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In this paper, we describe the structure of Lie n-centralizers of a trivial extension algebra. We then present some conditions under
which a Lie n-centralizer on a trivial extension algebra is proper. As an application, we consider Lie n-centralizers on a triangular
algebra.

1. Introduction

Let R be a unital commutative ring, U be a unital algebra
over R, and Z(U) be the center of U. Let [x, y] � xy − yx
denote the Lie product of elements x, y ∈ U. An R-linear
map ϕ: U⟶ U is called a left (right) centralizer if
ϕ(xy) � ϕ(x)y(ϕ(xy) � xϕ(y)) holds for all x, y ∈ U.
Furthermore, δ is called a centralizer if it is both a left
centralizer and a right centralizer. Centralizers on rings
as well as algebras have been extensively investigated (see
[1–5]). An R-linear map δ: U⟶ U is called a Lie
centralizer if δ([x, y]) � [δ(x), y] for all x, y ∈ U. It is

easy to check that δ is a Lie centralizer on U if and only if
δ([x, y]) � [x, δ(y)] for all x, y ∈ U. If a Lie centralizer
δ: U⟶ U can be expressed as δ(x) � λx + τ(x), where
λ ∈ Z(U) and τ: U⟶ Z(U) is a linear map vanishing at
commutators [x, y] for all x, y ∈ U. Ten, the R-linear
map δ: U⟶ U is called a proper Lie centralizer. Re-
cently, the structure of Lie centralizers is studied by many
mathematicians (see [6–10]).

LetU be a unital algebra over R andM be aU-bimodule.
Ten, the direct productU × M equipped with the pairwise
addition, scalar product, and the algebra product is given by

(u, m) u′, m′( ) � uu′, um′ + mu′( ), for all u, u′ ∈ U, m, m′ ∈M, (1)

which forms a unital algebra, which is called a trivial ex-
tension algebra of U by M and will be denoted by U∝M.
Te center of U∝M is given by

Z(U∝M) � (u, m)|u ∈ Z(U), u′, m[ ] � 0 � u, m′[ ], for all u′ ∈ U, m′ ∈M{ }. (2)
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Trivial extension algebras have been extensively studied
in algebra and analysis (see [11–16]). In this paper, we will
study the structure of Lie n-centralizers on a trivial extension
algebra.

2. Preliminaries

In this paper, we mainly discuss the trivial extension
algebraU∝M for whichU has a nontrivial idempotent α
satisfying

αmβ � m, for all m ∈M, (3)

where β � I − α. A triangular algebra is an important ex-
ample of a trivial extension algebra that satisfes (3). Let A

and B be unital algebras over a unital commutative ring R,
and let M be a unital (A, B)-bimodule. Ten, the set

Tri(A, M, B) �
a m

0 b
  | a ∈ A, m ∈M, b ∈ B , (4)

forms an algebra under the usual matrix addition and formal
matrix multiplication. Such an algebra is called a triangular
algebra (see [17]). It is easy to prove that Tri(A, M, B) is
isomorphic to the trivial extension algebra (A⊕B)∝M,
where the algebra A⊕B is equipped with the usual pairwise
operations and M is regarded as an (A⊕B)-bimodule
equipped with the module operations (a, b)m � am and
m(a, b) � mb for all (a, b) ∈ A⊕B and m ∈M. Assuming
α � (IA, 0) and β � (0, IB), it is easy to show that α is
a nontrivial idempotent of A⊕B and αmβ � m for all m ∈M.
In addition, we can get

α(A⊕B)α � A, α(A⊕B)β � 0{ }, β(A⊕B)α � 0{ },

β(A⊕B)β � B.
(5)

If a trivial extension algebraU∝M satisfes (3), then the
center of U∝M coincides with

Z(U∝M) � (u, 0)|u ∈ Z(U), [u, m] � 0, for all m ∈M{ }.

(6)

Next, we give the defnition of Lie n-centralizers. Let us
defne the following sequence of polynomials:

p1 x1(  � x1,

p2 x1, x2(  � p1 x1( , x2  � x1, x2 ,

p3 x1, x2, x3(  � p2 x1, x2( , x3  � x1, x2 , x3 ,

. . . . . .

pn x1, x2, . . . , xn(  � pn−1 x1, x2, . . . , xn−1( , xn .

(7)

Te polynomial pn(x1, x2, . . . , xn) is said to be an
(n − 1)-th commutator (n≥ 2). A Lie n-centralizer is an
R-linear map f: U⟶ U which satisfes the rule

f pn x1, x2, . . . , xn( (  � pn f x1( , x2, . . . , xn( , (8)

for all x1, x2, . . . , xn ∈ U. If there exists an element
λ ∈ Z(U) and an R-linear map τ: U⟶ Z(U) vanishing
on each (n − 1)-th commutator pn(x1, x2, . . . , xn) such that

f(x) � λx + τ(x) for all x ∈ U, then the Lie n-centralizer f

is called a proper Lie n-centralizer.
Now, we state some lemmas which are very important

for proving the main results.

Lemma 1 (see [13] Proposition 2.5.) Let U be a unital al-
gebra and M be a U-bimodule. Suppose that U has a non-
trivial idempotent α and denote β � I − α.Ten, the following
statements are equivalent:

(i) For all m ∈M, αmβ � m.
(ii) For all m ∈M, βm � 0 � mα.
(iii) For all m ∈M, αm � m � mβ.
(iv) For all m ∈M and u ∈ U, um � αuαm and

mu � mβuβ.

Lemma 2. Let U be a unital algebra containing a nontrivial
idempotent α andM be aU-bimodule satisfying αmβ � m for
all m ∈M, where β � I − α. Ten, every Lie n-centralizer
f: U⟶ U satisfes [f(αuβ), m] + [f(βuα), m] � 0 for all
u ∈ U, m ∈M.

Proof. Since f is a Lie n-centralizer, it follows that

f(αuβ) � f pn(α, αuβ, β, . . . , β)( 

� pn(f(α), αuβ, β, . . . , β),
(9)

for all u ∈ U. According to Lemma 1, we obtain
[f(αuβ), m] � 0 for all u ∈ U and m ∈M. In a similar way,
we get [f(βuα), m] � 0 for all u ∈ U and m ∈M. Terefore,
f satisfes [f(αuβ), m] + [f(βuα), m] � 0 for all
u ∈ U, m ∈M. □

In particular, based on the fact that every centralizer is
a Lie n-centralizer, if ϕ is a centralizer, then we have
[ϕ(αuβ), m] + [ϕ(βuα), m] � 0 for all u ∈ U, m ∈M.

Lemma 3 (see [16] Lemma 2.2). Let f: U∝M⟶ U∝M

be an R-linear map and f have the following form
f((u, m)) � (fU(u) + hU(m), fM(u) + hM(m)), then f is
a centralizer if and only if the following conditions hold:

(1) fU: U⟶ U is a centralizer;
(2) fM: U⟶M is a centralizer;
(3) uhU(m) � hU(um) � 0 � hU(mu) � hU(m)u for all

u ∈ U and m ∈M;
(4) uhM(m) � hM(um) � fU(u)m and mfU(u) � hM

(mu) � hM(m)u for all u ∈ U and m ∈M;
(5) hU(m)n � 0 � mhU(n) for all m, n ∈M.

Lemma 4 (see [12], Lemma 3.11). Assume that U∝M is
a trivial extension algebra satisfying (3). Ten, the following
statements hold:

(1) Te center of U∝M is given by
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Z(U∝M) � (u, 0); u ∈ U, αuα ∈ Z(αUα), βuβ ∈ Z(βUβ), αuαu12 � u12βuβ

u21αuα � βuβu21, [u, m] � 0, for all u12 ∈ αUβ, u21 ∈ βUα,m ∈M.
(10)

(2) [Z(U),M] � 0, if one of the following conditions
holds:

(i) Z(αUα) � παUα(Z(U∝M)) and αUβ is
faithful as a right βUβ-module.

(ii) Z(βUβ) � πβUβ(Z(U∝M)) and αUβ is faith-
ful as a left αUα-module.

Lemma 5. An R-linear map ϕ: U⟶ U is a centralizer if
and only if there exists an element λ ∈ Z(U) such that ϕ(x) �

λx for all x ∈ U.

Proof. Suppose that ϕ: U⟶ U is a centralizer, then we
have

ϕ(x) � ϕ(Ix) � ϕ(I)x � ϕ(xI) � xϕ(I), (11)

for all x ∈ U. Set ϕ(I) � λ, then we get λ ∈ Z(U) and ϕ(x) �

λx for all x ∈ U.
Conversely, it is clear. □

3. Lie n-Centralizers on U~M

Te following result gives the structure of a Lie n-centralizer
on a trivial extension algebra.

Theorem 6. Let f: U∝M⟶ U∝M be an R-linear map
and f have the following form:

f((u, m)) � fU(u) + hU(m), fM(u) + hM(m)( , (12)

where fU: U⟶ U; hU: M⟶ U; fM: U⟶M; hM:

M⟶M are R-linear maps. Ten, f is a Lie n-centralizer if
and only if the following conditions are satisfed:

(i) fU: U⟶ U is a Lie n-centralizer;
(ii) fM: U⟶M is a Lie n-centralizer;
(iii) hU(pn(m1, u2, . . . , un)) � pn(hU(m1), u2, . . . , un) �

0 and hU(pn(u1, . . . , mi, . . . , un)) � 0 for all
u1, u2, . . . , un ∈ U, mi ∈M, and i ∈ 2, . . . , n{ };

(iv) hM(pn(m1, u2, . . . , un)) � pn(hM(m1), u2, . . . , un)

and hM(pn(u1, . . . , mi, . . . , un)) � pn(fU(u1),

. . . , mi, . . . , un) for all u1, . . . , un ∈ U, mi ∈M, and
i ∈ 2, . . . , n{ };

(v) pn(hU(m1), u2, . . . , mi, . . . , un) � 0 for all
u2, . . . , un ∈ U, m1, mi ∈M, and i ∈ 2, . . . , n{ }.

Proof. Since f is a Lie n-centralizer on U∝M, it follows
that

f pn x1, x2, . . . , xn( (  � pn f x1( , x2, . . . , xn( , (13)

for all x1, x2, . . . , xn ∈ U∝M.
Let us choose x1 � (u1, 0), x2 � (u2, 0), . . . , xn � (un, 0)

in (13). Ten, we obtain

f pn x1, x2, . . . , xn( (  � fU pn u1, u2, . . . , un( ( , fM pn u1, u2, . . . , un( ( ( ,

f pn x1, x2, . . . , xn( (  � pn f x1( , x2, . . . , xn( 

� pn fU u1( , fM u1( ( , u2, 0( , . . . , un, 0( ( 

� pn fU u1( , u2, . . . , un( , pn fM u1( , u2, . . . , un( ( ,

(14)

for all u1, u2, . . . , un ∈ U. Comparing the above equations,
we have that fU: U⟶ U and fM: U⟶M are Lie
n-centralizers.

Let us consider x1 � (u1, 0), x2 � (u2, 0), . . . , xn �

(0, mn) in (13). Ten, we deduce

f pn x1, x2, . . . , xn( (  � hU pn u1, u2, . . . , mn( ( , hM pn u1, u2, . . . , mn( ( ( ,

f pn x1, x2, . . . , xn( (  � pn f x1( , x2, . . . , xn(  � 0, pn fU u1( , u2, . . . , mn( ( ,
(15)

for all u1, u2, . . . , un−1 ∈ U, mn ∈M. Comparing the
abovementioned relations, we conclude
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hU pn u1, u2, . . . , mn( (  � 0,

hM pn u1, u2, . . . , mn( (  � pn fU u1( , u2, . . . , mn( .
(16)

Similarly, considering x1 � (u1, 0), x2 � (u2, 0), . . . , xi �

(0, mi), . . . , xn � (un, 0) in (13), i ∈ 2, . . . , n − 1{ }, we fnd

hU pn u1, . . . , mi, . . . , un( (  � 0,

hM pn u1, . . . , mi, . . . , un( (  � pn fU u1( , . . . , mi, . . . , un( ,

(17)

for all u1, . . . , un ∈ U, mi ∈M, where i ∈ 2, . . . , n{ }. Setting
x1 � (0, m1), x2 � (u2, 0), . . . , xn � (un, 0) in (13), we get

hU pn m1, u2, . . . , un( (  � pn hU m1( , u2, . . . , un( ,

hM pn m1, u2, . . . , un( (  � pn hM m1( , u2, . . . , un( .

(18)

Since hU(pn(m1, u2, . . . , un)) � −hU (pn(u2, m1, . . . ,

un)), it follows from (17) and (18) that

hU pn m1, u2, . . . , un( (  � pn hU m1( , u2, . . . , un(  � 0,

(19)

for all m1 ∈M, u2, . . . , un ∈ U.
If we take x1 � (0, m1), x2 � (0, m2), x3 � (u3, 0), . . . ,

xn � (un, 0) in (13), then we arrive at

f pn x1, x2, . . . , xn( (  � 0,

f pn x1, x2, . . . , xn( (  � pn f x1( , x2, . . . , xn(  � 0, pn hU m1( , m2, u3, . . . , un( ( .
(20)

Hence, pn(hU(m1), m2, u3, . . . , un) � 0 for all
m1, m2 ∈M, u3, . . . , un ∈ U. In an analogous way, we obtain
pn(hU(m1), u2, . . . , mi, . . . , un) � 0 for all m1, mi ∈M, u2,

. . . , un ∈ U, where i ∈ 2, . . . , n{ }.

Conversely, taking x1 � (u1, m1), x2 � (u2, m2), . . . ,

xn � (un, mn), we get from (i)–(v) that

pn f x1( , x2, . . . , xn(  � pn fU u1(  + hU m1( , fM u1(  + hM m1( ( , u2, m2( , . . . , un, mn( ( 

� pn fU u1( , u2, . . . , un( , pn fU u1(  + hU m1( , u2, . . . , un−1, mn( (

+ pn fU u1(  + hU m1( , u2, . . . , mn−1, un( 

+ · · · + pn fM u1(  + hM m1( , u2, . . . , un( 

� fU pn u1, u2, . . . , un( (  + hU pn u1, . . . , un−1, mn( ( (

+ · · · + hU pn m1, u2, . . . , un( ( , fM pn u1, u2, . . . , un( ( 

+ hM pn u1, . . . , un−1, mn( (  + · · · + hM pn m1, u2, . . . , un( ( 

� f pn u1, m1( , u2, m2( , . . . , un, mn( ( ( 

� f pn x1, x2, . . . , xn( ( .

(21)

Hence, f is a Lie n-centralizer on U∝M. □

Now, we can present the frst main result of this paper,
which provides the necessary and sufcient conditions for
a Lie n-centralizer on a trivial extension algebra U∝M
satisfying (3) to be proper.

Theorem 7. Let U∝M be a trivial extension algebra sat-
isfying (3). Suppose that f: U∝M⟶ U∝M is a Lie
n-centralizer and has the form

f((u, m)) � fU(u) + hU(m), fM(u) + hM(m)( , (22)

then f is proper if and only if the following conditions are
satisfed:

(1) Tere exists an R-linear map τU: U⟶ Z(U) such
that

(i) fU − τU is a centralizer on U and
(ii) [τU(αuα), m] � 0 � [τU(βuβ), m] for all u ∈

U, m ∈M.

(2) fM(βuα) � 0 for all u ∈ U.

Proof. Since f is a Lie n-centralizer on U∝M, it follows
that f satisfes Teorem 6. Assume that the assumptions (1)
and (2) hold, we defne two maps ϕ, τ: U∝M⟶ U∝M
satisfying ϕ((u, m)) � ((fU − τU)(u) + hU(m), fM(u)+

hM(m)) and τ((u, m)) � (τU(u), 0). Clearly, f � ϕ + τ. We
claim that τ(U∝M)⊆Z(U∝M). Indeed, according to
(6), it sufces to prove that [τU(u), m] � 0 for all
u ∈ U, m ∈M. Since fU − τU is a centralizer and fU is
a Lie n-centralizer, it follows from the assumption (1)(ii)
and Lemma 2 that
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τU(u), m  � τU(αuβ) + τU(βuα), m 

� fU − fU − τU( ( (αuβ) + fU − fU − τU( ( (βuα), m 

� fU(αuβ) + fU(βuα), m  − fU − τU( (αuβ) + fU − τU( (βuα), m 

� 0,

(23)

for all u ∈ U, m ∈M.Terefore, τ(U∝M)⊆Z(U∝M). By
Lemma 5, it remains to show that ϕ is a centralizer on
U∝M.

According to Lemma 3 and the assumption (1)(i), it
sufces to prove that ϕ satisfes the following conditions: fM

is a centralizer; uhM(m) � hM(um) � (fU − τU)(u)m,
m(fU − τU)(u) � hM(mu) � hM(m)u, uhU(m) � hU

(um) � 0 � hU(mu) � hU(m)u, and hU(m)n � 0 � mhU(n)

for all u ∈ U, m, n ∈M.
Since fM satisfes fM(pn(u1, u2, . . . , un)) � pn

(fM(u1), u2, . . . , un), it follows from

fM pn(αuα, β, . . . , β)(  � 0, (24)

that fM(αuα)β � 0. Similarly, αfM(βuβ) � 0 for all u ∈ U.
Terefore,

fM(αuα) � fM(βuβ) � 0. (25)

Next, we defne an R-linear map δ: U⟶M by δ(u) �

fM(αuβ) for all u ∈ U. For each u1, u2 ∈ U, we get

δ u1u2(  � fM αu1u2β( 

� fM αu1αu2β(  + fM αu1βu2β( 

� fM pn αu1α, αu2β, β, . . . , β( (  + fM pn αu1β, βu2β, β, . . . , β( ( 

� pn fM αu1α( , αu2β, β, . . . , β(  + pn fM αu1β( , βu2β, β, . . . , β( 

� fM αu1β( βu2β

� fM αu1β( u2

� δ u1( u2.

(26)

On the other hand, we have

δ u1u2(  � fM αu1u2β( 

� pn αu1α, fM αu2β( , β, . . . , β(  + pn αu1β, fM βu2β( , β, . . . , β( 

� αu1αfM αu2β( 

� u1fM αu2β( 

� u1δ u2( .

(27)
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According to the assumption (2) and (25), we obtain
fM(u) � δ(u). Terefore, fM satisfes fM(u1u2) � fM(u1)

u2 � u1fM(u2). Tat is, fM is a centralizer.
Using [τU(αuα), m] � 0 and the fact that fU − τU is

a centralizer, we arrive at

hM(um) � hM pn(αuα, m, β, . . . , β)( 

� pn fU(αuα), m, β, . . . , β( 

� fU(αuα), m 

� fU − τU( (αuα), m  + τU(αuα), m 

� α fU − τU( (u)α, m 

� fU − τU( (u)m,

hM(um) � −hM pn(m, αuα, β, . . . , β)( 

� −pn hM(m), αuα, β, . . . , β( 

� αuα, hM(m) 

� uhM(m),

(28)

for all u ∈ U, m ∈M. Similarly, we get hM(mu) � hM(m)

u � m(fU − τU)(u) for all u ∈ U, m ∈M.
Applying Teorem 6 yields that hU(m) � hU(pn(α, m,

β, . . . , β)) � 0 for all m ∈M. Hence, uhU(m) � hU(um) �

0 � hU(mu) � hU(m)u and hU(m)n � 0 � mhU(n) for all
u ∈ U, m, n ∈M. Terefore, ϕ is a centralizer. Finally,

τ pn x1, x2, . . . , xn( (  � f pn x1, x2, . . . , xn( (  − ϕ pn x1, x2, . . . , xn( ( 

� pn f x1( , x2, . . . , xn(  − pn ϕ x1( , x2, . . . , xn( 

� pn f x1(  − ϕ x1( , x2, . . . , xn( 

� pn τ x1( , x2, . . . , xn( 

� 0,

(29)

for all x1, x2, . . . , xn ∈ U∝M.
Conversely, suppose that f is proper, then there exists

a centralizer ϕ: U∝M⟶ U∝M and an R-linear map
τ: U∝M⟶ Z(U∝M) such that f � ϕ + τ. In view of
(6), we get τ((u, m)) � (τU(u), 0), where τU: U⟶ Z(U)

is an R-linear map satisfying [τU(u), m] � 0 for all
u ∈ U, m ∈M. On the other hand, f − τ � ϕ is a centralizer
on U∝M and by Lemma 3, fU − τU, fM are centralizers.
According to Lemma 1, we getfM(βuα) � fM(β)uα � 0 for
all u ∈ U. □

Using Teorem 7 and Lemma 4, we can give the next
main result, which provides the sufcient conditions for any
Lie n-centralizer on a trivial extension algebra to be proper.

Corollary  . Assume that U∝M is a trivial extension al-
gebra satisfying (3) and f is a Lie n-centralizer on U∝M
with the form

f((u, m)) � fU(u) + hU(m), fM(u) + hM(m)( . (30)

Then,f is proper if the following conditions are satisfed:

(1) Every Lie n-centralizer on U is proper;
(2) fM(βuα) � 0 for all u ∈ U;
(3) One of the following two conditions holds:

(i) Z(αUα) � παUα(Z(U∝M)) and αUβ is
faithful as a right βUβ-module;

(ii) Z(βUβ) � πβUβ(Z(U∝M)) and αUβ is faith-
ful as a left αUα-module.

Proof. Since f is a Lie n-centralizer on U∝M, it follows
from Teorem 6 that fU is a Lie n-centralizer on U.
According to the assumption (1), there exists an R-linear
map τU: U⟶ Z(U) such that fU − τU is a centralizer and
τU vanishes on all (n − 1)-th commutators of U. By Te-
orem 7, it is sufcient to show that τU satisfes
[τU(αuα), m] � 0 � [τU(βuβ), m] for all u ∈ U, m ∈M.
Using Lemma 4, if the assumption (3)(i) or (3)(ii) holds,
then we have [Z(U),M] � 0, which implies [τU(αuα), m] �

0 � [τU(βuβ), m] for all u ∈ U, m ∈M. □

Applying Teorem 7 to triangular algebras, we can
obtain the following result.

Corollary 9. Let f be a Lie n-centralizer on a triangular
algebra Tri(A, M, B), then f has the form

f(((a, b), m)) � fA⊕B((a, b)), fM((a, b)) + hM(m)( ,

(31)
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where (a, b) ∈ A⊕B, m ∈M, and f is proper if and only if
there exists a linear map τA⊕B: A⊕B⟶ Z(A⊕B), satisfying
the following conditions:

(1) fA⊕B − τA⊕B is a centralizer on A⊕B;
(2) [τA⊕B((a, b)), m] � 0 for all (a, b) ∈ A⊕B and

m ∈M.

Proof. In view of Teorem 6, we have

hA⊕B(m) � hA⊕B pn(α, m, β, . . . , β)(  � 0, (32)

for all m ∈M. Tat is,

f(((a, b), m)) � fA⊕B((a, b)), fM((a, b)) + hM(m)( ,

(33)

where (a, b) ∈ A⊕B, m ∈M. According to Teorem 7, the
remaining part is true. □
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