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In this paper, we describe the structure of Lie n-centralizers of a trivial extension algebra. We then present some conditions under
which a Lie n-centralizer on a trivial extension algebra is proper. As an application, we consider Lie n-centralizers on a triangular

algebra.

1. Introduction

Let R be a unital commutative ring, % be a unital algebra
over R, and Z (%) be the center of %. Let [x, y] = xy —yx
denote the Lie product of elements x, y € . An R-linear
map ¢: % — U is called a left (right) centralizer if
d(xy) = p(x)y(Pp(xy) = x¢(y)) holds for all x,ye %.
Furthermore, § is called a centralizer if it is both a left
centralizer and a right centralizer. Centralizers on rings
as well as algebras have been extensively investigated (see
[1-5]). An R-linear map 6: % — % 1is called a Lie
centralizer if §([x, y]) = [0(x), y] for all x,y € %. It is

(u,m) (u',m') = (uu’,um’ + mu'),

which forms a unital algebra, which is called a trivial ex-
tension algebra of % by . and will be denoted by % o /.
The center of % oc # is given by

easy to check that § is a Lie centralizer on % if and only if
O([x, ¥]) = [x,8(y)] for all x,y € %. If a Lie centralizer
8: U —> U can be expressed as §(x) = Ax + 7(x), where
Ae Z(%)and : 4 — Z(%) is alinear map vanishing at
commutators [x, y] for all x, y € %. Then, the R-linear
map 6: 4 — % is called a proper Lie centralizer. Re-
cently, the structure of Lie centralizers is studied by many
mathematicians (see [6-10]).

Let % be a unital algebra over R and . be a % -bimodule.
Then, the direct product % x ./ equipped with the pairwise
addition, scalar product, and the algebra product is given by

forallu,u’ € U,m,m' € M, (1)

Z(U c M) ={(u,m)lu € Z(U), [u,m]=0=[um'],forallu’ € U m' € M} 2)


https://orcid.org/0000-0001-7364-7137
https://orcid.org/0000-0001-9093-762X
mailto:yuanhe1983@jlnu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/3035493

Trivial extension algebras have been extensively studied
in algebra and analysis (see [11-16]). In this paper, we will
study the structure of Lie n-centralizers on a trivial extension
algebra.

2. Preliminaries

In this paper, we mainly discuss the trivial extension
algebra % oc # for which % has a nontrivial idempotent «
satisfying

amf =m, forallme M, (3)
where f=1—a. A triangular algebra is an important ex-
ample of a trivial extension algebra that satisfies (3). Let A
and B be unital algebras over a unital commutative ring R,
and let M be a unital (A, B)-bimodule. Then, the set

'HMAJMJ%z{(S’Z)IaGAJnEALbeB} (4)

forms an algebra under the usual matrix addition and formal
matrix multiplication. Such an algebra is called a triangular
algebra (see [17]). It is easy to prove that Tri(A, M, B) is
isomorphic to the trivial extension algebra (A®B) o ./,
where the algebra A @ B is equipped with the usual pairwise
operations and M is regarded as an (A@® B)-bimodule
equipped with the module operations (a,b)m =am and
m(a,b) = mb for all (a,b) € A®B and m € M. Assuming
a=(I14,0) and B = (0,Ip), it is easy to show that « is
a nontrivial idempotent of A®B and amff = mforallm € M.
In addition, we can get

a(AeBla= A a(AeB)S = {0},(A®B)a = {0},

B(A®B)B = B. ©)

If a trivial extension algebra % oc  satisfies (3), then the
center of % oc A coincides with

Z(U < M) ={(u,0)|lu € Z(%), [u,m] =0, forall m € M}.
(6)

Next, we give the definition of Lie n-centralizers. Let us
define the following sequence of polynomials:

pi(x;) =%,
P2 (%1 %,) =[Py (1), %5 ] = [x1,%,],
P3 (%1, %5, %3) = [Py (X1, %), %3] = [[x1, %, ], x5], (7)

Pn (xl’XZ’ e ’xn) = [pn—l (xl’xZ’ s ’xn—l)’xn]'

The polynomial p, (x;,x,,...,x,) is said to be an
(n—1)-th commutator (n>2). A Lie n-centralizer is an
R-linear map f: % — % which satisfies the rule

f(pn (xl’xZ"‘ "xn)) = pn(f(xl)’xZ" . "xn)’ (8)

for all x,,x,,...,x,€%. If there exists an element
A € Z(%) and an R-linear map 7: % — Z (%) vanishing
on each (n - 1)-th commutator p,(x;,x,,...,x,) such that
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f(x) =Ax + 7(x) for all x € %, then the Lie n-centralizer f
is called a proper Lie n-centralizer.

Now, we state some lemmas which are very important
for proving the main results.

Lemma 1 (see [13] Proposition 2.5.) Let % be a unital al-
gebra and M be a U-bimodule. Suppose that % has a non-
trivial idempotent « and denote 5 = I — o. Then, the following
statements are equivalent:

(i) For all m € M, ampf = m.
(ii) For all m € M, pm =0 = ma.
(iii) For all m € M, aom = m = mp.

(iv) For all me M and ue€ U, um=auam and
mu = mpup.

Lemma 2. Let % be a unital algebra containing a nontrivial
idempotent o and M be a U-bimodule satisfying amf3 = m for
all m e M, where f=1—a. Then, every Lie n-centralizer
f: U — U satisfies [ f (auf),m] + [ f (Bua),m] = 0 for all
ueUme M.

Proof. Since f is a Lie n-centralizer, it follows that

f(aup) = f(pa(a, aup,p..... )
= pu(f(@)sauf, ..., B)

for all ue%. According to Lemma 1, we obtain
[f (auf),m] =0 forall u € % and m € . In a similar way,
we get [ f (Bua),m] = 0 forallu € % and m € M. Therefore,
f  satisfies  [f(auf),m]+ [f (Bua),m] =0 for all
ueUme . O

(9)

In particular, based on the fact that every centralizer is
a Lie n-centralizer, if ¢ is a centralizer, then we have
[¢ (auf),m] + [¢ (Pua),m] =0 for all u € U, m e M.

Lemma 3 (see [16] Lemma 2.2). Let f: UM — U M
be an R-linear map and f have the following form
S (u,m)) = (fo (1) + hgy (m), f 4 (W) + by (m)), then [ is

a centralizer if and only if the following conditions hold:
(1) fo: U — U is a centralizer;
(2) f 2 U — M is a centralizer;
(3) uhg, (m) = hy, (um) = 0 = hy, (mu) = hy, (m)u for all
ueU and m e M;

(4) uh , (m) = h 4 (um) = fo,(uym and mfy (u) =h,
(mu) = h ,(m)u for all u € U and m € M;

(5) hgy (m)n = 0 = mhy, (n) for all m,n € M.

Lemma 4 (see [12], Lemma 3.11). Assume that % oc M is
a trivial extension algebra satisfying (3). Then, the following
statements hold:

(1) The center of U o< M is given by
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Z(U o M) ={(1,0);u € U, oauax € Z(aU ), Puf € Z(BUP), auauy, = uy,fuf

Uy aua = PuPusy;, [u,m] = 0,foralluy, € a%p,u,, € fU%a,m € M}.

(2) [Z(%), #] =0, if one of the following conditions
holds:

(i) Z(aUa) = 79y (Z(U o< M)) and
faithful as a right B2 3-module.

(ii) Z(BUp) = g (Z (U o< M)) and a2 is faith-
ful as a left a2 a-module.

aUB s

Lemma 5. An R-linear map ¢: U — U is a centralizer if
and only if there exists an element A € Z (%) such that ¢ (x) =
Ax for all x € %.

Proof. Suppose that ¢: % — % is a centralizer, then we
have

¢(x) =¢(Ix) = ¢(I)x = ¢ (xI) = x¢ (I), (11)

forall x € %.Set ¢ (I) = A, thenwegetd € Z(%)and ¢ (x) =
Ax for all x € .
Conversely, it is clear. O

3. Lie n-Centralizers on % « ./

The following result gives the structure of a Lie n-centralizer
on a trivial extension algebra.

Theorem 6. Let f: U oc M —> U o< M be an R-linear map
and f have the following form:

(10)

J(w,m) = (fo (W) + hyy (m), f 4 (W) + by (m)),  (12)

where fo: U — Ushyy: M — U; [y U — Mihy:
M — M are R-linear maps. Then, f is a Lie n-centralizer if
and only if the following conditions are satisfied:

(i) fo: 4 — U is a Lie n-centralizer;
(ii) f 42 U — M is a Lie n-centralizer;
(1”) h% (Pn (ml’ Ups oo un)) = Pu (h% (H’ll), Uys oo Un) =

0 and hy(p,(u,....,m,...,u,))=0 for all
UpUys .. U, €U m; € M, and i € {2,...,n};

(iv) by (p,(my, 1y, .. 5u,)) = p,(hy(my),u,, ..., u,)
and  h,(p,(u,....,m,...,u,)) = p,(fo (up),
csMy . uy) forallug, .. o,u, € U m; € M, and
ie{2,...,nk

(v) p,Chy (m),uy,...,m; .. .u,) =0 for all
Uy ooy U, €U my,m; € M, and i € {2,...,n}.

Proof. Since f is a Lie n-centralizer on % o< A, it follows
that

f(pn('xl’xZ" "’xn)) = Pn(f(xl)’va .

for all x;,x,,...,x, € ¥ < M.
Let us choose x; = (141,0),x, = (4,,0),...,x, = (1,,0)
in (13). Then, we obtain

,x,),  (13)

F(Pu(xi %0, 5%,)) = (for (P (s -5 10))s £ (P (s 115 - -5 1)),
f(pn (xl’x2’ s ’xn)) = pn (f(xl)’x2> R ’xn) (14)
= P (for (1) f.ae (1)), (4, 0), .., (14, 0))
= (pn (f‘ll (ul)’uZ’ T ’un)’pn (f/% (ul)’uZ’ R ’un))’
for all u;,u,,...,u, € %. Comparing the above equations, Let us consider x; = (uy,0),x, = (14,,0),...,x, =
we have that fo: % — % and f ,: % — M are Lie (0,m,) in (13). Then, we deduce
n-centralizers.
f(pn (xpxz’ tee ’xn)) = (h% (pn (“p“za s ’mn))’h//l (pn (ul’uZ’ tee ’mn)))’ (15)

LAV ACTEC

for all wuy,u,,...,u,, €% m,c #. Comparing the
abovementioned relations, we conclude

’xn)) = Pn (f(xl)’xz’ cee

’xn) = (O’Pn (f‘Z/ (”1)’“2’ s >mn))’



4
hoy (P (U1, 1y, - . . my,)) = 0, (16)
By (P (s iy - omy,)) = P (for (), thy, - oo my).
Similarly, considering x; = (1;,0),x, = (14,,0),...,x; =
(0,m),...,x, = (u,0) in (13), i € {2,...,n— 1}, we find
hy (p, (g, ..,my, ... u,)) =0,
by (Po(ugs - smys o)) = oy (fo (U)o smy o uy),
(17)
for all u,,...,u, € %, m; € M, where i € {2,...,n}. Setting

x; = (0,m),x, = (1,,0),...,x, = (u,,0) in (13), we get

F(Pn (152055 %)) = 0,
S (e xa - 50)) = o (f (x1) %0
Hence,  p,(hgy (m,),my,us,...,u,)=0 for all
my,m, € M,us,...,u, € %.Inananalogous way, we obtain
P, (hy (my),uy, ... ,my, ... u,) =0 for all my,m; € M,u,,

..>U, € U, whereic€{2,...,n}

Pn (f(x1),3€2, e
= (Pn (f‘ll (ul): Uy, ...

+pn(f'2l(u1)+h?l (m1)>u2>'~~
+”'+pn(f%(u1)+h%(m1),u2,--.

= (f?l(pn(uhl"z:w-

+-+hy (p,(my,uy, ...

sty s y,)) e B (P, (Mt

+ha (...
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JUy),

Uy,
(18)

’un)) = pn (h‘?l (m1)7u27 ‘e
’un)) = Pn (h/%’ (ml)’ Uy, ...

hoy (P, (mys 1y, -
hy (P (my g, ..

Since hy, (p,(my,uy, ... u,)) = —hgy (p,(Uy,my,. ..,
u,)), it follows from (17) and (18) that

hoy (P (mysthys - s u,)) = (g (M), 14y, 1) = 0,

(19)
for all my € M,u,,...,u, € U.

If we take x; = (0,m,),x, = (0,m,), x5 = (u3,0),...,
x, = (u,,0) in (13), then we arrive at

(20)

»Uy))-

s %,) = (0, p,y (g (my), My, 1y, ..

Conversely, taking x; = (u;,my),x, = (uy,m,),.. .,
x, = (u,,m,), we get from (i)-(v) that

%) = Pu((for (1) + By (M), S (1) + g (1)), (uzmy), s ()

’un)’pn (f‘Zl (ul) + h?/ (’”1))”2) s ’un—l’mn)
’mn—l’un)
)
’un))+h‘2[(pn(ul""’un—l’mn)) (21)
’un))’ fﬂ (Pn (“1’“2) s ’un))

y)))

= f(pa (), (tm5), - (1, m,)))

= f(pa(x1 %, ...

Hence, f is a Lie n-centralizer on % oc /. O

Now, we can present the first main result of this paper,
which provides the necessary and sufficient conditions for
a Lie n-centralizer on a trivial extension algebra % oc .#
satistying (3) to be proper.

Theorem 7. Let % oc M be a trivial extension algebra sat-
isfying (3). Suppose that f: U oc M — U oc M is a Lie
n-centralizer and has the form

f(w,m)) = (fo (W) + hy (m), f 4 (W) + h 4 (m)),

then f is proper if and only if the following conditions are
satisfied:

(1) There exists an R-linear map t4;: U —> Z () such
that

(22)

 Xp))-

(i) fo — T4 is a centralizer on U and

(ii) [tq (aua),m] = 0 = [19, (Buf),m] for all ue
U,me M.

(2) fy(Pua) =0 for all u e %.

Proof. Since f is a Lie n-centralizer on % oc /, it follows
that f satisfies Theorem 6. Assume that the assumptions (1)
and (2) hold, we define two maps ¢, 7: ¥ oc M —> U o< M
satisfying ¢ ((u,m)) = ((fo — T90) (1) + hgy (M), f 4, (W)+
h , (m)) and 7 ((u, m)) = (14, (1), 0). Clearly, f = ¢ + 7. We
claim that 7(% oc M)CZ (U o< M). Indeed, according to
(6), it suffices to prove that [7y (u),m] =0 for all
ue¥Ume M. Since fq — 14 is a centralizer and fq, is
a Lie n-centralizer, it follows from the assumption (1)(ii)
and Lemma 2 that
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[74, (), m] =79 (aup) + 79, (Pua), m]
=[(fo = (fo— 1) (@up) + (fo = (fo - T2)) (Bua), m]
= [fo (aup) + fo (Bua),m] = [(fo — 79,) (auP) + (for — T9/) (Buer), m]

:0’

(23)

L (aua, B, .. )) =0, (24)
forallu € %,m € M. Therefore, T(U oc M)Z (U o< M). By Falp p 2
Lemma 5, it remains to show that ¢ is a centralizer on  that f , (aua)B = 0. Similarly, af , (Buf) =0 forallu € %.

U< M. Therefore,

According to Lemma 3 and the assumption (1)(i), it B B
suffices to prove that ¢ satisfies the following conditions: f,, (o) = £ 4 (Buf) = 0. (25)
is a centralizer; uh, (m)=h,(um)= (fo —14)Wm, Next, we define an R-linear map 8: % — . by & (u) =
m(fo = 79) (W) = h gy (mu) = hy(mu, uhy, (m) = hy f . (aup) for all u € %. For each u,u, € %, we get

(um) =0 = hy, (mu) = hy, (m)u, and hg, (m)n = 0 = mhy, (n)
forall u e 4,mmne M.

Since 4 satisfies  f 4 (p, (upthys. s 14y)) =
(f 4 (uy),uy, ..., u,,), it follows from

O (uyuy) = f_y (auu,)
= fu (e aB) + f 4 (s, Busy B)
= f o (py (oiy 0 01658, B, .., B)) + f e (P (tt, B, Btz B, B, -, B))
= P (f o (@), a1z B, ., B) + p,, (f o (ats, B), iz, B, -, B) (26)
= f.u (e, B)Bus,B
= fou (o Buy
=0 (uy)u,.

On the other hand, we have

6(u1u2) =fu (oculuZ[})
= pa(atta, £ (1), B, B) + P (s i (Bs) oo )
= auyaf 4 (au,f) (27)
=ty f 4 ()
= 1,8 ().



According to the assumption (2) and (25), we obtain
f . (u) = 8(u). Therefore, f , satisfies f , (uu,) = f 4 (1)
u, =uy f 4, (u,). That is, f , is a centralizer.

Using [y (aua),m] =0 and the fact that fo, — 14 is
a centralizer, we arrive at

hy (am) = h 4 (p, (aua,m,B,..., )
= pu(fo (qua),m,B, ..., p)
=[fy (aua), m]
=[(fo — 19) (aua), m] + 74, (aua), m]
=[a(fy - 79) Wa, m]
= (fo — T2) (Wm,
h (um) = —h , (p, (m, aua, B, ..., )
= —p, (hy (m),aua,f, ..., B)

= [aua, hy, (m)]

(28)
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for all u € %, m € M. Similarly, we get h , (mu) = h , (m)
u=m(fg —19)(u) forallue % me M.

Applying Theorem 6 yields that hy, (m) = hy, (p,, (a, m,
B,...,B)) =0 for all m € . Hence, uhy, (m) = hy, (um) =
0 = hy, (mu) = hy, (m)u and hg, (m)n = 0 = mhy, (n) for all
u € U m,n e M. Therefore, ¢ is a centralizer. Finally,

’xﬂ))
’xn) — Pn (¢(xl)’x2’ ce ’xn)

’xn)) - (p(Pn (xpxz, .

= pa(f (1) =0 (1), %5 - -, %) (29)

= uh_, (m),
(P (12055 %)) = f (Pu (15 %0 -
= Pu(f (x1), %55 ..
= Pn (T(xl)’xZ’ e ’xn)
= O,
for all x,,x,,...,x, € U x M.

Conversely, suppose that f is proper, then there exists
a centralizer ¢: % o< M — U oc M and an R-linear map
T U< M — Z(Uoc M) such that f = ¢+ 7. In view of
(6), we get 7((u,m)) = (14, (1),0), where 7o,: U4 — Z(U)
is an R-linear map satisfying [74 (u4),m] =0 for all
u € U,m € M.On the other hand, f — 7 = ¢ is a centralizer
on % o< M and by Lemma 3, fy, — 79, f , are centralizers.
According to Lemma 1, we get f , (Bua) = f , (B)ua = 0 for
allue. O

Using Theorem 7 and Lemma 4, we can give the next
main result, which provides the sufficient conditions for any
Lie n-centralizer on a trivial extension algebra to be proper.

Corollary 8. Assume that % oc M is a trivial extension al-
gebra satisfying (3) and f is a Lie n-centralizer on U oc M
with the form

f(u,m)) = (fo (u) + hoy (m), f 4 (W) +h g (m)). (30
Then, f is proper if the following conditions are satisfied:

(1) Every Lie n-centralizer on % is proper;
(2) fu(Pua) =0 for all u € %;
(3) One of the following two conditions holds:

(i) Z(aUa) = 7,9y (Z(U < M)) and
faithful as a right f%-module;

(if) Z(BUp) = TRop (Z(U < M)) and a?p is faith-
ful as a left a% a-module.

a?B is

Proof. Since f is a Lie n-centralizer on % oc A, it follows
from Theorem 6 that f, is a Lie n-centralizer on %.
According to the assumption (1), there exists an R-linear
map 7o U — Z(%) such that fo, — 74 is a centralizer and
Ty, vanishes on all (n— 1)-th commutators of %. By The-
orem 7, it is sufficient to show that 7, satisfies
[19, (aua),m] =0 = [19,(Buf),m] for all ue U me M.
Using Lemma 4, if the assumption (3)(i) or (3)(ii) holds,
then we have [Z (%), #] = 0, which implies [14, (aua), m] =
0= [19 (BuP),m] forall u e U,m e M. O

Applying Theorem 7 to triangular algebras, we can
obtain the following result.

Corollary 9. Let f be a Lie n-centralizer on a triangular
algebra Tri(A, M, B), then f has the form

f((a,b),m)) = (f aep (4, 1)), f a1 ((a, D)) + by (m)),
(31)
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where (a,b) € A®@B,m € M, and f is proper if and only if
there exists a linear map 7 ,q5: A®B — Z (A®B), satisfying
the following conditions:

(1) f peB — Taep IS a centralizer on A®B;

(2) [t495((a,b)),m] =0 for all (a,b)c A®B and
m e M.

Proof. In view of Theorem 6, we have
haes (M) = hyep (P, (sm, B, B))
for all m € M. That is,
f(((a,b),m)) = (f aep (@, 1)), frr (@, b)) + hyy (m)),

0, (32)

(33)
where (a,b) € A®B,m € M. According to Theorem 7, the
remaining part is true. O
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