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A semigroup is called an E-semigroup (R-semigroup) if the set of all idempotents (the set of all regular elements) forms
a subsemigroup. In this paper, we introduce the concept of V-semigroups and establish the relationship between the three classes
of semigroups.

1. Introduction and Preliminaries

Let S be a semigroup.An element e ∈ S is called an idempotent if
e2 � e. An element a ∈ S is called regular if there exists x ∈ S

such that a � axa. Denote by E(S) and Reg(S) the set of all
idempotents and the set of all regular elements in S, respectively.
We call S an E-semigroup if E(S) forms a subsemigroup and
a R-semigroup if Reg(S) forms a subsemigroup. S is called
regular if Reg(S) � S and called orthodox if S is a regular
E-semigroup. More details on regular semigroups and orthodox
semigroups can be seen in [1]. Fora ∈ S and e, f ∈ E(S), denote

V(a) � x ∈ S | a � axa, x � xax{ },

W(a) � x ∈ S | x � xax{ },

S(e, f) � g ∈ V(ef)∩E(S) | ge � fg � g .

(1)

Te elements of V(a) (resp., W(a)) are called inverse
elements (resp., weak inverse elements) of a. S(e, f) is called
the sandwich set of e and f. We now list some results about
E-semigroups and R-semigroups in the following results:

Result 1 (Result 2 [2]). Let S be a semigroup and E(S)≠∅.
Ten, the following statements are equivalent.

(1) S is a R-semigroup
(2) 〈E(S)〉 is a regular subsemigroup of S

(3) (∀e, f ∈ E(S)) ef ∈ Reg(S).

Result 2 (Teorem 3.1 [3]). Let S be a semigroup and
E(S)≠∅. Ten, the following statements are equivalent.

(1) S is an E-semigroup
(2) (∀a, b ∈ S) V(b)V(a)⊆V(ab)

(3) (∀e, f ∈ E(S)) ef ∈ S(e, f)

(4) (∀a, b ∈ S) W(b)W(a)⊆W(ab).

Result 3 (Proposition 3.4 [3]). Let S be an E-semigroup.
Ten,

(1) (∀e ∈ E(S)) V(e)⊆W(e)⊆E(S)

(2) (∀a, b ∈ S) V(a)∩V(b)≠∅⟹V(a) � V(b).

A relationship between R-semigroups and E-semigroups
established by congruences can be seen in [4]. From Results
1 and 2, we know that an E-semigroup is a R-semigroup.
However, the converse is not true in general (for example,
a regular (not orthodox) semigroup is a R-semigroup, but it
is not an E-semigroup). In this note, we introduce the
concept of V-semigroups and give the conclusion that
a semigroup S is an E-semigroup if and only if S is a R-
semigroup and a V-semigroup.

2. Main Results

Let S be a semigroup. For a ∈ S and A⊆ S, we denote
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V(A) � ∪
a∈A

V(a),

V
2
(a) � V(V(a)).

(2)

It is clear that V(e)⊆V(e)V(e) ∩V2(e) for any e ∈ E(S).

Defnition 1. Let S be a semigroup and E(S)≠∅. S is called
aV-semigroup ifV(e) is a subsemigroup for all e ∈ E(S), i.e.,
V(e)V(e) � V(e).

Proposition 1. Let S be a V-semigroup. Ten, V(e)⊆E(S)

for any e ∈ E(S).

Proof. Let x ∈ V(e). Ten, x2 ∈ V(e)V(e) � V(e). Tus,

x � xex � x ex2e x � (xex)(xex) � x
2
. (3)

Hence, x ∈ E(S). □

Theorem 1. Let S be a semigroup and E(S)≠∅. Ten, S is
a V-semigroup if and only if V2(e) � V(e) for all e ∈ E(S).

Proof. (⟹) Let e ∈ E(S) and a ∈ V2(e). Ten, there exists
b ∈ V(e) such that a ∈ V(b). It follows from Proposition 1
that b ∈ E(S). Also, a ∈ E(S). Tus,
ae, ea ∈ V(b)V(b) � V(b). Moreover,
aea, eae ∈ V(b)V(b) � V(b). Hence,

aea � (aba)e(aba) � a(baeab)a � aba � a,

eae � (ebe)a(ebe) � e(beaeb)e � ebe � e.
(4)

Terefore, a ∈ V(e). From V(e)⊆V2(e), we obtain the
result.

(⟸) Let e ∈ E(S) and x, y ∈ V(e). Ten, e ∈ V(ex) and
ex ∈ E(S). Tus, y ∈ V2(ex) � V(ex). It follows that

(xy)e(xy) � x(yexy) � xy,

e(xy)e � exy(exe) � (exyex)e � exe � e.
(5)

Hence, xy ∈ V(e). Terefore, we complete
this proof. □

Lemma 1. Let S be a semigroup and E(S)≠∅. Ten, the
following two statements are equivalent.

(1) V(e)⊆E(S) for any e ∈ E(S)

(2) W(e)⊆E(S) for any e ∈ E(S)

Proof. (1)⟹ (2) Let x ∈W(e) for some e ∈ E(S). Ten,
x � xex. It follows that

x(exe)x � (xex)ex � xex � x,

(exe)x(exe) � e(xex)exe � e(xex)e � exe,

(exe)(exe) � e(xex)e � exe.

(6)

Tus, x ∈ V(exe) and exe ∈ E(S). By condition (1), we
have x ∈ E(S).

(2) ⟹ (1) It follows from V(e)⊆W(e) for any
e ∈ E(S). □

Theorem  . Let S be a semigroup and E(S)≠∅. Ten, S is
aV-semigroup if and only if the following two conditions hold.

(1) (∀e ∈ E(S))V(e)⊆E(S) or (1′) (∀e ∈ E(S))W(e)

⊆E(S)

(2) (∀e, f ∈ E(S))V(e) ∩V(f)≠∅⟹V(e) � V(f).

Proof. (⟹) It follows from Proposition 1 that condition (1)
holds. Next, we prove condition (2). Let x ∈ V(e)∩V(f).
Ten, we have y ∈ V2(x)⊆V3(f) for any y ∈ V(e). From
Teorem 1, we have V2(f) � V(f). Tus,
y ∈ V3(f) � V2(f) � V(f). Hence, V(e)⊆V(f). By sym-
metry, V(f)⊆V(e).

(⟸) Let a ∈ V2(e). Ten, there exists x ∈ S such that
a ∈ V(x), e ∈ V(x). Also, e ∈ V(e). Tus, V(e)∩V(x)≠∅
andx ∈ V(e)⊆E(S) by condition (1). By condition (2), we have
V(x) � V(e). Hence, a ∈ V(e).Terefore,V2(e) � V(e) from
V(e)⊆V2(e), and so, S is a V-semigroup from Teorem 1.

From Result 3 and Teorem 2, we obtain the following
conclusion. □

Proposition  . Let S be an E-semigroup. Ten, S is a V-
semigroup.

In general, the converse is not true. See the following.

Example 1

(1) Let S � a, b, c, d{ } with the following operation:

· a b c d

a a
b
c
d

a a a
a a b a
a a c a
a b b d

We can see that E(S) � Reg(S) � a, c, d{ }. Moreover,
V(a) � a{ }, V(c) � c{ } and V(d) � d{ }. Tus, S is
a V-semigroup. However, E(S) is not a subsemigroup and so
S is not a E-semigroup. Indeed, dc � b ∉ E(S). Also, S is not
a R-semigroup.

(2) Let G � e{ } be a group, I � 1, 2{ } and

P � pλj  �
e e

0 e
 . (7)

Let S � (I × G × I)∪ 0{ }, and defne an operation on S by

(i, e, λ)(j, e, μ) �
(i, e, μ), if pλj � e,

0, if pλj � 0,

⎧⎨

⎩

(i, e, λ)0 � 0(i, e, λ) � 00 � 0.

(8)

Ten, S is a regular semigroup and so is aR-semigroup. It
is easy to show that E(S) � 0, (1, e, 1), (2, e, 1), (2, e, 2){ }.
However, (1, e, 1)(2, e, 2) � (1, e, 2) ∉ E(S). Hence, S is not
an E-semigroup. Moreover, we can verify that
V((2, e, 1)) � (1, e, 1), (1, e, 2), (2, e, 1), (2, e, 2){ }. Also,
(2, e, 2)(1, e, 1) � 0 ∉ V((2, e, 1)). Tus, S is not
a V-semigroup.
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Next, we give the relationship between the three classes
of semigroups.

Lemma  . Let S be a R-semigroup and E(S)≠∅. Ten,
S(e, f)≠∅ for any e, f ∈ E(S).

Proof. Let e, f ∈ E(S). Since S is a R-semigroup, V(ef)≠∅.
Let x ∈ V(ef) and g � fxe. Ten,

(ef)g(ef) � ef2xe2f � efxef � ef ,

g(ef)g � fxe2f2xe � f(xefx)e � fxe � g.
(9)

Tus, g ∈ V(ef). Moreover,

g
2

� f(xefx)e � fxe � g, (10)

and so, g ∈ E(S). Finally, it is clear that ge � g � fg.
Terefore, g ∈ S(e, f). □

Theorem 3. Let S be a semigroup and E(S)≠∅. Ten, S is an
E-semigroup if and only if the following two conditions hold.

(1) S is a R-semigroup
(2) (∀e ∈ E(S)) V(e)⊆E(S) or (2′) (∀e ∈ E(S))

W(e)⊆E(S).

Proof. (⟹) It follows from Results 1, 2, and 3.
(⟸) Let e, f ∈ E(S). Since S is a R-semigroup, from

Lemma 2, we have that there exists g ∈ E(S) such that
g ∈ V(ef). By hypothesis, ef ∈ V(g)⊆E(S). It follows that S

is an E-semigroup.
Finally, from Teorem 2, Proposition 2, and Teorem 3,

we establish the relationship between E-semigroups,
R-semigroups, and V-semigroups by the following
result. □

Theorem 4. Let S be a semigroup and E(S)≠∅. Ten, S is an
E-semigroup if and only if S is a R-semigroup and a V-
semigroup.

Remark 1. Let S be a regular semigroup. Ten, S is a R-
semigroup. From Teorem 4, we know that S is orthodox if
and only if S is a V-semigroup (see Teorem 3.2 [5]).
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