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Te water–ethylene glycol (50 : 50) nanofuid has applications in the manufacture of polyester as a raw agent, air conditioning
systems, antifreeze formulation, dehydrating agents in the gas industry, a precursor in the plastic industry, and convective heat
transfer. Tese developments in nanotechnology and nanoscience have caught the interest of several researchers. Because it keeps
machines and engines cool by reducing friction between their diferent parts, grease is a vital part of manymachinery and engines.
Also, due to the extensive use of fractional derivatives, this work seeks to evaluate the combined impacts of free convection fow
and heat transfer, magnetic feld, and Brinkman-type water–ethylene glycol (50 : 50) dusty nanofuid among microchannel. Te
fow that the buoyant force provides helps to carry heat naturally via convection. While the left plate moves at a consistent velocity
and the right plate stays stationary, the fuid is also evenly dispersed with all dust particles that have a spherical form. Partial
diferential equations (PDE) are used to present the mathematical modeling. Te resultant PDEs are generalized by utilizing the
Caputo–Fabrizio fractional derivative. Te problem’s closed-form solution is produced by combining a Laplace transformation
with a fnite sine Fourier transformation. It has also been studied that temperature, Brinkman nanofuid, and dust particle velocity
relate to a variety of other factors, such as the magnetic parameter, Grashof number, dusty fuid parameter, and volume friction
parameter. Te graphical outcomes for the dusty fuid, Brinkman nanofuid, and temperature profles are plotted using Mathcad-
15. Te Brinkman nanofuid and dusty fuid behave similarly for a variety of embedded factors. It is found that compared to the
traditional one, the fractional dusty nanofuid model displays more realistic characteristics. Te addition of nanoparticles in
water–ethylene glycol (50 : 50) dusty nanofuid enhances the rate of heat transfer up to 41.04478% by increasing their volume
fractional.

1. Introduction

Materials with a size of 100 nanometers or less are known as
nanomaterials, and the technology used to create them is
referred to as nanotechnology. When classifying nano-
materials into one of four classes, attention is given to both
the structure and the properties of the materials [1]. Te frst
person’s to look at the terminology used with nanofuids
were Choi and Eastman [2]. To describe fuids containing
particles with a diameter of less than 100 nanometers, he

coined the term “nanofuid.” Outline the justifcation for
why nanoscale particles are preferred over microscale par-
ticles in many applications [3]. When comparing nano-
particles to microparticles, signifcant increases in
thermophysical properties have been seen. Nanofuids may
be used in several ways, such as improving the efciency of
diesel generators, cooling air conditioning systems, and
cooling power plants [4]. Rehman et al. [5] analyzed the
MHD fow of carbon in micropolar nanofuid in rotating
frame geometry in addition to convective heat transfer.
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Additionally, Ijaz Khan et al. [6] reported the relevant issues
in optimizing entropy formation in nanomaterial fows with
mixed convection. While the mixed convection fow of
a tangent hyperbolic nanofuid was reported by Khan et al.
[7]. To get a more realistic study Khan et al. [8] investigated
the fractional model in the drilling process based on hybrid
nanofuids with heat generation and porous medium.
Furthermore, the growth of nanomaterials has made it
possible to produce nanoparticles (also known as nano-
composites). Many researchers have lately focused on the
properties of hybrid nanofuids, as mentioned by Leong et al.
[9]. Khan et al. [10] present their analysis and evaluation of
the joint Sumudu and Laplace transform for the MHD
unsteady fow of hybrid nanofuid in a rotating frame. In
order to represent and solve fractional diferential equations
for heat transportation in nanofuids, Saqib et al. [11] in-
vestigated the application of integral transforms.

Fractional calculus has useful applications in many areas
of engineering and research, including viscoelasticity, in-
cluding electromagnetics, fuid mechanics, biological pop-
ulation models, electrochemistry, signals processing, and
optics. In order to solve various physical and natural issues
that the conventional derivative cannot adequately repre-
sent, fractional calculus is applied, as shown in Ross [12].
Fractional derivatives have drawn considerable interest from
scientists during the past 30 years. In response, numerous
researchers have proposed diferent ways of defning frac-
tional derivatives. In the 18th century, Riemann–Liouville
[13] became the most commonly used defnition. Te R-L
concept of the fractional derivative has been faithfully
reproduced in many physical systems, but it is only useable
because of two key features.Te Caputo fractional derivative
has been extensively studied in the domains of chemistry,
economics, physics, and other physical concerns. Explora-
tion of difusion, signal processing, image processing,
damping, pharmacokinetics, material mechanics, and bio-
engineering processes are all conceivable using CFD [14–16].
To address concerns with the R-L formulation, CFD [17],
a modifed version of fractional calculus, was created. Yet
because the CFD kernel has a singularity, it cannot be used to
correctly describe materials with large heterogeneities [18].
To address this problem, a new defnition with a nonsingular
kernel has been proposed by Caputo–Fabrizio [19], and this
novel idea has been applied in the research of several
scholars [20–22]. Mohammadi [23] used fractional-time CF
and Caputo derivatives to investigate the fow of couple
stress fuids (CSF) between the two parallel plates. Research
on the two-phase laminar fow of dusty fuid on elastic and
stretching sheets was explored in detail by Mahanthesh [24].

Various branches of bioengineering, the pharmaceutical
and chemical industries, mechanical engineering, nuclear
power facilities, and so on all make use of fuids in some way.
Scientists and researchers are increasingly focusing on fuids
because of their widespread use, primarily discussing and
debating their current and future capabilities, uses, and aims.
Numerous mathematical models are put out in the literature
to characterize the behavior of various fuids. Te Brinkman
model is among the most straightforward and widely used of
these many options. A framework that may be used in huge,

permeable regions was created by Brinkman’s ground-
breaking study [25]. He examined the behavior of fuid fow
when dynamic viscosity develops on the surface of a dense
cluster of small spheres using the Navier-Stoke equation.

Te numerical technique was used by Liu et al. [26] to
examine the continuous dependency of the Brink-
man–Forchheimer fuid interacting with a Darcy fuid in
a bounded region. Ramzan et al. [27] looked at the impacts
of heat radiation and the Brinkman fuid on chemical
reaction. It has been shown that heat radiation and mass
Grashof numbers have an increasing infuence on fuid
velocity, but chemical reaction and magnetic feld have
a diminishing impact. Furthermore, the research con-
ducted by Kumar et al. [28] focused on investigating the
infuence of difusion and thermodynamics on the fow of
a Brinkman-type nanofuid, which is both heat-radiating
and chemically reactive. Te fow was unsteady and hy-
dromagnetic and occurred near an exponentially
accelerated vertical plate through a porous medium. Te
temperature of the plate varied in an arbitrary ramped
manner. Heat transfer, thermal radiation, chemical re-
actions, and magnetohydrodynamics were studied by
Khan et al. [29] in the context of Brinkman fuid across
a perpendicular plate. Dubey and Murthy [30] in-
vestigated how double-difusive disease frst manifests
itself. Te dust fuid through Brinkman porous media was
reported by Kumar and Mohan [31].

Te fuid containing the dust particles is used in a wide
variety of mechanical procedures, including transport, the
production of cement and steel, the removal of fying ash
from thermal power plants, and the reduction of the
unfavorable impacts of air conditioners. Numerous
commercial applications exist for two-phase fows that
include solid particles dispersed in nanofuids or hybrid
nanofuids. Many scientists have been studying fuid fow
with embedded dust particles lately. Experts are interested
in dusty fuid models because they are two-phase systems.
Tese occurrences occur in fuid fows containing dis-
persed solid particles. Both the analysis and the solution to
the problem of the movement of dusty particles have been
sped up. Safman [32] is credited with initiating the study
of laminar fow in dusty fuids. Specifcally, Chakrabarti
[33] looked at the behavior of a dusty gas as it approached
the boundary layer. Te motions of the dust fuid in
densely interconnected dusty plasmas were investigated
by Shukla and Stenfo [34]. We show that dusty plasmas
with strong couplings may display zonal winds or vortex-
like dust fuid movements when subjected to shear waves
of sufciently large amplitude.

In view of the above literature, the main objective of
the present research is to investigate the water–ethylene
glycol (50 : 50) dusty nanofuid using a newly created C-F
time fractional derivative to give an exact solution. For
the enhancement of heat transfer, cobalt ferrite, and
magnetite nanoparticles are dispersed in the base fuid.
Te fuid is taken into a microchannel. In a two-phase
fow model, fuid and dust particle equations are calcu-
lated separately. C-F time fractional derivative used to
generalize the approach for more realistic. Te exact
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solution is obtained by coupling Laplace with the fnite
sine Fourier transform. Nusselt number and many em-
bedded variables efects are graphically shown here using
Mathcad-15.

2. Formulation and Solution

Assume that a water–ethylene glycol dusty nanofuid of the
Brinkman type is fowing unsteadily and incompressibly
between microchannels. Te fuid as a whole evenly dis-
perses a dust particle. Te distance between two vertical,
equivalent plates is represented by d, as shown in geo-
metrical Figure 1. Te fuid motion is along the x-direction.
Te uniform magnetic feld is transverse to the dusty
nanofuid. Te left plate moves with H(t)u0, while the right
plate stays stationary. While denotes the temperature of the
right plate by Td, the left plate’s temperature is
Td + (Tw − Td)At.

As we have shown, there is a relationship between ve-
locity and temperature [24]:

ρnfzu(ξ, t)

zt
+ βρnfu(ξ, t) �

μnfz
2
u(ξ, t)

zξ2
+ K0N0(v(ξ, t) − u(ξ, t))

+ g βTρ( nf T(ξ, t) − Td(  − B
2
0σnfu(ξ, t),

(1)

m
zv(ξ, t)

zt
� K0(u(ξ, t) − v(ξ, t)), (2)

zT(ξ, t)

zt
�

knf

ρcp 
nf

z
2
T(ξ, t)

zξ2
. (3)

Utilizing the conditions:

u(ξ, 0) � v(ξ, 0) � 0, u(0, t) � H(t)u0

T(ξ, 0) � Td, u(d, t) � 0

T(0, t) � Td + Tw − Td(  At, T(d, t) � Td

⎫⎪⎪⎬

⎪⎪⎭
, (4)

Expressions for (ρcp)nf, (ρβT)nf, μnf, ρnf, σnf, knf are
given by [29]

μnf �
1

(1 − ϕ)
2.5μf, knf � kf

ks + 2kf − 2ϕ kf − ks 

ks + 2kf + ϕ kf − ks 

⎧⎨

⎩

⎫⎬

⎭,

ρnf � ρf(1 − ϕ) + ρsϕ,

σ �
σf
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,

σnf
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� 1 +
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,
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f

+ ϕ ρcp 
s
.

(5)

We defne the following dimensionless variables to
create a dimensionless system of PDEs [24]:

t �
u0

d
t, u
∗

�
u

u0
, y
∗

�
1
d

y, v
∗

�
v

u0
, θ∗ �
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. (6)

When we plug equation (6) into equations (1), (2), (3),
and (4), we get the following dimensionless form:

zu(ξ, t)
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�

f2

f1

z
2
u(ξ, t)

zξ2
−

1
f1

Hu(ξ, t) +
1

f1
K(v(ξ, t)

− u(ξ, t)) +
f3
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(7)

zv(ξ, t)
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1
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f4
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z
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. (9)

Tis includes physical conditions that have no di-
mensions, such as [24]
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Figure 1: Problem geometric view.
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u(y, 0) � v(ξ, 0) � 0, T(ξ, 0) � 0

u(0, t) � H(t), T(0, t) � t,

u(1, t) � 0 T(1, t) � 0

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (10)
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,
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,
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,

f5 � 1 − ϕ + ϕ
ρcp 

s
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,
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2
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,
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,
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2
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,
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,
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2
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,
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.

(11)

We now get the following the fractional parameter and
CFD in equations (7) and (8), (9), respectively:

CF
D

α
t u(ξ, t) �

f2

f1

z
2
u(ξ, t)

zξ2
−

1
f1

Hu(ξ, t)

+
1

f1
K(v(ξ, t) − u(ξ, t)) +

f3
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1
Pm
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D

α
t v(ξ, t) � u(ξ, t) − v(ξ, t), (13)

CF
D

α
t θ(ξ, t) �

1
Pr

f4

f5

z
2θ(ξ, t)

zξ2
, (14)

where is the fractional parameter [35] and CFDα
t is the CF for

the fractional operator:

CF
D

α
t f(t) �

N(α)

(1 − α)


t

0
e

−
α(t − τ)

(1 − α)
 

f
′
(τ)d(τ).

(15)

Such that, N(0) � N(1) � 1, α ∈ (0, 1)

3. Solutions to the Problem

We get precise solutions to the system by combining the
joint LT and FSFT.

3.1. Calculation of the Temperature Profle. Equation (14)
Laplace transform yields the following results:

q n0

q + n1

Prf5

f4
θ(ξ, q) �

z
2θ(ξ, q)

zξ2
. (16)

Likewise, the converted version of equation (10) is as
follows:

u(ξ, q) | q�0 � v(ξ, q) | q�0 � 0

θ(ξ, q) | q�0 � 0

u(0, q) | y�0 � H(q), θ(0, q) �
1
q
2

u(1, q) � 0, θ(1, q) � 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (17)

Multiplying equation (16) by Sin(nπ) on both sides and
then integrating it with y limits from 0 to d yields the
following expression: Using starting and boundary condi-
tions and then using the FSFT, we obtain:

θFT(η, q) �
Y1

q
2

q + n1

q + Y2
 . (18)

Equation (18) may also be expressed as follows:

θFT(η, q) �
n1 Y1

q
2

Y2
−
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q Y
2
2

+
Y1 n1 − Y2( 

Y
2
2 Y2 + q( 

. (19)

Given is the inverse LT of equation (19).

θFT(ξ, t) �
n1 Y1

Y2
t − Y3 + Y3 exp − Y2 t( . (20)

here,

n0 �
1

1 − α
,

n1 �
α

1 − α
,

Y1 �
nπ

Prf5/f4 n0 +(nπ)
2 ,

Y2 �
(nπ)

2
n1

Prf5/f4n0 +(nπ)
2 ,

Y3 �
Y1 n1 − Y2( 

Y
2
2

,

(21)

Equation using the inverse fnite sine-Fourier transforms
(20). We get the temperature profle’s solution:
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θ(ξ, t) � (1 − ξ) t + 2 
∞

n�1
sin(nπξ) Y3 1 + exp − Y2t( (( .

(22)

Equation (13)’s Laplace transform is used, together with
equation (17), to provide the following results:

qn0

q + n1
v(ξ, q) � Pm(u(ξ, q) − v(ξ, q)). (23)

As a consequence, following computation, we obtain

v(ξ, q) �
q + n1

n2 q + n3( 
 u(ξ, q). (24)

here,

n2 �
Pm + n0

Pm

,

n3 �
n1Pm

Pm + n0
,

(25)

3.2.TeVelocity Profle Solution. Taking use of the following
transformation [23]:

u(ξ, t) � χ(ξ, t) + H(t)(1 − ξ). (26)

Equation (26) is applied to equation (12), and the so-
lution is

CF
D

α
t (χ(ξ, t) − (1 − ξ)H(t)) �

f2

f1

z
2

zξ2
(χ(ξ, t) − (1 − ξ)H(t)) + K

v(ξ, t)
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− 1 ,

·
1

f1
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1
f1
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1

f1
(1 − ξ)  + Gr

f3

f1
θ(ξ, t).

(27)

Ics and BCs with transformations are as follows:

χ(0, t) � χ(ξ, 0) � χ(1, t) � 0. (28)

Equations (27) and (28), when applied with the Laplace
transform, result in

n0 q

q + n1
χ(ξ, q) +

n0 q

q + n1
(1 − ξ)H(q) �

f2

f1

d
2

dξ2
χ(ξ, q) +

1
f1

K
q + n1

n2 q + n3( 
  − 1 (χ(ξ, q) +(1 − ξ)H(q))

−
1

f1
Hχ(ξ, q) −

1
f1

H(1 − ξ)H(q) +
f3

f1
Grθ(ξ, q)

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (29)

Next, we apply the fnite sine Fourier transforms to
equation (29) to obtain

χFT(ξ, q) �
q
2

− n4 q − n5

q
2

+ Y4 q + Y5
 (1 − ξ)H(q)

+
f3

f1

Gr n2 Y1

q
2 ·
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2
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·
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q
2

+ Y4 q + Y5
.

(30)

Equation (30) can be expressed as follows:

χFT(y, q) �
Y9
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+ 1 −

Y8
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 (1 − y)H(q)

−
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q
2 −
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q
−
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−

Y13
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−

Y14
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 ,

(31)

where
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n4 �
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Laplace inversion of equation (31), as

χFT(ξ, t) �
H(t) − H(t)∗Y8 exp − Y6 t(  + Y9H(t)∗ exp Y7 t(  (1 − ξ) − Y10 t

+ Y11 + Y12 exp − Y2 t(  + Y13 exp − Y6 t(  + Y14 exp Y7 t( 
 . (33)

Equation (33) is inverse FSFT, as follows:

χ(ξ, t) � 2 
∞

n�1

H(t) − exp − Y6 t( Y8 ∗H(t) + exp tY7( Y9 ∗H(t) (1 − ξ)

− Y10 t + Y11 + Y12 exp − Y2 t(  + Y13 exp − Y6 t(  + Y14 exp Y7 t( 
  sin(nπξ). (34)

Te following is obtained from (26) using equation (34):

u(ξ, t) � H(t)(1 − ξ) + 2 
∞

n�1

H(t) − Y8 exp − Y6 t( ∗H(t) + Y9 exp Y7 t( ∗H(t) (1 − ξ)

− Y10 t + Y11 + Y12 exp − Y2 t(  + Y13 exp − Y6 t(  + Y14 exp Y7 t( 
  sin(nπξ). (35)

4. Special Case: Without Particle Velocities, the
Brinkman Nanofluid Model Shows

When we put v(y, t) � 0 into equation (8), we get a model
for a fuid with a single phase of fow.

zu(ξ, t)

zt
�

f2

f1

z
2
u(ξ, t)

zξ2
−

1
f1

Hu(ξ, t)

−
1

f1
K(u(ξ, t)) +

f3

f1
Grθ(ξ, t).

(36)

Putting equation (36) via its defnition of fractional
derivatives CFDα

t , we get
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D

α
t u(ξ, t) �

f2

f1

z
2
u(ξ, t)

zξ2
−

1
f1

K(u(ξ, t))

−
1

f1
Hu(ξ, t) +

f3

f1
Grθ(ξ, t).

(37)

A Laplace transform applied to equation (37) ultimately
yields:

n0 q

q + n1
χ(ξ, q) +

n0 q

q + n1
(1 − ξ)H(q) �

f2

f1

d
2

dξ2
χ(ξ, q) −

1
f1

K(χ(ξ, q) +(1 − ξ)H(q))

−
1

f1
Hχ(ξ, q) − H(1 − ξ)

1
f1

H(q) + Gr
f3

f1
θ(ξ, q)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (38)

Transforming (38) into a function of its FSFT, we get

χFT(ξ, q) �
n8

q
2 ·

q + n1( 

q + Y2(  . q + Y26( 
− (1 − ξ)H(q) .

q + n7( 

q + Y26( 
.

(39)

Using partial fraction w.r.t. s, we may decompose the
right-hand side of equation (39), yielding:

χFT(ξ, q) �
Y27

q
+

Y28

q
2 +

Y29

q + Y1
+

Y30

q + Y26
 

− 1 −
Y26 − n7

q + Y26
 (1 − ξ)H(q),

(40)

where

Y26 �
n1f2/f1(nπ)

2
+ n1/f1(K + H)

n0 + f2/f1(nπ)
2

+ 1/f1(K + H)
,

n7 �
n1/f1(K + H)

n0 + 1/f1(K + H)
,

n8 �
f3

f1
Gr Y1,

Y27 �
n8Y2 − n1n8

Y
2
2 Y2 − Y26( 

+
n8Y26 − n1n8

Y
2
26 Y26 − Y1( 

,

Y28 �
n1n8

Y1Y26
,
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Y29 �
n1n8 − n8Y2

Y
2
2 Y2 + Y26( 

,

Y30 �
n1n8 − n8Y26

Y
2
26 Y1 + Y26( 

.

(41)

To get (26), we substitute the inverse transform of (40)
using the joint LT and FSFT:

u(ξ, t) � H(t)(1 − ξ) + 2 
∞

n�1

Y27 + t Y28 + Y29 exp − t Y1(  + Y30 exp − t Y26(  

− (1 − ξ) H(t) − Y26 − n7(  exp − Y26 t( ∗H(t) 
  sin(nπξ). (42)

4.1. Nusselt Number. Nusselt number is obtained from
equation (22) by using the connection from Khan et al. [29].
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Cf � f2
zu(ξ, t)

zξ

ξ�0
,

Nu � − f4
zθ(ξ, t)

zξ

ξ�0
.

(43)

5. Results and Discussion

Tis article aims to investigate generalized Brinkman-type
water–ethylene glycol (50 : 50) dusty nanofuids among
microchannels that incorporate unsteady fow, heat trans-
port, and MHD analysis. Combining Laplace and FSFT
creates closed-form solutions. Figures and tables demon-
strate how variables afect fuid and particle velocities and
temperature.

Figures 2(a) and 2(b) show the study of the Brinkman
parameter and contrast the velocities of Brinkman-type
nanofuids and dust particles with those of Newtonian
viscous fuids. When compared to a fuid of the Brinkman
type λ � 0, a Newtonian viscous fuid has a high velocity.
Tis illustrates that Brinkman parameter values delay ve-
locity profles more than Newtonian viscous fuids. Higher
Brinkman values increase drag, slowing fuid and dust
motion.

Te efect of a fractional parameter α on the velocities of
the Brinkman nanofuid and dusty fuid is examined in
Figures 3(a) and 3(b). On both velocities, the memory efect
is quite signifcant. When the other parameters are constant,
changing the fractional parameter α leads to diferent so-
lutions for the fuid and dust particle velocities. Which is
a suitable option for experimental research so that the
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fndings can be more accurately compared. Te many so-
lutions demonstrate that the fractional model is more
plausible than the classical one.

Te investigation of Gr on fuid and dust particle velocity
is covered in Figures 4(a) and 4(b). Terefore, it is evident
that as the Gr rises, so do the buoyant forces. Physically, the
buoyant forces in the fuid, form in reaction to the greater
temperature and quicken the fuid’s velocity.

Te impact of the volume fraction of fuid and dusty fuid
on the velocities profle is seen in Figures 5(a), and 5(b). Te
velocity of the fuid decreases as its volume fraction in-
creases, indicating that the nanoparticles are physically
slowing the fuid’s fow. Te resistive forces that cause the
nanoparticles to slow down in the channel were created
when the fuid’s nanoparticle concentration increased. Te

viscosity of the fuid rises with fuid concentration, de-
creasing both the fuid and dusty fuid velocities.

Te results are shown as the impact of Pm on the ve-
locities of Brinkman-type nanofuids and dust particles in
Figures 6(a) and 6(b). Increased dust particle mass caused by
rising Pm causes a slowdown in the fow of nanofuid and
dust particle velocity. Physically, the fact is that, the fuid
became more viscous with higher values of the mass particle
parameter, which is why there is an apparent slowdown at
both velocities.

Figures 7(a) and 7(b) illustrate how M afects the velocity
of a nanofuid and dust particle. Te viscosity of the mo-
mentum boundary layer contracts as M increases, increasing
the Lorentz forces that are resistant to fuid fow and
delaying the velocity of nanofuid and dust particles.
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It is clear that a rise in K would result in a delay in the
viscous forces, which would increase fuid velocity,
according to Stocks’ drag formula (k � 6πrμ) for sphere-
shaped dust particles. As shown in Figures 8(a) and 8(b),
increasing the amount of dust particles increases the
nanofuid and dust particle velocities (b).

Figure 9 reports the efect of the fractional perimeter
on the temperature profle. Tis, by fxing the other pa-
rameters, increases the generalization of the heat profle
relative to the traditional one. Physically, this shows that
the temperature profle may be made more realistic by
altering the fractional parameter, which provides addi-
tional solutions.

Te impacts of volume friction ϕ on θ(ξ, t) depicted in
Figure 10. Te range is between 0 and 0.04 when it reaches
more than 0.04 segmentation occurs. A rise in the nano-
particle volume friction percentage will, in either scenario,

result in a lower temperature as well as a change in the
temperature distribution.

Table 1 displays the thermophysical characteristics of
nanoparticles for your review. Table 2 shows the difer-
ence in skin friction caused by diferent parameter values.
Skin friction is signifcant in several engineering areas,
especially civil engineering. Te viscous forces and,
consequently, the surface friction increase as the λ andM

raises. Skin friction is decreased by raising the Gr. By
raising Gr the buoyancy forces to rise, the viscosity drops,
and the surface friction goes down as a result. Table 2
clearly illustrates how skin friction reduces as volume
friction ϕ increases.

Table 3 displays the Nusselt number against the volume
fraction of nanofuid. It is clear that the enhancement of
volume fractional makes the fuid more viscous, and as
a result, the rate of heat transfer enhances up to 41.04478%.
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Table 1: Termophysical properties.

Properties Base fuids Nanoparticles
Water–ethylene glycol Cobalt ferrite Magnetite

cp(J/kgK) 3287 700 670
ρ(kg/m3) 1057 4908 5180
σ(S/m) 0.005 1.1 × 107 0.74 × 106
K(W/mK) 0.424 3.6 9.8
Prandtl number, (Pr) 30 — —

Table 2: Te analysis of Cf.

t α λ K ϕ Pm M Gr Cf

0.5 0.6 1 4 0.02 0.4 5 10 1. 5
0.5 0. 1 4 0.02 0.4 5 10 1.23
0.5 0.6 2 4 0.02 0.4 5 10 3.43
0.5 0.6 1 5 0.02 0.4 5 10 2.45
0.5 0.6 1 4 0.03 0.4 5 10 1.9 
0.5 0.6 1 4 0.02 0.5 5 10 1.8 
0.5 0.6 1 4 0.02 0.4 10 10 2.23
0.5 0.6 1 4 0.02 0.4 5 12 0.45
Te bold values represent the variation of each parameter.

Table 3: Te analysis of Nu.

t α ϕ Nu %age
0.5 0.5 0.00 1.34 —
0.5 0.5 0.01 1.48 10.44776
0.5 0.5 0.02 1.61 20.14925
0.5 0.5 0.03 1.73 29.10448
0.5 0.5 0.04 1.89 41.04478

12 Journal of Mathematics



Te comparison between the present study and that of
Narahari and Pendyala [36] is shown in Figure 11, which
demonstrates a high degree of congruence. Te solutions are
shown to be sound and valid, as each one precisely overlaps
with the other.

6. Conclusions

In this study, the investigation of the generalized Brinkman-
type dusty nanofuid at free convection temperature is the
major focus. While the dust scatters evenly across the whole
fuid, the fow is between the microchannels. Physical
boundary conditions and PDE are used to formulate the
issue. By combining the usage of the Laplace transform with
the fnite sine Fourier transform, the issue is generalized
without a single kernel using Caputo–Fabrizio’s fractional
operator. Te program Mathcad-15 is used to carry out
parametric investigations.Te validity and correctness of the
present answers have been proven in several exceptional
instances. Te main fndings from this study are as follows:

(i) Compared to the classical model, the fractional
model of dusty nanofuid has a more realistic
feature.

(ii) Te variation of the fractional parameter α gets
more realistic results for skin friction and heat
transfer rate.

(iii) By combining Laplace transform and FSFT, we can
reduce the computational time needed to obtain
exact solutions for these types of problems.

(iv) Te increase in Gr expands the nanofuid and
particle velocities.

(v) Te water–ethylene glycol nanofuids improve the
heat transfer rate up to 41.04478%.

(vi) Te fndings of this study have practical applications
in the engineering and product manufacturing

industries. For example, dusty fuids are commonly
used in gas cooling systems and nuclear reactors.

Nomenclature

A⟶ : Variable temperature
Td: Ambient temperature
t: Time
βT: Coefcient of thermal epansion
B0: Applied magnetic feld
u(ξ, t): Velocity of the nanofuid
u0: Constant velocity
cp: Specifc heat capacity
Cf: Skin friction
v(ξ, t): Velocity of the particle
CF: Caputo–Fabrizio
β: Nondimensional Brinkman fuid parameter
ρ: Density
d: Is the distance between parallel plates
G r: Grashof number
μ: Dynamic viscosity
g: Gravitational acceleration
υ: Kinematic viscosity
σ: Electrical conductivity
H(t): Heaviside step function
α: Fractional parameter
K0: Stock’s resistance coefcient
K: Dusty fuid parameter
M: Nondimensional magnetic parameter
k: Termal conductivity
θ: Dimensionless temperature of the fuid
N(α): Normalization function
N0: Number density of the dust particles
Nu: Nusselt number
Pr: Prandtl number
Pm: Particles mass parameter
T: Temperature of the fuid
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Tw: Temperature of wall
m: Mass of the particle
(.)nf: Nanofuid
λ: Nondimensional Brinkman fuid
(.)f: Fluid
(.)s: Nanoparticle.
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