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In this article, we introduce a general class of convex functions and proved some of its basic properties. We establish Hermite-
Hadamard type inequalities as well as fractional version of Hermite-Hadamard type inequalities by using Riemann-Liouville
integral operator. At the end, some application to special means of real numbers are also given. It can be observed from the
remarks given in this paper that several exiting results of ligature can be obtained immediacy from our results by taking

suitable involved parameters.

1. Introduction

Due to huge applications in applied sciences, notion of con-
vexity become important for researchers, but classical con-
vexity is not enough to solve modern problems, so there is
always a need to introduce a more general notion of convex-
ity. In mathematics, classical convexity and concavity are
two important concepts. Convexity plays a fundamental role
in optimization theory, mathematical economics and engi-
neering. Convexity of a function v :J— R in classical
sense is defined by the following inequality:

ylax+(1-)y) <ay(x) + (- ayy()Vaeo, 1), (1)

for every x,y €.

If the above inequality is reversed, then the function is
said to be concave.

Using various techniques, the concept of convex func-
tions has been generalized in many directions, see [1, 2].
Inequality theory become a very dynamic and attractive field
of research [3, 4]. In recent years, using various notions of
convex functions a wide class of integral inequalities has
been derived [5, 6]. The most important and famous

inequalities are Schur-type, Hermite-Hadamard-type, and
Fejér-type inequalities [7, 8].
Toplu et al. in [9] established Hermite-Hadamard inequal-
ity for n-polynomial convex functions, which is given below:
Let v : JCR— R be n-polynomial convex function.
If a, and b, are two real numbers such that a;b, and
v € L[a,, by], then the following double inequality hold,

G r(252) = vteyue s YOS L
(2)

In this paper we introduce a new class of convex functions,
namely (n,h)-polynomial convex functions. We drive some
basic properties of (#n,h)-polynomial convex function and
establish Hermite-Hadamard type inequalities for (1,h)-poly-
nomial convex function in the setting of Riemann-Liouville
integral operator. Moreover some applications of established
results in special means are also presented.

2. Preliminaries and Basic Results

In this section we present some preliminary material
and define a new class of convex functions, which we
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call (n,h)-polynomial convex functions. Also we give
some basic properties for this new class of convex func-
tions. From now to onward, we consider J=[a;,b,].

Definition 1 (see [4]). Let n € N. The nonnegative function
Yy : J ¢ R — R is n-polynomial convex function, if

Z[l - Ty (y),
(3)

y(ax+ (1-a)y) < 1-(1-a)

S|~
M=

Il
—

§

holds for every x,y € J and « € [0, 1].

Definition 2. Let n € N. A nonnegative function y : ] — R
is said to be modified n-polynomial convex function, if

n

2.0-

s=1

S|

M=

% 1-(1-a) )+

y(ax+(1-a)y) <

Il
—

S

(4)

holds for all x,y € J and « € [0, 1].
Now we, are ready to define (n,h)-polynomial convex
functions.

Definition 3. Let n € N. A nonnegative function ¢ : ] — R
is said to be (n,h)-polynomial convex function, if

5 hio

s=1

ylax+ (1-a)y) <

3| -
M=
=
|
+
2|

holds for all x,y € J and a € [0, 1].
Remark 4.

(1) If we take n=1 in (5), then (n,h)-polynomial con-
vexity reduces to modified h-convexity

(2) If we take n=1 and h(a)=1-a in (5), then
(n,h)-polynomial convexity reduces to classical
convexity

(3) If we take h=1-a in (5), then (n,h)-polynomial
convexity reduces to modified n-polynomial
convexity

It is worth mentioning here that (1,h)-polynomial con-
vexity reduces to modified h-convexity, (1, 1)-polynomial
convexity reduces to classical convexity and (u, 1)-polyno-
mial convexity reduces to modified #-polynomial convexity.

Proposition 5. If v, ¢ are (n,h)-polynomial convex functions
defined on ] and B,y € R, then By +y¢ is also (n,h)-poly-
nomial convex function on J.
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Proof. Let a € [0, 1], then from the (1,h)-polynomial convex-
ity of v, ¢, we have for every x,y € ],

(By +y¢)(ax + (1 - a)y) = By (ax + (1 - a)y) + y(ax + (1 - a)y)

+y (;zp - @00 + 1Y [h<w>]‘¢<y>>

s=1 s=1

< —Z[l—[h

1
+nz

1By +y9)(x)
(By +y9)(»)-
(6)

Hence By +y¢ is a (n,h)-polynomial convex function
on J. O

Proposition 6. If ¢ be a linear function and v be a
(n,h)-polynomial convex function on ], then yo ¢ is also
a(n,h)-polynomial convex on J.

Proof. Using the linearity of ¢ and (n,h)-polynomial convex-
ity of ¥ on J, we have for every x,y € J and a € [0, 1],

yeod(ax+ (1-a)y)=y(p(ax+ (1
= y(ag(x) + (1

~a)y))
~a)$(y))

Hence y o ¢ is (n,h)-polynomial convex function on J.
O

Proposition 7. If v and ¢ are of similarly ordered
(n,h)-polynomial convex functions on ], then y¢ is also
(n,h)-polynomial convex function on J.

Proof. Using the fact that ¥ and ¢ are of similarly ordered

(n,h)-polynomial convex functions on J, we have for every
x,y€] and a€[0,1],

y(ax+ (1= a)y)p(ax+(1-a)y)

s[ 1 - [h(a)]

Jig- z 1

s=1 s=1

R~
M=

“
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Hence w¢ is also (n,h)-polynomial convex function on
J. O

Proposition 8. Let v, : ] — R, where 1 <i<m be nonneg-
ative (n,h)-polynomial convex functions on ], then for A, >0
where 1<i<m, the function y is (n,h)-polynomial convex
function on ], where y=Y" Ay,

Proof. For all x,y € J and a € [0, 1], we have

s (1-a)) = Y Ay (o (1-a))
< 2= v+ 3 >m<y>}
=%Z[1 Zml&-wi( Z ]ZW,
21 @) + S e Y0)
)

Hence y = Y\, A,y is (n,h)-polynomial convex function
on J. O

3. Hermite-Hadamard Type Inequalities

In this section we will develop some Hermite Hadamard type
integral inequalities for (1,h)-polynomial convex functions.

Theorem 9. Suppose that v : ] — R is a (n,h)-polynomial
convex function on ], then the following inequality holds

v(*55) < 5t | veoaes vian + o) v

ii J;[h(oc)]sdoc.

(10)

Proof. Inserting « = 1/2 in Definition 3, we have

()55 PO o G v
(11)

Taking x=aa, +(1-a)b, and y=ab, + (1 -a)a, in

above inequality, we have

o32) 5 () oo

A [h (%)}Stp(abl +(1-a)ay).

ns:l

Integrating the inequality (12) with respect to "« over
[0,1], we have

o5 IFO o

da+ %Z [h (;)}Sry/(abl +(1-a)a,)da.

s=1

(13)
Using the change of variable technique, x = ag, + (1 — «)
b, and y = ab; + (1 — «)a,, we have
a, +b, S s
() ma 2{1 il
by
x)dx *
J V) _“1)
)
a; +b
P )] wav(*37)
< b —a Llu/(x)dx.

Which is left side of the inequality (10).



Now, for the right side of the inequality (10), we start
with the following integral,

b 1
J y(x)dx = (b, - al)JO‘/f(‘ml + (1 - a)b;)da. (15)

a,

Since, y is (n,h)-polynomial convex function, so

blialr xW’“J { Z[l— [h(e) Ty (a, Z[h(a }

cda<y(a)) + [w(by) - y(ay)) %Z J [h(w))dat,

s=1J0
(16)
which is right side of the inequality (10). The proof com-
pleted. O
Remark 10.

(1) If n=1 and h(a)=1-a then inequality (10)
reduced to the Hermite-Hadamard inequality for
classical convex functions [10].

(2) If n=1, then inequality (10) reduced to the Hermite-
Hadamard inequality for modified h-convex func-
tions [11].

The following result can be easily obtain by elementary

analysis.

Corollary 11. Let }" ,y; : ] — R be the sum of (n,h)-poly-
nomial convex functions on J. Then

Yo (5 < 5 5[ vimdcs S uitan

i=1

+
—
M§
=
=
N@‘
|
M=
=
g
=
S|~

Proof. If we replace y by )", v, in Theorem 9, we get the
required result. U

In the next theorem we will derive Hermite-Hadamard
type inequality for product of two (n,h)-polynomial convex

functions.

Theorem 12. Consider y, ¢ are (n,h)-polynomial convex on
J, such that y and ¢ are similarly ordered functions. If

2ARNIREAT R
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then
S B TR
PP (EPG))
(5] o
= Lf” $x)dx < y(a,)9(a,)
o606 = vl (). | e,
where
M(a;, by) =y(a)$(a,) +y(b,)$(b,). (20)

Proof. As vy, ¢ are (n,h)-polynomial convex on J, so

W(al *2'51>¢<a1 ;rbl> :V’<((1 ~a)a, +ab;) er (aa, + (1 —a)hl))
y (p(((l - a)a, +ab)) + (aa, + (1 —u)bl))

)
+ %Zn: [h G) S} ZI[/(Dtul + (1= a)b))p(aa; + (1-a)b))

le [h(%)H X [W((1 - @)ay + by )g(aa, + (1- )b,)

=1
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¢
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LS PONEEEGN]
MIZU h(a Hizlh } a)(@) + Wb )w(0)

n 2
+ %Z[hm)r} Y(o)(a) + {%Zu - [h(vcm} y(@)o(by))

([;2[1 )] } FZ [h@;j (v (@)8(a) + (B )w(b,)
+ 12 [h(aﬂ
:}1 1 [h(;)]wa - @)a, +aby)p((1 - a)a, +ab,)
. 12 [h(;)” e+ (1 b )o(n + (1- )

3 O O] | oy
vttt 240wl ([12[1 - [h(aﬂﬂ . FZ [h(a)]‘} )

X (y(a)$(by) + W(bl)¢(ul)):| :

+

n

Y(a)(by) + {%Zu - [h(«xm} w(bl)qs(am}

s=1

IN
[
N

Since, ¥ and ¢ are similarly ordered, so

Y((1-a)ay +ab)g((1 - a)a; +aby) + PZ [”@H
“y(aa, + (1- )b )p(aa, + (1-a)b;)

BELPCTBER) e

Integrating (22) w. r. t “a’ from 0 to 1, we obtain

1
[WnYL, (1= [h(2)F]] + [1n Y [h(12)]]

5o GE PG ) )
. (%zl [1 - {h G)H ) Marby) < i . J:u/(x)¢(x)dx.

The LHS of (19) can be obtained easily.

2

To prove right hand side of (19), we will use the follow-
ing inequality

y(aa, + (1 - )b, )p(aa, + (1 - a)b,)
s EZI[I - [M(e)] ]y (a,) + %Zl [h(a)]sw(bl)] »
'Egn—wmwwwo+%;wmwwhﬂ

<5 2= (@ Tolan)9) + 13 T v(0:)90)
(25)
Integrating (25) w. r. t “a’ from 0 to 1
1 [h
b | Yesdes viag(a)
1 1Ja, (26)

—y(ar)$(a)] ! Zl J [h(a)]da,

n=Jo

which is the required right hand side of (19). This com-
pletes the proof. O

Remark 13. Inserting n=1 in Theorem 12 we obtain [11],
Theorem 4.

The following lemma, shows that (n,h)-polynomial con-
vex functions have the same property of convex functions.

Lemma 14. Let y be (n,h)-polynomial convex functions, then

y(a; +b;—x)<y(a;) +y(by) —y(x)Vx€la, by, (27)

where x = a(a;) + (1 - a)b;, a €0, 1].

Proof. Let y be (n,h)-polynomial convex functions and x =
ala;) + (1 — a)b,;, we have

y(a, +b, —x)=y(a, + b —aa, - (1 - a)b,)

+y(by)
- R @ y(a) + L D~ @)
<y(ay) +y(by) —y(aa, + (1 -a)b))
<y(a) +y(by) -y (x).
(28)
Which completes the proof. O



4. Hermite-Hadamard Type Inequalities in
Riemann-Liouville Integral Operator

Now, we will derive Hermite-Hadamard inequality for
(n,h)-polynomial convex functions via Riemann-Liouville
fractional integral.

Definition 15 (see [12]). Let y € L[a, b]. The right-hand side
and left-hand side Riemann-Liouville integral operators of
order o >0 with b > a > 0, are defined by

Jow()= 15 [ - vl > a
1 . (29)
TS y(x)= WJ (k= x)"y (k)dk, x < b

respectively, where I'(0) is the Gamma function defined as
J“ X9~ 1 dk.

It is to be noted that J%,y(x) = J9-y(x) = y(x).

Theorem 16. Let v : ] — R is (n,h)-polynomial convex and
y € L[a,, b,]. Then the following inequalities hold

(5 <ty [l DO v 35 L v

(30)

(bz -a)

(o)

v(a;) +y(b;) )
(by—a;)’

o

(b)) + T w(a)] <

Proof. Inserting a = 1/2 in Definition 3, we have

Taking x =aa, + (1 -
have

a)b, and y=ab, + (1-a)a,, we

Multiplying (33) with «~! and integrating w. r. t. a, we
get
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() aes 3 -G

) Jloc""lw(ocal +(1-a)b) (34)

0

da+ %Z [h Gﬂ SJIa"_ll//(ocbl +(1-

s=1 0

a)a,)da,

implies that

e v NIOINGE

(35)
which is (30).
Since y is (n,h)-polynomial convex functions, so
y((1-a)a, +ab)) +y(aa, + (1 -a)b))
1 n n
<Y [ha 31~ (@)
s=1 =1
1 n 1 n
) (1= (@F Ty (@) + = 3 h(@) (b))
57 s=1
=y(a) +y(b).
(36)

Multiplying (33) with a’! and integrating w. r. t. a, we
get

1 by x—al)"1 1 Jbl(bl—x>‘”
x)dx +
(bl_al)Jal (b1_a1 v (by—ay) a, b -a

y(a, +y(by)) I(o)
~y(x)dx < =
v ) o (by—ay)
a)+vy(b
[ + (e < L0V
(37)
Which is (4.4). This completes the proof. O

Remark 17. Inserting n=1 in Theorem 16 we obtain [11],
Theorem 6.

5. New Inequalities for (7,/1)-Polynomial
Convex Functions

Now we will establish some new inequalities for (1,h)-poly-
nomial convex functions. To proceed we begin with the
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following lemma which will be needed to obtain results of
our desired type.

Lemma 18 (see [13], Lemma 2.1]). Let y : ] — R be a dif-
ferentiable map on J and y' € L[a,, b,], then we have

v(ar) +y(b) Lo
- (x)dx
, 2 bI —4a Ju, (38)

o L(z _ 2a)y' (aa, - (1- @)b,)da.

Theorem 19. Let v : ] — R be a differentiable map on ]

and y' € L[a,, b,]. If the function |y'| (n,h)-polynomial con-
vex on ], then for a € [0, 1], we have

a4 1 b
'w( e IaIJ V()

a;

—a ’al ’bl - ,111 2! s
Sblz IPW(Z )|, v )\n}‘/’( )’ZJ|1—2a|[h(a)}doc}.

(39)

Proof. Using Lemma 18 and (n,h)-polynomial convexity of
[y, we get

|y (@) +w(by)
| 2

1 (b
B b -a J Y

]

b, —a, (!
< A0 ] - 2ally (e, - (1= )|
0

IS [ - it

0

[3S)

oz 250 12 L0y o)
+12[h }dml’;“l
{"V'f‘)‘ij 1= 201 - ()Pt ¥ ‘éjoll—za\[h H}

s=1

ij|1—20c|[h }
Sblgal[uzw DS e }

\ %

(40)
O

Remark 20. If we set n=1, and h(«a) = 1 — a in the Theorem
19 we can immediately obtain [13], Theorem 2.2.

Theorem 21. Let y : ] — R be a differentiable map on ]
and y' € L[a,, b)) with ¢> 1, (1/p) + (1/q) = 1. If the |y'|" is
(n,h)-polynomial convex on ], then for a € [0, 1], we have

y(x)dx

_ liq
< by—a, ([ 1
2 +1

! /bz - 111 & s .

s=1J0

2

a;

“//(“1)*'1/’(171)_ 1 Jbl
b, —aq

(41)

Proof. Unliving Lemma 18, the Holder’s inequality and the
fact that [y'|? is (n,h)-polynomial convex, we get

w(ul);rw(b) bliaIJ w(x)dx

_a
< %J \1—20(”1// (aa, = (1 - )b, )|da
0

() -
_hl—a1<pi )”" ( v (e, — (1-a) )}qda)w
b —m(P 1>1 ( [ = (h() ]y (@)[*+ g[h(wrlw’(bl)\q}da)w
NEVEELS [W, ¢ WOyl E[h(aﬂsda]

s=1

|qd¢x) W]

(42)
O

Remark 22. By setting n =1 and h(«) = 1 — « in the Theorem
21, one obtain [13], Theorem 2.3.

Theorem 23. Let v : ] — R be a differentiable map on ]

andy' € Lla,, b, with g 1. If|y'|" is (n,h)-polynomial con-
vex on [a,, b;], then for a € [0, 1], we have

a b
‘w( Dyl bllalj y(x)dx
bl—ﬂl 1 1-1/q
=72 <§)
i q ,b a1,/ 19 n 1 g
X[w @l I 6ol'~ v ZIL“‘Z"‘”’(“”S} |

(43)

Proof. Assume that g> 1. Using Lemma 18, power mean

. . . 149 .

inequality and convexity of |y'|", we achieve
+y(b 1 b

V/(al)z‘l/( 1) 7WJ (x)dx glij 1 - 24|y (aa, - (1 - a)b,)|da

_ 1 -1 ;o1 1/g _ 1-1/q
<u X J |1-2a)da j \1*20¢HW'(¢xal7(170:)171)“11105 < bi-a (1
2 ) ) 2 2

([ -2l o = 1 - ) b 2“‘ Ol
x(j;u—m[lilu—[hw)m\wa.)\ DNICHC V])
S5 (R oot 5
bT(D [\ A A ““Zju sl ]]”q

h(a))] da+

g
a)




For q =1, the result can be proved in a similar fashion as
of Theorem 19. U

Next we need the following result to refine the power-
mean inequality;

Lemma 24 (see [14]). Let p>1 and (1/p)+ (1/q)=1. If v
and ¢ are real functions defined on interval | and if |y|?,
|§|? are integrable functions on ], then

b, 1lp
s m (b -9l () |de>
b, 1/q b, 1/p
(J (bl—x>|¢<x>|qu> +<j <x—a1>w<x>|f’dx>
b, 1/q
(J <x—a1>|¢<x>|‘fdx> ]

The refined version of integral version of power-mean
inequality is as follow:

b,
[ weotoiar<

(45)

Theorem 25 (Improved power-mean integral inequality
[15]). Let q > 1. If y and ¢ are real functions defined on inter-
val ] and if |y|, |y||g|® are integrable functions on ], then

b, ] b, 1-1/q
N KJ (b —x)w(x)dx)
b, 1/q b,
([ (bl—x>|w<x>|¢<x>qu> ([ (x—a»w(x)dx)
b, 1/q
: (j (x—al)w(x)|¢(X)quX> }

1-1/q

(46)
Theorem 26. Let v : ] — R be a differentiable map on ]

and y' €Lla,,b,] with q>1,(1/p) +(1/q)=1. If |y'|"
(n,h)-polynomial convex on ], then for a €0, 1], we have
y(a) +y(by) 1

b 1lp
1 b, —a, 1
2 by —a, LJW(X)dx =72 (Z(P + 1))

M. 1 ! i noel 1/q
|l WPy “’”'qzljou _a)[hm)rda}

(47)

Proof. Utilizing convexity of |y'|?, integral version of
Holder-Iscan inequality and the Lemma 18, we arrive at
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a by
[w( LS

b -ay (! '
=== |1 -2al|y’ (aa; - (1 - a)b;)|da
0

S, {(j(l -1~ 2a'da) !
x (j;u -0y (aa, - (1-a)by)|'de Uq P
; {( [t~ 2apae) ([t~ 1 -y }
SLL (2@1—+1)> ”"(J;(l -0y (aa, - (1-a)by)|'de Uq]
NUELS {(ﬁ) " ([t o - 1- a)hoqda)”q
e, —(ﬁ)””@(l—w Ei[l—[k((x
) [h(a)ﬂw’(b»q} da)uq} D
()" ([fg-momvrar mon])
£b12a1<2@1+1)>”"x< OIS -t - e
. Iv/<: 3l i jla o] da) ", o (2@1 1))1@

/aIin ’bl‘Inl i lq
x ("”( ) ZJOa[l-[h(a)r]da+ [y’ Zjoc[h((x)] doc)

s=1

I (@)

[ S8}

+

M=

1
n

Remark 27. Taking n =1 and h(«) = 1 — « in the Theorem 26
give [14], Theorem 3.2.

Theorem 28. Let y : ] — R be a differentiable map on |

andy' € L{a,, b,] with q> 1. If [y |" is (n,h)-polynomial con-
vex on [a,, b;], then for a € [0, 1], we have

- 1-(1/g)
< b—a, (1
2 4

q

a;)+y(b 1 (™
V) +(b) hl—a,J V()i

y P‘/(j))!q + |1/’,(h1)‘q;|‘//(“1)|

1 1/q 1-(1

J (1- @)1 - 20 [(e0)] da} +¥G> "
s=1 , "
x P‘” Gl n"” Dl ZJa|12¢x|[h(oc)]sdoc} .

(49)
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Proof. Assuming g > 1, utilizing Lemma 18, integral version of

improved power-mean inequality and convexity of the |y'|,
we get

a (b
w(a) +y(by) 1 wa)dx

‘ 2 b, —a
b, -

a

-a
< 1

J\I—Zaw aa, — (l—a)bl)‘dagbl

1-(1/9)
<[ (I-a)1 —2a\drx>

p 1/q9
(l*d)|l*20{‘|l// (aa, = (1-a)b,)]| doc) }

Qv—|w

0

b ; 4oy {(J.;au —20¢\d0¢> o
. <'[:]oc\1 - 20c|‘1//'(ocal -(1- a)bl)‘qda> 1/q:|
< b1;a1 y KDIMJ <J~(1](1_0¢)|1_2a‘|1//'(aa1 _(1_“)1’1)|qd¢x) I’q}
+ b];al o {(i) 1-(1/q) <JA;o¢\1 —2<x|\l//’(06a1 —a —a)hl)\qda> l/q}
- (i) s (J(l ~wf1-20f {IZ[I - @y )|
w05 ()
" (J:an 2 FZU - @l )+ 5 3 v 8) } )”q
< "1;“1 (i)l’“’”x [)w’(:ﬂ L el ;)w @)’
S [ 1w 20 (a)Fda} , f’% (;}) s

s=1J0

/a q _ i
N PV/ (41)| N v' ()" . lv' (@) ZJ a1 - 2a|[h(a)] da}

1/q

(50)

For g =1, we use the estimates of Theorem 19 which also
follows step by step the above estimates. This completes the
proof of theorem. O

6. Application to the Means

Consider a,, b; >0 are two numbers. The arithmetic, geo-
metric, logarithmic, and p-logarithmic means for a, and b,
are defined by,

b
Aay; by) = a1+ ! »G(ay, by) = a by,
b —a,
—— , a;#b
L=L(a}, b)) = Inb, —Ina, 1T
ay, a, =b;

bp+17ap+l 1p
— 1L v | a#b,peR\{-1,0
L,=Ly(ayb,)= {(P*’l)(l%_“l)} e t }

aj, a; =b,,

(51)

Proposition 29. Let a;, b, € (0,00) with a; < b,, then the fol-
lowing inequalities hold:

A'(ap, b)) <Ep(ap, b)) <al +
(52)

Proof. Taking y(x) = x",x €[0,00) in Theorem 9 we obtain
the required result. O

Proposition 30. Let a;, b, € (0,00) with a; < b,, then the fol-
lowing inequalities hold:

_ ~ ) bo—a)
Aay b)) <L (ay b)) <a;' + %;Z

Proof. Taking w(x) =x""! € (0,00) in Theorem 9 we obtain
the required result. O

7. Conclusion

In this paper we introduced a new more generalized class of
(n,h)-polynomial convex functions and gave some of its
basic interesting properties. We also established Hermite-
Hadamard type inequalities for (#,h)-polynomial convex
functions. Some applications of the results to the special
means are also given. The remarks presented in the paper
justify that our results are extension and generalization of
many existing results. It will be interesting to establish Her-
mite-Hadamard, Fejér, and Jensen type inequalities for the
different fractional integral operators.
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