ P  for  some P ∈ P′,
∅, otherwise,

⎧⎨

⎩ (22)

for all x ∈ V(G). Clearly, g is a G− coloring of G. And thus,
by Lemma 1,

α(G, G)≥ 
x∈V(G)

|g(x)| � 
m

i�1
Di


 g

− 1
Di ( 


 � 

m

i�1
Di


 Di


 � 

m

i�1
Di



2

� 

P∈P′
|P|

2
� M. (23)

Now, we show that α(G, G)≤M. Let f be an
α − G− coloring of G. Furthermore, let
f(V(G)) � D1, D2, . . . , Dm  be such that

|Dm|≤ |Dm− 1|≤ · · · ≤ |D1|, where m is a positive integer. By
Lemmas 1 and 12, we obtain that

α(G, G) � 
x∈V(G)

|f(x)| � 
m

i�1
Di


 f

− 1
Di ( 


≤max 

m

i�1
Di



2
, 

m

i�1
f

− 1
Di ( 



2⎧⎨

⎩

⎫⎬

⎭. (24)
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Case 1. Dm �∅. Clearly, m≥ 2. Since both of D1, D2, . . . , Dm− 1  and
f− 1( D1 , f− 1( D2 , . . . , f− 1( Dm   are classes of
disjoint independent sets of G, we obtain that

α(G, G)≤max 
m

i�1
Di



2
, 

m

i�1
f

− 1
Di ( 



2⎧⎨

⎩

⎫⎬

⎭ �max 
m− 1

i�1
Di



2
, 

m

i�1
f

− 1
Di ( 



2⎧⎨

⎩

⎫⎬

⎭ ≤M. (25)

Case 2. Dm ≠∅.
Since both of D1, D2, . . . , Dm  and
f− 1( D1 ), f− 1( D2 ), . . . , f− 1( Dm )  are classes of
disjoint independent sets of G, we get that

α(G, G)≤max 
m

i�1
Di



2
, 

m

i�1
f

− 1
Di ( 



2⎧⎨

⎩

⎫⎬

⎭ ≤M.

(26)

Hence, the equality holds.
Next, we consider the parameter in case one of two
graphs is complete. □

Theorem 14. For any graph G and a positive integer n, let
M �max {P∈P|P|: P be a class of m disjoint independent
sets of G with m≤ n}. Ten,

α Kn, G(  �
|V(G)|, if  χ(G)≤ n,

M, otherwise.
 (27)

Proof. Let V(Kn) � v1, v2, . . . , vn .

Case 1. χ(G)≤ n.
Since χ(G)≤ n, we have χ(G)α(G) ≤ nα(G). By Lemma
9, we get |V(G)| ≤ χ(G)α(G)≤ nα(G). Terefore, by
Teorem 6, α(Kn, G)≤min α(G)|V(Kn)|, α(Kn)|V

(G)|} � min nα(G), |V(G)|{ } � |V(G)|. Next, let f be
a χ− coloring of G and P� f− 1( x{ }): x ∈ f

(V(G))} � B1, B2, . . . , Bk , where k � χ(G)≤ n. Defne
g: V(G)⟶ I(Kn) by

g(x) � vi if  x ∈ Bi  for  some  i ∈ 1, 2, . . . , k{ }, (28)

for all x ∈ V(G). It is clear that g is a Kn− coloring of G. Tis
implies, by Lemma 1, that

α Kn, G( ≥ 
x∈V(G)

|g(x)| � 
k

i�1
vi 


 g

− 1
vi  ( 


 � 

k

i�1
vi 


 Bi


 � 

k

i�1
Bi


 � |V(G)|. (29)

Hence, α(Kn, G) � |V(G)|, as required.
Case 2. χ(G)> n.
Let f be a G− coloring of Kn.
Claim ∅ ∉ f(V(Kn)).

Suppose, to the contrary, that∅∈f(V(Kn)). By Lemma
5, f(V(Kn))\ ∅{ } is a partition of V(G). Tus,

n< χ(G)≤ f V Kn( ( \ ∅{ }


≤ V Kn( \f
− 1

( ∅{ })


< V Kn( 


 � n, (30)

a contradiction. Tis proves our claim. Since every in-
dependent set of Kn is singleton and by Lemma 1, we get
f(V(Kn)) which is a class of n disjoint independent sets of

G. Let f(V(Kn)) � B1, B2, . . . , Bn . It follows, by Lemma 1,
that

α Kn, G(  � α G, Kn(  � 

x∈V Kn( )

|f(x)| � 
n

i�1
Bi


 f

− 1
Bi ( 


 � 

n

i�1
Bi


≤M. (31)
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Next, we show that α(Kn, G)≥M. Let
P′ � B1, B2, . . . , Bk  be a class of k disjoint independent sets
of G with k≤ n such that 

k
i�1|Bi| � M. Defne

g: V(G)⟶ I(Kn) by

g(x) � vi if  x ∈ Bi for  some  i ∈ 1, 2, . . . , k{ }, (32)

for all v ∈ V(G). Clearly, g is a Kn− coloring of G. Tis
implies, by Lemma 1, that α(Kn, G)≥x∈V(G)|g(x)|

� 
k
i�1| vi ||g− 1( vi  )| � 

k
i�1 | vi ||Bi| � 

k
i�1|Bi| � M.

Hence, α(Kn, G) � M, as required.
Te following corollaries present the prominent results

of α(H, G) in which G and H are elements of some basic
families of graphs. □

Corollary 15. Let G be a graph and n≥ 2 be a positive in-
teger. If G is bipartite, then

α Kn, G(  � |V(G)|. (33)

Corollary 16. Let G be a graph and n be a positive integer
greater than 1. Ten, the following statements hold:

(1) α(P2m, Kn) � 2m + 1 for all non-negative integers m.
(2) α(P2m+1, Kn) � 2m + 2 for all non-negative integers m.
(3) α(C2m, Kn) � 2m + 2 for all positive integers m≥ 2.
(4) α(Sm, Kn) � 2m + 2 for all positive integers m≥ 2.

Corollary 17. For positive integers m and n, we have

α Km, Kn(  �min m, n{ }. (34)

Proof. Without loss of generality, let m≤ n. For an injection
f: V(Km)⟶ I(Kn), we see that f is a Kn− coloring of
Km, since every independent set of Kn is singleton. Tis
implies that

α Km, Kn(  � α Kn, Km( ≥ 

x∈V Km( )

|f(x)| � 

x∈V Km( )

1� V Km( 


 � m �min m, n{ }.
(35)

Hence, the result follows by Teorem 6. □

Corollary 18. For positive integers m and n with n≥ 2, we
have

α C2m+1, Kn(  �
2m, if  n � 2,

2m + 1, if  n≥ 3.
 (36)

Proof. Let f: V(C2m+1)⟶ 1, 2, 3{ } be a 3 − coloring of
C2m+1 such that |f− 1( 1{ })| � |f− 1( 2{ })| � m and
|f− 1( 3{ })| � 1.

Case 1. n � 2.
Let V(Kn) � v1, v2 . Ten, we defne a function
g: V(C2m+1)⟶ I(Kn) by

g(x) �

v1 , if  x ∈ f
− 1

( 1{ }),

v2 , if  x ∈ f
− 1

( 2{ }),

∅, if  x ∈ f
− 1

( 3{ }).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(37)

for all x ∈ V(C2m+1). It is precise that g is a Kn− coloring of
C2m+1 and so

α C2m+1, Kn(  � α Kn, C2m+1( ≥ 

x∈V C2m+1( )

|g(x)|

� v1 


 f
− 1

( 1{ })


 + v2 


 f
− 1

( 2{ })




+ |∅| f
− 1

( 3{ })


 � 2m.

(38)

Terefore, by Teorem 6, the result follows.
Case 2. n≥ 3.
Let V(Kn) � v1, v2, . . . , vn . Defne a function
g: V(C2m+1)⟶ I(Kn) by

g(x) �

v1 , if  x ∈ f
− 1

( 1{ }),

v2 , if  x ∈ f
− 1

( 2{ }),

v3 , if  x ∈ f
− 1

( 3{ }),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(39)

for all x ∈ V(C2m+1). It is easy to show that g is
a Kn− coloring of C2m+1, since every independent set of Kn is
singleton. Tis implies that

α C2m+1, Kn(  � α Kn, C2m+1( ≥ 

x∈V C2m+1( )

|g(x)|

� v1 


 f
− 1

( 1{ })


 + v2 


 f
− 1

( 2{ })


 + v3 


 f
− 1

( 3{ })


 � 2m + 1.

(40)
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Hence, the result follows by Teorem 6. □

Corollary 19. For positive integers m, n with m, n≥ 2, we
have

α W2m, Kn(  �

2m − 2, if  n � 2,

2m − 1, if  n � 3,

2m, if  n≥ 4.

⎧⎪⎪⎨

⎪⎪⎩
(41)

Proof. Let f: V(W2m)⟶ 1, 2, 3, 4{ } be a 4− coloring of
W2m such that |f− 1( 1{ })| � |f− 1( 2{ })| � m − 1 and
|f− 1( 3{ })| � |f− 1( 4{ })| � 1.

Case 1. n � 2.
Let V(Kn) � v1, v2 . Defne a function
g: V(W2m)⟶ I(Kn) by

g(x) �

v1 , if  x ∈ f
− 1

( 1{ }),

v2 , if  x ∈ f
− 1

( 2{ }),

∅, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(42)

for all x ∈ V(W2m). Clearly, g is a Kn− coloring of W2m.
Ten,

α W2m, Kn(  � α Kn, W2m( ≥ 

x∈V W2m( )

|g(x)|

� v1 


 f
− 1

( 1{ })


 + v2 


 f
− 1

( 2{ })


 + |∅| g
− 1

( ∅{ })


 � 2m − 2.

(43)

By Teorem 6, we obtain that α(W2m) � 2m − 2.
Case 2. n � 3.
Let V(Kn) � v1, v2, v3 . Defne a function
g: V(W2m)⟶ I(Kn) by

g(x) �

v1 , if  x ∈ f
− 1

( 1{ }),

v2 , if  x ∈ f
− 1

( 2{ }),

v3 , if  x ∈ f
− 1

( 3{ }),

∅, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(44)

for all x ∈ V(W2m). Clearly, g is a Kn− coloring of W2m.
Ten,

α W2m, Kn(  � α Kn, W2m( ≥ 

x∈V W2m( )

|g(x)|

� v1 


 f
− 1

( 1{ })


 + v2 


 f
− 1

( 2{ })


 + v3 


 f
− 1

( 3{ })


 + |∅| g
− 1

( ∅{ })




� 2m − 1.

(45)

By Teorem 6, we get that α(W2m) � 2m − 1.
Case 3. n≥ 4.

Let V(Kn) � v1, v2, . . . , vn . Defne a function
g: V(W2m)⟶ I(Kn) by

g(x) �

v1 , if  x ∈ f
− 1

( 1{ }),

v2 , if  x ∈ f
− 1

( 2{ }),

v3 , if  x ∈ f
− 1

( 3{ }),

v4 , if  x ∈ f
− 1

( 4{ }),

∅, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)
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for all x ∈ V(W2m). Clearly, g is a Kn− coloring of
W2m. Ten,

α W2m, Kn(  � α Kn, W2m( ≥ 

x∈V W2m( )

|g(x)|

� v1 


 f
− 1

( 1{ })


 + v2 


 f
− 1

( 2{ })


 + v3 


 f
− 1

( 3{ })


 + v4 


 f
− 1

( 4{ })


 + |∅| g
− 1

( ∅{ })




� 2m.

(47)

By Teorem 6, we have α(W2m) � 2m. Tis completes
the proof. □

Corollary 2 . For positive integers m and n with m, n≥ 2, we
have

α W2m+1, Kn(  �
2m, if  n � 2,

2m + 1, if  n≥ 3.
 (48)

Proof. By applying the proof of Corollary 19, the result
follows.

Actually, we can determine α(H, G), where G and H

belong to some basic families of graphs by applying the
proofs of Corollaries 15, 16, and 19. As shown in Table 1, we
proved only the value α(H, G) in the frst column. However,
we determine the rest without proofs and we leave the rest to
the reader as an exercise. □

4. Applications on Cartesian Product Graphs

In this section, we apply the coloring by independent sets to
the Cartesian product of a complete graph and a graph.
Firstly, we provide some preparations for background.

Given two graphsG andH, many defnitions exist that are
known as the product of G and H. For a detailed treatment of
graph products, we refer the reader to [11, 12]. Te Cartesian
product of G and H, denoted by G□H, is the graph with
vertex set V(G) × V(H), where two vertices (v1, h1) and
(v2, h2) are adjacent whenever v1v2 ∈ E(G) and h1 � h2, or
v1 � v2 and h1h2 ∈ E(H). Tere are several types of graphs
defned by the Cartesian product of graphs. In particular, we
focus the following types of those graphs. For a positive
integer n, an n− ladder graph Ln is defned to be the Cartesian
product graph K2□Pn. An n − book graph Bn means the
Cartesian product graph K2□Sn+1. An n− dimensional hy-
percube Qn is recursively defned to be the Cartesian product
graph K2□Qn− 1, where n≥ 2 and Q1 � K2. And we note that
|V(Qn)| � 2n and χ(Qn) � 2 which can be found in [13].

In order to properly study graph products, we need some
defnitions that consider the set product of sets A and B. In
particular, for S⊆A × B, we denote by π1(S) � {a: (a, b) ∈ S

where b ∈ B}. Moreover, for s ∈ π1(S), we denote by πs(S) �

b: (s, b) ∈ S{ }.
Determining the independence number and its variants

of a graph product in terms of its factors is well studied in

graph theory. For papers concerning the graph products, we
refer the reader, for example, to [14–18]. In this section, we
continue the study of the graph product independence by
considering the independence of the Cartesian product
graphs. Namely, this section provides results regarding the
independence number and gives certain valuable corollaries
to the results.

Now, we characterize the independent sets of the Car-
tesian product of a complete graph and a graph.

Theorem 21. Let H be a graph. For a positive integer n, let S

be a nonempty subset of V(Kn□H). Ten, S is an independent
set of Kn□H if and only if the following conditions hold:

(1) πs(S) is an independent set of H for every s ∈ π1(S).
(2) πa(S)∩ πb(S) �∅ for any adjacent vertices

a, b ∈ π1(S).

Proof. Let S be an independent set of Kn□H.
Furthermore, let s ∈ π1(S) and us, vs ∈ πs(S). If us � vs,

then usvs ∉ E(H). So, we assume the rest that us ≠ vs. Since
(s, us), (s, vs) ∈ S, we have (s, us)(s, vs) ∉ E(Kn□H). Tus,
usvs ∉ E.

Let a, b be two adjacent vertices in π1(S). Furthermore,
let va ∈ πa(S) and vb ∈ πb(S). Since (a, va), (b, vb) ∈ S, we
have (a, va)(b, vb) ∉ E(Kn□H). Tus, va ≠ vb since
ab ∈ E(Kn[π1(S)]). Hence, πa(S)∩ πb(S) �∅. For the
converse, we assume that (1) and (2) hold. Let
(a, va), (b, vb) ∈ S. If ab ∈ E, then clearly a, b ∈ π1(S). We
obtain that va ≠ vb because πa(S)∩ πb(S) �∅. Tus,
(a, va)(b, vb) ∉ E(Kn□H). If ab ∉ E, then we distinguish the
following two cases.

Case 1. a � b.
Clearly, va, vb ∈ πa(S). Tus, vavb ∉ E(H), since πa(S)

is an independent set of H. Terefore,
(a, va)(b, vb) ∉ E(Kn□H).
Case 2. a≠ b.
It is easy to see that (a, va)(b, vb) ∉ E(Kn□H), since
neither ab ∉ E nor a≠ b. □

Theorem 22. Let H be a graph. For a positive integer n, we
have

α Kn□H(  � α Kn, H( . (49)
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Proof. We frst show that α(Kn□H)≤ α(Kn, H). Let S′ be an
α − set of Kn□H. Defne a function f: V(Kn)⟶ I(H) by

f(x) �
πx S
′

 , if  x ∈ π1 S
′

 ,

∅, otherwise,

⎧⎪⎨

⎪⎩
(50)

for all x ∈ V(Kn). By Teorem 21, we obtain that f is an
H− coloring of Kn. Consequently,

α Kn□H(  � S
′



 � 

x∈π1 S′( )

πx S
′

 




� 

x∈π1 S′( )

πx S
′

 




+ 

x∈V Kn( )\π1 S′( )

|∅|

� 

x∈π1 S′( )

|f(x)| + 

x∈V Kn( )\π1 S′( )

|f(x)| � 

x∈V Kn( )

|f(x)|≤ α H, Kn(  � α Kn, H( .
(51)

Next, we show that α(Kn□H)≥ α(Kn, H). Let f be an
α − H− coloring of Kn. Furthermore, let A � f− 1( ∅{ }) and
B � V(Kn)\A. We see that f(x) is independent in H for
every x ∈ B and f(y)∩f(z) �∅ for every adjacent vertices

y, z in B. It follows from Teorem 21 that x{ } × f(x) is an
independent set of Kn□H for every x ∈ B and so is
∪ x∈B( x{ } × f(x)). Consequently,

α Kn, H(  � α H, Kn(  � 

x∈V Kn( )

|f(x)| � 
x∈A

|f(x)| + 
x∈B

|f(x)|,

� 0+ 
x∈B

|f(x)| � ∪
x∈B

( x{ } × f(x))




≤ α Kn□H( .

(52)

Hence, the result follows. □

Corollary 23. For a positive integer n, we have

α Ln(  � n + 1. (53)

Proof. Since Ln � K2□Pn and by Teorem 22, we get that
α(Ln) � α(K2□Pn) � α(K2, Pn). By Corollary 15, we have
α(Ln) � |V(Pn)| � n + 1 because χ(Pn) � 2. □

Corollary 24. For a positive integer n, we have

α Bn(  � n + 1. (54)

Proof. Since Bn � K2□Sn+1 and by Teorem 22, we obtain
that α(Bn) � α(K2□Sn+1) � α(K2, Sn+1). Terefore, by Cor-
ollary 15, we conclude that α(Ln) � |V(Sn+1)| � n + 1, since
χ(Sn+1) � 2. □

Corollary 25 (see [13]). For a positive integer n, we have

α Qn(  � 2n− 1
. (55)

Proof. It is clear for n � 1. So, we assume that n≥ 2. Since
Qn � K2□Qn− 1 and by Teorem 22, we get
α(Qn) � α(K2, Qn− 1). Since χ(Qn− 1) � 2 and by Corollary 15,
we have α(Qn) � |V(Qn− 1)| � 2n− 1. □

5. Conclusion

Te concept of the independent coloring of graphs has been
introduced in this paper. Prominent properties and results of
the independent coloring have been proposed. Especially, the
values of α(H, G), where H and G are fundamental graphs,
have been collected and presented in the table. Finally, the
independent coloring has been applied to determine the in-
dependence number of Cartesian product graphs. Actually, the
independent coloring of graphs can be considered as a gener-
alized concept of the independence number of graphs, as well.
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