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This paper presents the study of a numerical scheme for the analytical solution of nonlinear gas dynamic equation. We use the idea
of Laplace-Carson transform and associate it with the homotopy perturbation method (HPM) for obtaining the series solution of
the equation. We show that this hybrid approach is excellent in agreement and converges to the exact solution very smoothly.
Further, HPM combined with He’s polynomial is utilized to minimize the numerical simulations in nonlinear conditions that
make it easy for the implementation of Laplace—Carson transform. We also exhibit a few graphical solutions to indicate that this
approach is extremely reliable and convenient for linear and nonlinear challenges.

1. Introduction

The gas dynamic equation is mathematically modeled by
various physical laws such as energy, mass and momentum
conservation. Gas is a collection of numerous elements in
continuous chaotic motion such as molecules, atoms, ions, etc.
The nonlinear gas dynamics equation is used in shock waves,
centered rarified waves, contact flows, and connection dis-
continuities. The study of gas motion and its impact on
structures using the principles of fluid dynamics and fluid
mechanics is known as “gas dynamic,” and it belongs to the
discipline of fluid dynamics [1, 2]. Numerous researchers has
studied the gas dynamic equation with different analysis [3, 4].
Srivastava and Saad [5] studied the theory of gas dynamic
equation and extended it with different models. Various ap-
proaches have been introduced to solve the gas dynamics
problems such as fractional reduced transform method [6],
Elzaki transform homotopy perturbation approach [7], g
-homotopy analysis [8], Adomian decomposition strategy [9],
variational iteration method [10, 11], fractional homotopy
analysis transform approach [12], homotopy perturbation

method using Laplace transform [13], Homotopy analysis
transform method [14] and natural decomposition method [15].

He [16-18] demonstrated the strategy HPM for the
solution of nonlinear problems arising in complex models
and showed that this approach has an excellent performance
in obtaining the series solutions. Some scientists [19, 20]
modified this study and coupled it with Laplace transform to
achieve the series solution of nonlinear differential prob-
lems. Aggarwal and Kumar [21] applied Laplace-Carson to
Volterra integro-differential problem of first kind. After that,
Kumar and Qureshi [22] received the results of initial value
problems with the Caputo derivative in the shape of series
and showed the authenticity of this scheme. Thange and
Gade [23] studied a few definitions of Laplace-Carson with
fractional order and used the convolution theorem which
was very complicated to obtain the iterations.

In this article, we study a novel scheme Laplace—Carson
homotopy perturbation method (Z.-PTM) which is con-
structed on the basis of Laplace-Carson and HPM. We point out
that the present scheme is very connivent to use and reveals the
results in the shape of a series. This approach is an independent
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convolution theorem that may face complications during the
calculation of iterations. This article is designed as In Section 2,
we present the definition of Laplace-Carson transform with
basic propositions. In Section 3, we study the fundamental
concept of HPM which is used to split the nonlinear elements. In
Section 4, we present the numerical applications to show the
ability of & ,-PTM, and finally, we discuss the obtained results
and conclusion in Sections 5 and 6 respectively.

2. Laplace and Laplace—Carson Transform
Definition 1. Consider f(t) be a function with #>0, so
0

LU} = F(s) = aj FlHe*at, (1)
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is said to Laplace transform and s is transform function of 0.

Definition 2. Aggarwal and Kumar [21] studied a theory
such that

L9} =R(6) =6 ro gWe ¥tk <0<k,  (2)
0

Here k, and k, are arbitrary constants and &, is termed
as Laplace-Carson transform. Now, if R(6) is the Lap-
lace-Carson transform of a function g(t) then g(t) is the
inverse of R(6) so that,

8;1 {R(O)} =g(1), Zis said to be inverse Laplace — Carson transform. (3)

c

Definition 3. If g (t) = t™, then Laplace-Carson transform is
utilized as

L{g(B)) = R(6) = ;”—nl (4)

Properties 1. If £ {g(t)} = R(6), then it has the following
differential properties [21, 23].

() Zc{g' (1)} = 6R(6) - 6G(0),

(b) Z{g" (t)} = 6°R(0) - 6°G(0) - 6G' (0),

(©) Z.Ag™ (1)} = 0"R(6) - 0"G(0) - 6" 'G' (0) —--- —
6G™1(0).

3. Fundamental Concept of HPM

This segment presents the concept of HPM with the consid-
eration of a nonlinear functional equation [24, 25]. Consider

TO) -gh)=0, heQ. (5)
With conditions
S<S,@) =0, hel. (6)
on

Here T and S are identified as general functional and
boundary operator respectively, g (h) is source term with I
as a interval of the domain Q. We can now split T such that
T, is said to be a linear and T, be a nonlinear operator. Thus,
we can write equation (5) as

T,(9)+T,(0) -g(h)=0. (7)
Consider 9(h,0): Q x [0,1] — H such that it is suit-
able for
H®,00=(1-0)[T,(9-T,(8)] +0[T,(9) - T,(9) - g(h)],
(8)
or
H®,0)=T,(9-T,(9) +9L(9) +0[T,(9) —g(h)] =0.
)

Here 6 € [0, 1] is homotopy element and ¥, is an initial
approximation of equation (5), which is appropriate for the
boundary conditions. The study of HPM declares that 6 is
assumed as a minimal variable and the result of equation (5)
cab be expressed in the shape of 6.

9=9,+09 +6°9,+6°9+---= > 69, (10)
i=0
Consider 8 = 1, we get particular of equation (10) as

9=limy ,9=9+9 +9+9+--=Y9. (11

™z

T
o

The nonlinear terms are obtained as

T,9(x,t) = i 0"'H,(9), (12)

n=0

where H,, (9) is defined as

1 afl (0] .
H”(90+91+'“+'9”)ZJW<T2<ZQISI‘>> o n=0,1,2,--. (13)
' i=0 6=0
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This result in equation (12) generally converges as the
rate of convergence depends on the nonlinear operator T,

4. Numerical Applications

In this segment, we apply the scheme of &.-PTM to obtain
the analytical results of nonlinear gas dynamic equation. We
express that this approach generates the series solution only
after iterations with excellent accuracy.

4.1. Example 1. Consider the homogenous and nonlinear gas
dynamic equation

09 09
+9—-9(1-9) = 14
T ( ) = (14)

With initial condition
9(x,0)=¢ " (15)

Using the Laplace-Carson transform to equation (14),
we get

o [89 89

| 5+ 95, —9(1—9)] =

15

Ay
—
S
[ SE—
I

-&. [9@—9(1 - 9)]
(16)

Employing the definition of Laplace-Carson transform,
we get

69(x,6)—69(x,0):—95[\9%—9(1—9)]. (17)
Which may be solved further as,

9(x,0) = 9(x,0)— {92—9—9+92>}. (18)
Applying inverse Laplace-Carson transform, we get

9(x,t) = 9(x,0) — 3‘1[93 {92—9—9 S)H (19)

Utilizing HPM on equation (19), we get

Zp“S (x,t) = 9(x,0) — pZ. [—If {Zp”s (x, t) Zp”s (x,t) — Zp"S (x,t) + Zp"92 (x,1) H (20)

On comparing, the following iterations can be obtained,

p% 9y (x,t) = e %,
1 *1—1 a‘90 2 —xtz
p:191(x,t)=ffc 636‘90$—SO+90 =e i,
[1 09, 99, £
P9 (xt) =" 535‘ SOa—xl 9 -9, +29,9, H —efxi, (21)
Np! 09, 09, 09, !
P9 (xt) =2 53’,96— 93_ aa——s +9§+29092H =e

Hence the solution can be expressed as

I(x,1)

2

t
—te

I(x,t)=€e “+e 3

I(x,t) ="

=960 +9, (60 +9,(x) + 95 (x, 1) +---,

t
—+e — e, (22)
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4.2. Example 2. Consider the non-homogenous and non- 9(x,0)=1-¢*. (24)
linear gas dynamic equation
39 39 . Using the Laplace-Carson transform to equation (23),
=+ a—S(l—S)z—e ) (23)  we get

With initial condition

09 09 t-x
z[at 98x—9(1—9)]=—35[e J
(25)

09] —x 09
QC[E]——QC[(& ]—gc[sa—S(l—S)]-

Employing the definition of Laplace-Carson transform, Which may be solved further as,
we get o 09
e_x 59 9(x.0) = 9(x,0) -5 1—53;{98——%92} (27)
09(x,0) — 69(x,0) = - [98——9(1—9)]. (26) B

Applying inverse Laplace-Carson transform, we get

) T 1 L1 (.09 ,
9(x,1) = 9(x,0) - “ L [9—1] 7 [egc{sax 9+t

9(x,t) = 9(x,0) — e F+e ¥ - 5{‘[535{9@— 9+9 H

¢ 0
59 (28)
_ 1 _ X _ tmx SE - Yv_ 2
9(x,t)=1-¢ e T +te <. {9 C{Sa 9+ 9}]
xt)=1-¢* -2 [9 6{92—9—9+92H.

Utilizing HPM on equation (28), we get

Y, () =1-¢"" psf‘l[ {Zp 9, (x,8) 5 ans (x,t) - Zp”é) (x, t)+2p”9 (x, t)H (29)
n=0

On comparing, the following iterations can be obtained,

P’ 9y (x,t) =1-¢"%,

(1 09,
P9 (xt) =2 7Z1% ——90+9§H =0,

°9
P 856 = L0 L7 Fd + 8,20 -9, 42,9 H (30)
1 39, 39, 09,

19

P (xt) =2 iz + 9=t + 9,=2-9, +92+299H

ox TV ox Vo
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0 (x, 1) 0 (x, 1)

(@ (®)

F1GURE 1: The surfaces solution of gas dynamic equation. (a) The approximate surface solution of 9(x, t). (b) The exact surface solution of
9(x, ).

0 (x, 1)

—— Exact
- -~ Approximate

FiGgure 2: 2D plot for 9(x,t) with various parameter of ¢.
Hence the solution can be expressed as
9(x,t) =95 (x, 1) + 9, (o6, 1) + 9, (o, 1) + D3 (x,8) + - -+,

9(x,t)=1-€" +0+0+---, (31)
9(x,t)=1-¢"%.

5. Results and Discussion represents the the approximate solution obtained by &,
-PTM and Figure 1(b) represents the exact solution of the
In this portion, we demonstrate the graphical represen-  nonlinear gas dynamic equation. In Figure 1, we compare

tation of nonlinear gas dynamic equation. Figure 1(a)  these graphical illustrations at —1.5<x<1.5 and 0<t<1
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TABLE 1: Absolute error among the approximate and exact solution at t = 0.5 and 1.
x Approximate values at t = 0.5 Approximate values at t = 1 Exact values at t = 1 Absolute error at t =1
0.1 1.49157 2.4506 2.4596 0.0464
0.2 1.34963 2.1274 2.22554 0.00814
0.3 1.22119 2.00638 2.01375 0.00737
0.4 1.10498 1.81545 1.82212 0.00667
0.5 0.999828 1.64269 1.64872 0.00603
0.6 0.904682 1.48636 1.49182 0.00546
0.7 0.81859 1.34492 1.34986 0.00494
0.8 0.740691 1.21693 1.2214 0.00447
0.9 0.670205 1.10113 1.10517 0.00404
1.0 0.606426 0.99634 1 0.00366

and observe that both surface solutions are in full
agreement. Figure 2 represents the graphical error be-
tween the solutions obtained by Z.-PTM and the exact
solutions at 0 <x <. Table 1 presents the analysis of the
absolute error at different times t and shows that the
obtained values become closer to the exact solution with
the increase of time. Finally, the figures and table dem-
onstrate that our approach has high authenticity of per-
formance and provides fast convergence results towards
the exact solution.

6. Conclusion

In this article, we have successfully applied a new scheme &,
-PTM to determine the approximate results of gas dynamic
equation. We obtained these results in the shape of series
instead of discretization, linearization, or assumptions. We
observe that when HPM is used with Laplace-Carson
transform, we can obtain a rapid convergent series solution
with less computation. We compute these iterations with the
help of Mathematica Software 11.0.1. We also compare the
approximate and the exact solution results and provide the
absolute error to examine the efficiency of our suggested
approach. 2D plot and 3D surface solutions show that we
have strong agreement with the results of gas dynamic
equation. Therefore, we can say that Z.-PTM is more ef-
ficient and appropriate than other schemes. This approach is
also applicable to other nonlinear problems such as frac-
tional partial differential equations and can be expanded in a
variety of scientific and engineering applications in the
tuture.
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