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In this manuscript, we defne the class of ω1-weakly α-projective QTAG-modules for the infnite ordinal α and provide its
systematic study for the fnite ordinal. Furthermore, we generalize this class to (ω.2 + n)-projective modules and obtain some
characterizations. We also study the ω-totally weak (ω.2 + n)-projective modules under the formation of ω1-bijections.

1. Introduction and Preliminaries

Several group concepts such as purity, projectivity, injec-
tivity, and height have been extended to modules. However,
in order to derive outcomes that do not hold for modules,
certain restrictions have been imposed on the modules
themselves or on the rings underlying them. By considering
the QTAG-module structure with these conditions in mind,
it becomes possible to establish several fundamental prop-
erties of groups that are not universally valid. Te results
presented in this study draw inspiration from the discoveries
made in [1]. One can go through the papers [2–4] for the
better insight of projective groups and related results, which
are used frequently here as the generalization for the case of
QTAG-modules.

Singh initiated the investigation into the structure of
QTAG-modules in [5]. Since then, several researchers, in-
cluding Khan, Mehdi, Abbasi, and others, have extended
various group concepts to QTAG-modules [6, 7], in-
troducing new notions and structures that draw inspiration
from the group framework and yielding intriguing fndings.
Despite these developments, there are still several concepts
that have yet to be generalized for modules. For the recent
developments in the chain of generalizations for QTAG-
modules, one can go through these interesting articles [8, 9].

Te defnitions used in this manuscript have been
previously introduced in the earlier work of one of the co-
authors and have been appropriately referenced and
restated here. In what follows, all notations and notions are
standard and will be in agreement with those used in [10].

“A module M over an associative ring R with unity is
a QTAG-module if every fnitely generated submodule of
any homomorphic image of M is a direct sum of uniserial
modules [11]. All the rings R considered here are associative
with unity, and modules M are unital QTAG-modules. An
element x ∈M is uniform if xR is a nonzero uniform (hence
uniserial) module, and for any R-module M with a unique
composition series, d(M) denotes its composition length.
For a uniform element, x ∈M, e(x) � d(xR) and HM(x) �

sup dyR/xR|y ∈M, x ∈ yR  and y uniform􏼈 􏼉 are the expo-
nent and height of x in M, respectively. Hk(M) denotes the
submodule of M generated by the elements of height at least
k, and Hk(M) is the submodule of M generated by the
elements of exponents at most k. M is h-divisible if M �

M1 � ∩∞k�0Hk(M) [7], and it is h-reduced if it does not
contain any h-divisible submodule. In other words, it is free
from the elements of infnite height. A QTAG-module M is
said to be separable if M1 � 0. Let M be a module, then the
sum of all simple submodules of M is called the socle of M

and is denoted by Soc(M). If M, M′ are QTAG-modules,
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then a homomorphismf: M⟶M′ is an isometry if it is 1-
1, onto and HM′(f(x)) � HM(x), for all x ∈M. A sub-
module N of a QTAG-module M is a nice submodule if
every nonzero coset a + N is proper with respect to N, i.e.
For every nonzero a + N, there is an element b ∈ N such that
HM(a + b) � HM/N(a + N).”

“A familyN of submodules of M is called a nice system
in M if

(i) 0 ∈N
(ii) If Ni􏼈 􏼉i∈I is any subset of N, then ΣINi ∈N
(iii) Given any N ∈N and any countable subset X of M,

there exists K ∈N containing N∪X, such that
K/N is countably generated [6].

Every submodule in a nice system is a nice submodule.
An h-reduced QTAG-module M is called totally projective if
it has a nice system and direct sums and direct summands of
totally projective modules are also totally projective. A
submodule N of M is h-pure in M if N∩Hk(M) � Hk(N),
for every integer k≥ 0. A QTAG-module M is
(ω + n)-projective if there exists a submodule N ⊂ Hn(M)

such that M/N is a direct sum of uniserial modules or
equivalently if and only if there is a direct sum of uniserial
module K with a submodule L⊆Hn(K) such that M � K/L.
M is ω-projective if and only if it is a direct sum of uniserial
modules. Also, two (ω + n)-projective QTAG-modules
M1, M2 are isometric if and only if there is a height pre-
serving isomorphism between Hn(M1) and Hn(M2) [6].
For any QTAG-module, M, g(M) denotes the smallest
cardinal number λ such that M admits a generating set X of
uniform elements of cardinality λ, i.e., |X| � λ. A homo-
morphism f: M⟶ N is said to be ω1-bijective if
g(ker  f), g(N/f(M))<ω1.”

2. Main Results

Mehdi et al. [6] defned the (ω + n)-projective module as the
QTAG-module M with a submodule N⊆Hn(M) such that
M/N is a direct sum of uniserial modules (we will abbreviate
it as DSUM). Recently, Sikander in [12] defned the
ω1-(ω + n)-projective module as follows:

Defnition 1. For n<ω, the QTAG-module M is said to be
ω1-(ω + n)-projective if there exists a countably generated
(we will abbreviated it as CG) submodule N of M such that
M/N is (ω + n)-projective. If N is balanced, then M is
balanceable ω1-(ω + n)-projective.

We extend this concept as follows:

Defnition 2. For n<ω, the QTAG-module N is said to be
weakly ω1-(ω + n)-projective if there is a CG nice sub-
module N⊆M such that N⊆Hω(M) and
(M/N)/Hω+n(M/N) is (ω + n)-projective. If N is balanced,
the module M is called weakly balanced ω1 − (ω + n)−

projective.
Te ω1 − (ω + n)− projective modules are weakly ω1 −

(ω + n)− projective as well as balanceable ω1 − (ω + n)−

projective modules are weakly balanced ω1 − (ω + n)−

projective. Moreover, for any module M, for which
M/H(ω+n)(M) is (ω + n)− projective, it is necessarily weakly
(ω + n)− projective. Also, each weakly ω1 − (ω + n)− pro-
jective module has the property that M/Hω(M) is (ω + n)−

projective.
Moreover, if H(ω+n)(M/N) � 0 or even if H(ω+n)(M) is

CG, weakly ω1 − (ω + n)− projective modules are of ne-
cessity ω1 − (ω + n)− projective module.

Example 3. Let R � Z be the ring of integers and let M �

⊕∞i�1R be the direct sum of countably many copies of R. We
defne a submodule N⊆M as follows: for each i ∈ N, let ei be
the ith basis element of M and let Ni � Rei be the submodule
of M generated by ei. Ten, we let N � ⊕∞i�1Ni be the direct
sum of all the Ni.

We note that N is a CG submodule of M. We claim that
M/N is weakly ω1-(ω + n)-projective for any n ∈ N.

To see this, we note that M/N is isomorphic to Rω, the
direct product of countably many copies of R. Let K be any
submodule of M/N and let f: M⟶M/N be the quotient
map. Ten, f− 1(K) is a submodule of M that contains N.
Since N is a DSUM (each Ni is isomorphic to R which is
uniserial), it follows that any fnitely generated submodule of
f− 1(K) is also a DSUM. Terefore, by the defnition of
QTAG-modules, f− 1(K) is a DSUM. In particular, it is
ω-projective.

Now, let L be any submodule of M/N such that
Hω+n(M/N)⊆ L⊆M/N. Ten, f− 1(L) is a submodule of M

that contains N and satisfes the following equation:

Hω+n f
− 1

(M)􏼐 􏼑⊆f
− 1

(L)⊆f
− 1 M

N
􏼒 􏼓. (1)

Since f− 1(M/N) is ω-projective, it follows that
f− 1(L)/Hω+n(f− 1(M)) is also ω-projective. Terefore, by
the defnition of weakly ω1 − (ω + n)-projective, M/N is
weakly ω1 − (ω + n)-projective.

Despite being weakly ω1-(ω + n)-projective, M cannot
be classifed as ω1-(ω + n)-projective since any countably
generated submodule of M can be represented as a direct
sum of countably many copies of R, which is not
(ω + n)-projective for any n ∈ N. Tus, M serves as an in-
stance of a QTAG-module that exhibits weak
ω1-(ω + n)-projectivity but not ω1-(ω + n)-projectivity.

Defnition 4. TeQTAG-moduleM is weaklyω.2-projective
if it has a submodule N such that N and M/N both are
the DSUM.

Clearly, (ω + n)-projective modules are weakly
ω.2-projective and submodules of weakly ω.2-projective
modules are also weakly ω.2-projective.

Now, we extend Defnition 5 as follows:

Defnition 5. Temodule M is ω1-weakly ω.2-projective if it
has a CG submodule N such that M/N is a weakly
ω.2-projective module.

Clearly, ω1 − (ω + n)− projective modules are ω1-weakly
(ω.2)-projective and the submodules of ω1-weakly
(ω.2)-projective modules retain the same property.
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Moreover, weakly ω.2-projective modules are ω1-weakly
(ω.2)-projective.

Example 6. Let R � Z, and for fxed prime p, we consider
the R-module M � Zp∞. Tis is the DSUM of the height of
some power p, i.e., M � ⊕∞i�1Cpi , where Cpi denotes the
uniserial submodule of height i.

Claim: M is ω1-weakly ω.2-projective.
Let N � ⊕ k

i�1Cpni be a fnite direct summand of M,
where n1 < n2 < · · · < nk are integers. Ten, N is clearly
a DSUM since each Cpni is a uniserial module with a simple
submodule Cpni − 1.

Moreover, M/N is also a DSU submodule since any such
submodule is of the form Cpni /〈pni − nj 〉 for some i> j, and
these form a complete set of representatives for the sub-
modules of M/N. Tus, M/N is also a DSUM.

Since every fnitely generated submodule of M is a direct
summand of M, it follows that every homomorphic image of
M is also a DSUM. Terefore, M is a QTAG-module.

Now, let N � ⊕∞i�1Cpi be the submodule of M generated
by all uniserial submodules of the height of some p-power
order. Ten, N is countably generated, and M/N is the
trivial module, which is certainly weakly ω.2-projective.
Terefore, M is ω1-weakly ω.2-projective.

However, M is not ω1 − (ω + n)-projective for any n

since M contains infnitely many nonisomorphic in-
decomposable submodules (namely, the uniserial sub-
modules Cpi for i≥ 1) and hence cannot be a direct sum of
a countable number of indecomposable modules. Terefore,
the example shows that every ω1 − (ω + n)-projective
module is ω1-weakly (ω.2)-projective but not conversely.

In [13], a module M in DSUM is called ω-totally if each
of its separable submodule is in DSUM. It is known that
ω-totally DSUM are precisely the direct sums of a CG
module and a DSUM ([13], Teorem 2.1). Tat is why, by
Defnition 1, ω-totally DSUM are precisely the
ω1 − ω-projective ones.

Te class of ω1-weakly (ω.2)-projective modules is
categorized in several ways in the result that follows.

Theorem 7. Let M be a QTAG-module and n>ω. Te
following assertions are equivalent:

(i) M is ω1-weakly ω.2-projective
(ii) M is an elongation of a DSUM by an

ω1-(ω + n)-projective module
(iii) M is an elongation of a module N whose every

separable submodule is a DSUM by a (ω + n)-pro-
jective module

(iv) M is the submodule of N + K, where N is CG and
Hω.2(K) � 0 and K is the direct sum of CG modules

(v) M is an elongation of a weakly ω.2-projective
module.

Proof. (i)⟹(ii). Let M′ � M/N be weakly ω.2-projective
for some CG submodule N of M. Let K be a submodule of
M′ such that K and M′/K are DSUM. Let T be a submodule

of M such that T/N � K. Now, T has the property that every
separable submodule of T is a DSUM and
M/T≃M/N/T/N � M′/K is a DSU submodule. By the
previous discussion, T has a submodule P such that P is
a DSUM and T/P is countably generated. Since M/P/T/P �

M/T is a DSUM, by the same arguments, every separable
submodule of M/P is a DSUM. In other words, M/P isω1-ω-
projective and M/P is ω1-(ω + n)-projective for any n<ω.

(ii)⟹(iii) Let N be a submodule of M such that N is
a DSUM and M′ � M/N is ω1-(ω + n)-projective. Now, M′

has a CG submodule K such that M′/K is (ω + n)-projective.
If we put T/N � K, then every separable submodule of T is
a DSUM and M/T≃M/N/T/N � M′/K is
(ω + n)-projective.

(iii)⟹(iv) Let T be a submodule of M such that every
separable submodule of T is a DSUM and M/T is
(ω + n)-projective. Let P be a module such that P is a DS of
CG modules and Hω+n(P) � T. Since M/T is (ω + n)-pro-
jective, the injection map from T to P extends to a homo-
morphism ψ: M⟶ P. Let Q be a module such that
Hω+n+1(Q) � 0 such that M/T⊆Q. Consider the homo-
morphism ψ: M⟶ P⊕Q such that ψ(x) � (ψ(x), x + T).
Now, Ker(ψ) � T∩Ker(ψ) and if ψ is injective, therefore, ψ
is also injective. As Hω.2(P) � Hω(T) is countably gener-
ated, thus P � N⊕P′ where N is countably generated and
Hω.2(P′) � 0. We may put K � P′ ⊕Q and we are done.

(iv)⟹(v) If P � M∩K, then P⊆K is also weakly
ω.2-projective. Since M/P embeds in K⊕N/K≃N, implying
that M/P is CG.

(v)⟹(i) Let P be a weakly ω.2-projective module and
M/P is CG. Let P be a submodule of K such that Hω.2(K) �

0 and K � ⊕
i∈I

Pi where each Pi is CG. Let Q be a CG sub-

module of M such that M � P⊕Q and P∩Q⊆ ⊕
j∈J ⊂ I

Pj. If

we put � Q + (P∩ (⊕Pi)), then N is CG and
M/N � P + Q/N � P + N/C≃P/P∩N � P/P∩ ( ⊕

j∈J
Pj).

Since P∩ ( ⊕
j∈J

Pj) is the kernel of the homomorphism

ϕ: P⟶ ⊕
i∈I

Pi⟶ ⊕
k∈I− J

Pk, therefore, M/N is a weakly

ω.2-projective module and we are done. □

Example 8. We consider the following QTAG-module:

M �
⊕∞n�1R xn􏼂 􏼃

〈x2
n〉

, (2)

where R is any associative ring with unity. Here, R[xn]/〈x2
n〉

is the quotient of the polynomial ring R[xn] by the ideal
generated by x2

n, which can be thought of as a module over R

generated by the element xn subject to the relation x2
n � 0.

We claim that M satisfes Teorem 7. First, we note that
M is a DSUM (i.e., every submodule is either trivial or the
module itself ), so every fnitely generated submodule of M is
a DSUM. Tus, M is a QTAG-module.

Now, we will show that M satisfes the conditions of each
part of Teorem 7.

(i) To show that M is ω1-weakly ω.2-projective, we can
take N to be the submodule generated by x1, which
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is countably generated.Ten, M/N is isomorphic to
⊕∞n�2R[xn]/〈x2

n〉, which is (ω + 1)-projective since
every fnitely generated submodule of M/N is
a direct sum of cyclic modules.

(ii) We can take the DSUM to be N, as in (i), and the
ω1-(ω + n)-projective module to be M/N, as shown
in (i).

(iii) We can take the module N to be ⊕∞n�1Rxn, which is
a module whose every separable submodule is
a DSUM. Ten, M/N is isomorphic to
⊕∞n�1R[xn]/<x2

n > , which is (ω + 1)-projective.
(iv) We can take N to be the submodule generated by x1,

which is countably generated and K to be the direct
sum of the modules R[xn]/〈x2

n〉 for n> 1. Ten,
Hω.2(K) � 0 since K is a direct sum of modules that
are isomorphic to R, and M/N is isomorphic to K,
which is weakly ω.2-projective.

(v) Since M is a direct sum of modules that are iso-
morphic to R[xn]/〈x2

n〉, which are all weakly
ω.2-projective, M itself is also weakly
ω.2-projective.

Terefore, M satisfes all the conditions of Teorem 7.
Another characterization of the class of ω1-weakly

(ω.2)-projective modules is given by the following. But frst
let us state two immediate consequences of Teorem 7.

Corollary 9. Te ω1-weakly ω.2-projective modules form the
smallest class of weakly ω.2-projective modules that is closed
under ω1-bijective homomorphisms.

Proof. We have to show that the class of ω1-weakly
ω.2-projective modules is closed with respect to the for-
mation of ω1-bijective homomorphisms. We suppose that
M/N is CG, for a submodule N⊆M. It is sufcient to show
M is ω1-weakly ω.2-projective if and only if N is weakly
ω.2-projective. We suppose that N is ω1-weakly ω.2-pro-
jective. By Teorem 7 (v), N has a weakly ω.2-projective
submodule K such that N/K is CG. Now, M/K is also
countably generated because M/N≃M/K/N/K. Terefore,
M satisfes Teorem 7 (v). Converse is trivial.

Te next criterion reduces the study of ω1-weakly
ω.2-projective modules to these of lengthω.2, and hence, it is
more useful for further study. □

Corollary 10. Te QTAG module M is ω1-weakly
ω.2-projective if and only if Hω.2(M) is countably generated
and M/Hω.2(M) is ω1-weakly ω.2-projective.

Proof. If M is ω1-weakly ω.2-projective such that
M � K⊕N where Hω.2(K) � 0 and N is the DS of CG
modules. Ten, by Teorem 7 (iv), Hω.2(M)⊆Hω.2(N) is
countably generated and vice versa. Moreover, the natural
homomorphism from M onto M/Hω.2(M) is ω1-bijective,
and by Corollary 9, we are done. □

Corollary 11. Te QTAG-module M is ω1-weakly
ω.2-projective if and only if it has a CG submodule

N⊆Hω(M) such that M/N is weakly ω.2-projective.
Moreover, every separable submodule of Hω(M) is a DSUM,
and separable ω1-weakly ω.2-projective modules are weakly
ω.2-projective.

Proof. By Teorem 7 (iii), M/K is a DSUM where K �

P⊕Q is the direct sum of a CG module P and a DSUM Q.
Now, Hω(K) is CG and M/Hω(K)/K/Hω(K)≃M/K is
a DSUM. Since K/Hω(K) is also a DSUM so that M/Hω(K)

is weakly ω.2-projective. We take N � Hω(K). Since
Hω(M)⊆K, the second part is trivial because if every
separable module of a module M is a DSUM, then its
submodules have the same property. For the fnal part, we
may choose N � 0.

Te following proposition is the immediate implication
of the previous discussion: □

Proposition 12. Te QTAG-module M is ω1-weakly
ω.2-projective if and only if there exists a submodule N such
that Hω(N) is CG and M/Hω(N) is ω1-weakly
ω.2-projective.

Corollary 13. Let M be a QTAG-module such that Hω(M)

is CG. Ten, M is ω1-weakly ω.2-projective if and only if
M/Hω(M) is a weakly ω.2-projective module.

Proof. Since the homomorphism M⟶M/Hω(M) is
ω1-bijective by Corollary 9, M is ω1 weakly projective if and
only ifM/Hω(M) isω1 weakly projective. Now, by Corollary
11, the result follows.

Te previous corollary implies that if M is weakly ω.2
projective and Hω(M) is CG, then M/Hω(M) is weakly
ω.2-projective.

Now, we investigate the relationship between ω1-weakly
ω.2-projective and weakly ω.2-projective module. □

Proposition 14. Let M be a ω1-weakly ω.2-projective
module of length ≤ω.2. Ten, there exists a submodule N of
M such that N is a DSUM and M/N is weakly ω.2-projective.

Proof. By Corollary 11, there is a CG submodule
N⊆Hω(M) such that M/N is weakly ω.2-projective. Since
N is separable, it is a DSUM. □

Proposition 15. Te direct sum of ω1-weakly ω.2-projective
modules is ω1-weakly ω.2-projective if and only if all but
a countably many of them are weakly ω.2-projective.

Proof. We suppose that M � ⊕
i∈I

Mi is a ω1-weakly
ω.2-projective module. Being the submodules of M, all the
Mis are ω1-weakly ω.2-projective modules. Now, there exists
a countably generated submodule N of M such that M/N �

⊕Mi/N is weakly ω.2-projective. If |I|≤ℵ0, then we are
done; therefore, we assume that |I|>ℵ0 and I contains
a countable subset J such that N⊆ ⊕

j∈J
Mj. Tus,

M/N � ( ⊕
j∈J

Mj/N)⊕ ( ⊕
i∈I∖J

Mi). Since submodules of weakly
ω.2-projective modules are weakly ω.2-projective, all Mis
with i ∈ I∖J are weakly ω.2-projective.
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For the converse, we suppose M � ⊕
i∈I

Mi such that there
exists a countable subset J⊆ I such that all Mjs, j ∈ J are
ω1-weakly ω.2-projective modules and Mis, i ∈ I∖J are
weakly ω.2-projective modules. By defnition, there exist
countably generated submodules Nj’s of Mjs such that
(Mj/Nj)s are weakly ω.2-projective modules for j ∈ J. If we
put N � ⊕

j∈J
Nj, then N is almost countably generated and

M/N � ( ⊕
j∈J

Mj/Nj)⊕ ( ⊕
i∈I∖J

Mi). Since the direct sum of
weakly ω.2-projective modules is weakly ω.2-projective,
M/N is also weakly ω.2-projective; thus, M is ω1-weakly
ω.2-projective.

We have the following corollary as an immediate im-
plication of the previous one: □

Corollary 16. Te countable direct sum of ω1-weakly
ω.2-projective modules is a ω1-weakly ω.2-projective module.

Now, we extend the defnitions of weakly ω.2-projective
and ω1-weakly ω.2-projective modules as follows:

Defnition 17. Te QTAG-module M is said to be weakly
(ω.2 + n)-projective if there exists a (ω + n)-projective
submodule N⊆M such that M/N is a DSUM.

Moreover, M is ω1-weakly (ω.2 + n)-projective if there
exists a countably generated submodule K of M such that
M/K is weakly (ω.2 + n)-projective. Also, the submodule of
ω1-weakly (ω.2 + n)-projective module is also ω1-weakly
(ω.2 + n)-projective.

All of the stated and proved assertions for weakly
ω.2-projectives and ω1-weakly ω.2-projectives can be gen-
eralized without any difculty to weakly (ω.2 + n)-projective
and ω1-weakly (ω.2 + n)-projective modules, respectively.
Let us state some important ones of them.

Theorem 18. We suppose M is a module and n<ω. Te
following assertions are equivalent:

(a) M is ω1-weakly (ω · 2 + n)-projective
(b) M is an elongation of a (ω + n)-projective module by

an ω1 − (ω + n)-projective factor
(c) M is an elongation of an ω1 − (ω + n)-projective

module (i.e., of a submodule of a direct sum of a CG
module with a (ω + n)-projective module) by
a (ω + n)-projective factor (and even by a DSUM
factor)

(d) M is a submodule of a module of the form L⊕K where
L is countably generated and H(ω·2+n)(L) � 0 and K is
countably generated

(e) M is an elongation of a weakly (ω · 2 + n)-projective
module

Proof. (a)⟹(b) Let M′ � M/N for some (ω + n)-pro-
jective submodule N. We suppose that K is a (ω + n)-
projective submodule of M′ such that M′/K is DSUM. If T is
a submodule of M such that T/N � K, then every sub-
module of T is (ω + n)-projective and
M/T � (M/N)/(T/N) � M′/K. By the same arguments, T

has a submodule P which is (ω + n)-projective and T/P is
ω1 − (ω + n) projective and we are done.

(b)⟹(c) Let N be a submodule of M such that N is
(ω + n)-projective and M′ � M/N is ω1 − (ω + n) pro-
jective. Now, M′ has a CG submodule K such that M′/K is
(ω + n) projective. If we put T/N � K, then every separable
submodule of T is DSUM and
M/T � (M/N)/(T/N) � M′/K is (ω + n) projective.

(c)⟹(d) Let T be a submodule of M such that every
separable submodule of T is DSUM and M/T is
(ω + n)-projective. Let P be a submodule of M such that P is
a direct sum of CG modules and Hω+n(P) � T. Since M/T is
(ω + n)-projective, the injection map i: T⟶ P extends to
ψ: M⟶ P. We may consider a module Q such that
Hω2+n(Q) � 0 and M/T⊆Q. We defne ψ � kerψ ∩T � 0{ }

and ψ is also injective. As Hω+n(P) � T, Hω2+n(P) � Hω(T)

is also CG, thus, we have P � L⊕P′, where L is CG and
Hω2+n(P′) � 0. If we put K � P, ⊕Q, we are done.

(d)⟹(e) Let M⊆L⊕K, where L is CG and Hω2+n(L) �

0 and K is CG. Now, K is weakly (ω2 + n)-projective;
therefore, M∩K � P is also weakly (ω2 + n)-projective.
Now, M/P � M/(M∩K) � (M + K)/K embeds in
(L + K)/K implying that M is an elongation of a weakly
(ω2 + n)-projective module.

(e)⟹(a) Let P be a weakly (ω2 + n)-projective module
and M/P is CG. Let P be a submodule of K such that
Hω2+n(K) � 0 and K � ⊕

i∈I
Pi, where each Pi is CG. If Q is

a CG submodule of M such that M � P + Q and
P∩Q⊆ ⊕

j∈J⊆ I
Pj. If we put � Q + (P∩ ⊕

j∈J
Pj), then L is CG

and
M

L
�

P + Q

L
�

P + L

L
�

P

L∩P
�

P

P∩ ⊕Pj􏼐 􏼑
. (3)

Now, P∩ ( ⊕
j∈J

Pj) is the kernel of the composition of
homomorphisms ϕ: P⟶ ⊕

i∈i
Pi⟶ ⊕

k∈I∖J
Pk. Terefore,

M/L is a ω1-weakly (ω2 + n)-projective module, which
completes the proof of the theorem.

We will now study a little diferent class of modules: □

Defnition 19. A module M is called ω-totally weak
(ω · 2 + n)-projective if each of its separable submodule is
weakly (ω · 2 + n)-projective.

Clearly, every submodule of a ω-totally weak
(ω · 2 + n)-projective module retains the same property.

Proposition 20. If M is ω1-weakly (ω · 2 + n)-projective,
then M is ω-totally weak (ω · 2 + n)-projective.

Proof. Since as observed previously a submodule of a ω1-
weakly (ω · 2 + n)-projective module M is ω1-weakly
(ω · 2 + n)-projective as well, by what we have already shown
that all separable submodules of M should be weakly
(ω · 2 + n)-projective, as required. □

Example 21. To give an example of a QTAG-module which
is ω-totally weak (ω · 2 + n)-projective but not ω1-weakly
(ω · 2 + n)-projective, let us consider the following.
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Let R � Z[x1, x2, . . .] be the polynomial ring in
countably many variables and M � ⊕

n∈N
R/(x1, x2, . . . , xn) be

the direct sum of the quotient rings R/(x1, x2, . . . , xn) with
the usual module structure. Ten, M is a QTAG-module.

We claim that M is ω-totally weak (ω · 2 + n)-projective.
Indeed, every separable submodule of M is isomorphic to
a direct sum of quotients of the form R/(xi) for some i ∈ N.
But R/(xi) is a free module over R, and hence, it is weakly
(ω · 2 + n)-projective for any n ∈ N. Tus, every separable
submodule of M is weakly (ω · 2 + n)-projective for any
n ∈ N, and hence, M is ω-totally weak (ω · 2 + n)-projective.

However, M is not ω1-weakly (ω · 2 + n)-projective. To
see this, we suppose for contradiction that M is ω1-weakly
(ω · 2 + n)-projective and we let N⊆M be a countably
generated submodule such that M/N is weakly
(ω · 2 + n)-projective.Ten, M/N is a direct sum of modules
of the form R/(xi1

, . . . , xik
), where i1 < . . . < ik. We note that

each such module is fnitely generated and hence uniserial,
so M/N is a DSUM. Since M/N is weakly
(ω · 2 + n)-projective, it follows that M/N is a direct sum of
modules of the form R/(xi1

, . . . , xim
), where m≤ n. But this

contradicts the fact that M/N contains a direct summand
isomorphic to R/(xn+1), which is not of this form.Tus, M is
not ω1-weakly (ω · 2 + n)-projective.

Proposition 22. Te class of separable weakly
(ω · 2 + n)-projectives is closed under ω1 bijections.

Proof. Let S be a separable module with a submodule N such
that S/N is countably generated. As noted previously, if S is
weakly (ω · 2 + n)-projective, then so is N as being
a submodule.

Conversely, we assume that N is weakly
(ω · 2 + n)-projective. We write that N/P is DSUM for some
(ω + n)-projective submodule P. We observe that S/N �

(S/P)/(N/P) is countably generated, and hence, one can
write S/P � (Q/P)⊕ (R/P), where Q/P is DSUM and R/P is
countably generated for some submodules Q and R of S.
Since R is separable, so R is (ω + n)-projective [6]. Fur-
thermore, S/R � (S/P)/(R/P) � Q/R is DSUM, so by def-
nition, S is weakly (ω.2 + n)-projective, as desired.

We already know from Corollary 9, for any non-
negativen that ω1-weakly (ω · 2 + n)-projective modules
are closed under ω1-bijections and that for separable
modules the ω1-weakly (ω · 2 + n)-projective modules are
exactly the weakly (ω · 2 + n)-projectives. We notice that
ω-totally (ω + n)-projectives are themselves ω-totally weak
(ω · 2 + n)-projectives because (ω + n)-projective modules
are weakly (ω · 2 + n)-projective. □

Theorem 23. Te class of ω-totally weak (ω · 2 + n)-pro-
jective modules is closed under ω1-bijections.

Proof. Referring to Lemma 2.9 in [12], we suppose that
N⊆M is a submodule with M/N is CG. As indicated

previously, M being ω-totally weak (ω · 2 + n)-projective
implies the same for N.

To show the converse, let P be a separable submodule of
M. Hence, Q � P∩N is a separable submodule of N, and so,
by hypothesis, it is weakly (ω · 2 + n)-projective, but P/Q �

(P + N)/N⊆M/N is countably generated. Consequently, it
follows from Proposition 22 that P is also weakly
(ω · 2 + n)-projective so that M is ω-totally weak
(ω · 2 + n)-projective, as asserted.

We continue with the following improvement of Te-
orem 3.6 of [12]. □

Theorem 24. We suppose that M is a module such that
Hω(M) is CG. Ten, the following assertions are equivalent:

(i) M is ω1-weakly (ω · 2 + n)-projective
(ii) M is ω-totally weak (ω · 2 + n)-projective
(iii) M/Hω(M) is weakly (ω · 2 + n)-projective.

Proof. (i)⟹(ii) holds from Proposition 20. Moreover, the
implication (ii)⟹ (iii) follows from Teorem 23 because
the map M⟶M/Hω(M) is ω1-bijective. Te fnal im-
plication (iii)⟹ (i) follows from the corresponding gen-
eralization of Corollary 13 to (ω1)-weakly
(ω · 2 + n)-projectives.

Sikander et al. [14] defned the n-layeredmodule M such
that if for some n<ω, Hn(M) � ∪

k<ω
Mk,

Mk ⊆Mk+1 ⊆Hn(M) for all k≥ 1, and
Mk ∩Hk(M) � Hn(Hω(M)). Moreover, an α module is
α-n-layered, (α≤ω1) if for every β< α, each Hβ(M)-high
submodule of M is n-layered. □

Proposition 25. Let N be a countably generated nice sub-
module of a module M with limit length such that there exists
a countable ordinal β< length(M) with N∩Hβ(M) � 0. If
M is α-n-layered, then M/N is α-n-layered whenever
β< α≤ω1.

Proof. Let K/N be a Hβ(M/N)-high submodule of M/N.
Now,

K

N
􏼒 􏼓∩ Hβ

M

N
􏼒 􏼓􏼒 􏼓 �

K

N
􏼒 􏼓∩

Hβ(M) + N

N
􏼠 􏼡

�
K∩ Hβ(M) + N􏼐 􏼑

N

�
K∩Hβ(M)􏼐 􏼑 + N

N

� 0{ }.

(4)

Tis implies that K∩Hβ(M)⊆N; therefore,
K∩Hβ(M)⊆N∩Hβ(M) � 0{ }. Let K′ ⊃ K be a submodule
of M such that K′ ∩Hβ(M) � 0{ }. Now,
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K
′

N
⎛⎝ ⎞⎠∩Hβ

M

N
􏼒 􏼓 �

K
′ ∩ Hβ(M) + N􏼐 􏼑

N

�
K
′ ∩ Hβ(M)􏼐 􏼑 + N􏼒

N

� 0{ },

(5)

with K′/N ⊃ K/N which is not possible. Terefore, K is
Hβ(M)-high in M, and so, it is an isotype in M. Now, N is
nice in M; therefore, it is nice in K also. Since K is n-layered,
K/N should be n-layered when M/N is α-n-layered and we
are done. □

Lemma 26. We suppose that (ω + n)≤ α<ω, where n≥ 1.
Ten, the QTAG- module M is (ω + n)-projective and
α-n-layered if and only if M is a DS of CGmodules of length at
most (ω + n).

Proof. M is an α-projective α-n-layered module; therefore, it
is n-layered. Now, by [15], M is a DSM of length at most
(ω + n) as asserted. □

Theorem 27. Let (ω + n)≤ α≤ω1 and let M be a balance-
able ω1-(ω + n)-projective module or an ω-(ω + n)-projective
module of the limit length for some n≥ 1. Ten, M is a α-
n-layered module if and only if M is a DS of CG modules.

Proof. We suppose that M is balanceable
ω1-(ω + n)-projective. Let N be a CG nice submodule of M

such that M/N is (ω + n)-projective. Terefore, M/N is also
α-n-layered. Now, by Lemma 26, M/N is a DS of CG
modules implying that M is a DS of CG modules.

If M is a ω-(ω + n)-projective module of limit length,
then there is a fnitely generated submodule K of M such
that M/K is (ω + n)-projective. Now, by Proposition 25,
M/K is α-n-layered. Terefore, by Lemma 26, M/K is
a direct sum of CG modules implying that M is also a direct
sum of CG modules. □
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