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In this paper, the mathematical model of a kind of two-robot security system with an early warning function is studied. By using
strongly continuous operator semigroup theory and Volterra integral equation theory, the properties of the semigroup of the
system operator, the existence and uniqueness of nonnegative solution, and the well-posedness of solution are discussed, re-
spectively. Under the assumption that the failure rate and repair rate of the system are constants, the equations of the robot system
are transformed into an ordinary diferential equation group, and then the instantaneous reliability and stable-state reliability of
the system are obtained. Te reliability and zero-state controllability of the system are proved. Finally, the numerical solution of
the system model is obtained by using MATLAB mathematical software, and the corresponding numerical simulation diagram is
given. Te results show that the conclusions of numerical calculation and numerical simulation are in accordance with the results
of reliability theory, thereby the reliability of the robot safety system is verifed.

1. Introduction

With the progress and development of the times, robots are
becoming more and more widely used. Robots are me-
chanical devices that automatically perform work, replacing
or assisting human work, such as manufacturing, con-
struction, or hazardous work. Terefore, the stability and
reliability of the robot security system has become a hot
issue. Early warning function refers to the ability to provide
early warning and timely issuance of alarm signals before
a system or component malfunctions, allowing sufcient
time to predict various impending disasters and reduce
economic losses caused to humans by disasters. Te re-
liability [1] of a system means the ability or property of the
system to accomplish the specifed functions under the
specifed time and the specifed using conditions. It is also
one of the important characteristics of a repairable system.
Te robot security system with early warning function can
accurately detect the abnormal condition of the parts of the
robot working system according to the early warning signal
and carry out advanced control, continue to work, or carry
out maintenance, so as to reduce the economic losses. In

order to ensure the security and reliability of the system and
avoid the occurrence of unexpected accidents, the early
warning function is introduced into the repairable robot
security system in this paper. Based on the abstract Cauchy
problem theory, the system reliability is analyzed.

Te repairable system is an important system in the
research of reliability mathematics, and reliability is one of
the important contents in the research of the repairable
system. Many scholars and researchers at home and abroad
have done a lot of research on this kind of system, and
achieved fruitful results. Some of the literatures adopt the
method of qualitative analysis; for example, Wang et al. used
linear operator semigroup theory in literatures [2–9] to
study the semigroup properties of the main operator of
repairable systems composed of faulty components and
repairmen and discussed the well-posedness of the system
model solution by using functional analysis methods. In
literatures [10–15], Kamranfar et al. studied the stability of
repairable systems. On the basis of discussing the asymptotic
stability of the solutions of a repairable system with two
diferent components connected in parallel, Wang et al.
studied the controllability of the system in the zero state and
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the criterion of using the controllability of the system in
literatures [16–24], and obtained the corresponding optimal
control element of the system by using the minimization
sequence, thus solving the optimal control problem of the
system solution. In other literatures, the reliability index of
the system is obtained by quantitative analysis. For example,
Marco et al. obtained the reliability index of the system in the
literatures [25–32] by using the Laplace transformation
inversion method, MATLAB mathematical software calcu-
lation, linear diferential equation with constant coefcients
satisfying initial conditions, and so on. In addition, some
literatures combine the quantitative analysis method with
computer technology to perform the numerical calculation
and simulation of the repairable system. For example, Gao
et al. studied a repairable system with early warning function
in literature [33], utilizing that when the risk coefcient
α⟶∞, the warning system approximates a new model
with weak solution—the model of a nonearly warning
system; the corresponding conclusions were drawn and
numerical simulation examples were given by computer,
which greatly enriches the theory and practice of the re-
pairable system with an early warning function; Zhou et al.
studied the reliability of the system in literatures [34–37] and
simulated the graphs of transient and steady-state reliability
of the system by using Maple software. In summary, in the
existing literatures and materials both domestically and
internationally, the method of combining qualitative anal-
ysis with quantitative analysis is less efective than that of
using qualitative or quantitative analysis alone. In this ar-
ticle, a kind of two-robot security system with an early
warning function is taken as the research object, and at-
tempts are made to combine qualitative analysis with
quantitative analysis to study the reliability of the system.

Te main contents of this article are the modeling of the
robot safety system, the well-posedness and controllability of
the system solution, the reliability index of the system, and
the numerical experiment of the reliability theory results.
However, with the development and application of system
reliability, when the system models become more complex,
new methods and theories are needed to guide them, which
is an important development problem of system reliability
research in the future.

Te reliability of repairable system has achieved certain
achievements in both theory and application. Nowadays, in
the 21st century, the research on reliability has been elevated
both domestically and internationally to the high level of
understanding of saving resources and energy. Products (or
equipment) are developing in the direction of gradually
improving reliability and gradually reducing maintenance
time, maintenance personnel, and maintenance costs. At the
same time, reliability technology is the result of the joint
development of multiple felds and technologies. It belongs
to a comprehensive basic industry, and the current devel-
opment trend is moving towards comprehensiveness, us-
ability, automation, informatization, virtualization, and
intelligence. Tus, higher economic benefts and stronger
competitiveness can be achieved.

2. Mathematical Model

A robot is a complex system including mechanical, elec-
tronic, electrical, hydraulic, pneumatic, computer, and other
types of components and control software. It is relatively
complicated to study its reliability and safety [15, 16]. In
order to consider this issue more clearly, this article assumes
that the robot security system consists of two robots、se-
curity devices and a repairman [17]. Assuming that the
entire system does not consider the repair and replacement
process and starts to run at the time t� 0. At the time t� 0,
the two robots and the safety device are brand new, the
system starts to operate normally, and the maintenance
personnel goes on holiday. If the system fails, the repairman
immediately terminates the vacation and repairs the faulty
system immediately. If N(t) represents the state at the
moment t, the system has the following situations:

State 0. One robot and safety device work, and one
robot is in hot standby state
State 1. One robot and safety device are working, and
one robot is in a malfunction state
State 2. Te state in which both robots are
malfunctioning
State 3. Te state of the system when the safety
device fails
State c. Te state of the normal faulty system

Te state-transfer chart of the system is shown in
Figure 1.

In order to facilitate the modeling and model analysis,
the following general assumptions can be made according to
the state transition diagram of the repairable system:

(1) Various faults are independent of each other in the
statistical sense

(2) Only when both robots fail (or the safety device fails
due to conventional reasons), the whole system is in
a fault state

(3) Te failure rate of the system is constant, and the
repair rate after system failure is nonconstant

(4) Te normal working time of the robot security
system follows the exponential distribution function
F � 1 − e− λt, t≥ 0, and λ> 0

(5) Te repair time of faulty parts of robot system fol-
lows the general distribution function
G � 1 − e− μi(x)t, t≥ 0, μi(x)> 0, and i � 1, 2

(6) Te two robots are exactly the same and repaired
as new

Since the time distribution of transitions between states
of the system does not completely obey the negative ex-
ponential distribution, it can be known from the above
hypothesis that N(t) represents the state at the moment t, so
N(t), t⩾ 0{ } is not a Markov process. But we can make it
a high-dimensional Markov process by using the method of
supplementary variable, assuming that the fault system is in
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a state of maintenance, the supplementary variable Xi(t)(i �

2, 3) represents the maintenance time from the beginning of
maintenance to the present, and let

Z(t) �

N(t), N(t) � 0, 1, c,

N(t), X2(t)( , N(t) � 2,

N(t), X3(t)( , N(t) � 3.

⎧⎪⎪⎨

⎪⎪⎩
(1)

Ten, Z(t), t⩾ 0{ } constitutes a Markov process; that is,
N(t), Xi(t) | t⩾ 0 (i � 2, 3) is a continuous-time two-
dimensional Markov process; that is, t at any time, given
the concrete values of N(t) and Xi(t), then the probability
law of the process N(t), Xi(t) | t⩾ 0 (i � 2, 3) after time t
has nothing to do with the history of the process before time
t. Let Pi(t)(i � 0, 1, c) denote the probability that the system
is in state i at time t, Pi(t, x)(i � 2, 3) represents the
probability density of the time t that the system is in state i
and the faulty part has been repaired x, i.e.,

Pi(t) � P N(t) � i{ }, (i � 0, 1, c),

Pi(t, x)dx � P x<Xi(t)⩽x + dx, N(t) � i , (i � 2, 3).

(2)

Here, it should be noted that although Pi(t, x)(i � 2, 3)

is only defned as 0⩽x< t, but for the sake of discussion,
Pi(t, x)(i � 2, 3) can be defned according to the actual
physical background of the system and Pi(t, x)(i � 2, 3) is
extended on x> t, that is, supplementary defnition
Pi(t, x) � 0, x> t, i � 2, 3. At the same time, the system is out

of state i(i � 2, 3) of the risk function; that is, the fx quotiety
of the faulty component in the system in the state i(i � 2, 3)

can be defned as follows by the conditional probability
[21, 22]:

μi(x)∆t � P x<Xi(t)≤ x + ∆t
 Xi(t)> x ,

�
P x<Xi(t)≤ x + dx( 

P Xi(t)>x( 
,

�
Gi(x + ∆t) − Gi(x)

1 − Gi(x)
,

�
dGi(x)/dx

1 − Gi(x)
∆t, i � 2, 3.

(3)

And from the actual physical meaning of μi(x), the
following reasonable assumptions can be made:

0⩽ μi(x)<∞, M � sup
x∈[0,∞)

μi(x), 
∞

0
μi(t)dt �∞,

0< lim
x⟶∞

1
x


x

0
μi(t)dt � μi <∞, (i � 2, 3).

(4)

Te following is a discussion of the system state tran-
sition after ∆t time. Terefore, let λ represents the damage
rate of the running system robot caused by its own reasons,
λci indicates the normal failure rate of the system in the state
i(i � 0, 1), λs indicates the human fault quotiety of the
operating system, and α represents the damage quotiety of
hot standby robot, µ indicates the constant fx quotiety of the
running robot, µc indicates the constant fx quotiety of the
running system, and Pi(t) indicates the probability that the
system is in state i at the moment t(i � 0, 1, c), Pi(t, x)

represents the probability that the system is in the state i and
the repaired time x at the moment t, (t, x) in
[0,∞] × [0,∞]. μi(x) represents the fx quotiety when the
system is in state i and the repaired time x. Ten, it is de-
duced from the formula of total probability and the prop-
erties of Markov process (for convenience, it is assumed that
∆x is the same as ∆t):

P0(t + ∆t) � P (at t when the system is in state 0, ∆t the
system remains in state 0) +P (at twhen the system is in state
1, ∆t the system is fxed to state 0) +P (at twhen the system is
in state c, ∆t the system is fxed to state 0) +P (at t when the
system is in state 2, ∆t the system is fxed to state 0) +P (at t
when the system is in state 3, ∆t the system is fxed to state 0):

P0(t + ∆t) � P0(t) 1 − λ + α + λc0 + λs( ∆t  + μP1(t)∆t + μcPc(t)∆t + 
3

i�2

∞

0
μi(x)Pi(t, x)∆tdx + o(∆t). (5)

From formula (5) and the defnition of derivative,

c

1 2

3

0
λ + α λ

λs λs

λc0

μc

λc1

μ3 (x)

μ2 (x)

μ

Figure 1: State-transfer chart of the system.
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P0(t + ∆t) − P0(t) � − λ + α + λc0 + λs( P0(t)∆t + μP1(t)∆t

+ μcPc(t)∆t + 
3

i�2

∞

0
μi(x)Pi(t, x)dx∆t + o(∆t),⇒

P0(t + ∆t) − P0(t)

∆t
�

− λ + α + λc0 + λs( P0(t)∆t

∆t
+
μP1(t)∆t

∆t

+
μcPc(t)∆t

∆t
+


3
i�2 
∞
0 μi(x)Pi(t, x)dx∆t

∆t
+

o(∆t)

∆t
,⇒

lim
∆t⟶0

P0(t + ∆t) − P0(t)

∆t
� − lim

∆t⟶0
λ + α + λc0 + λs( P0(t) + lim

∆t⟶0
μP1(t)

+ lim
∆t⟶0

μcPc(t) + lim
∆t⟶0



3

i�2

∞

0
μi(x)Pi(t, x)dx + lim

∆t⟶0

o(∆t)

∆t
,⇒

dP0(t)

dt
� − λ + α + λc0 + λs( P0(t) + μP1(t) + μcPc(t) + 

3

i�2

∞

0
Pi(t, x)μi(x)dx.

(6)

P1(t + ∆t) � P (at t the system is in state 1, the faulty
robot in ∆t has not been repaired, and the other robot has
not failed, and the system in ∆t has not left state 1) + P (at t
the system is in state 0, and one robot in ∆t has failed):

P1(t + ∆t) � P1(t) 1 − μ + λ + λc1 + λs( ∆t 

+(λ + α)P0(t)∆t + o(∆t).
(7)

From formula (7) and the defnition of derivative,

P1(t + ∆t) − P1(t) � − μ + λ + λc1 + λs( P1(t)∆t +(λ + α)P0(t)∆t + o(∆t),⇒

P1(t + ∆t) − P1(t)

∆t
�

− μ + λ + λc1 + λs( P1(t)∆t

∆t
+

(λ + α)P0(t)∆t

∆t
+

o(∆t)

∆t
,⇒

lim
∆t⟶0

P1(t + ∆t) − P1(t)

∆t
� − lim

∆t⟶0
μ + λ + λc1 + λs( P1(t) + lim

∆t⟶0
(λ + α)P0(t) + lim

∆t⟶0

o(∆t)

∆t
,⇒

dP1(t)

dt
� − μ + λ + λc1 + λs( P1(t) +(λ + α)P0(t).

(8)

Pc(t + ∆t) � P (at t when the system is in state c, ∆t the
system routine fault has not been repaired, and the system
has not left the state c) + P (at t when the system is in state 0,
∆t the system routine fault) +P (at t when the system is in
state 1, ∆t the system routine fault):

Pc(t + ∆t) � Pc(t) 1 − μc∆t(  + λc0P0(t)∆t

+ λc1P1(t)∆t + o(∆t).
(9)

From formula (9) and the defnition of derivative,

Pc(t + ∆t) − Pc(t) � − μcPc(t)∆t + λc0P0(t)∆t + λc1P1(t)∆t + o(∆t),⇒

Pc(t + ∆t) − Pc(t)

∆t
�

− μcPc(t)∆t

∆t
+
λc0P0(t)∆t

∆t
+
λc1P1(t)∆t

∆t
+

o(∆t)

∆t
,⇒

lim
∆t⟶0

Pc(t + ∆t) − Pc(t)

∆t
� − lim

∆t⟶0
μcPc(t) + lim

∆t⟶0
λc0P0(t) + lim

∆t⟶0
λc1P1(t) + lim

∆t⟶0

o(∆t)

∆t
,⇒

dPc(t)

dt
� λc0P0(t) + λc1P1(t) − μcPc(t).

(10)
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Similarly, there are

Pi(t + ∆t, x + ∆t) � P (at t the system is in state i, and the repair time of the faulty components isx,

∆t the systemhas not left state i),

� P (at t the system is in state i, and the repair time of the faulty components isx)

× P (∆t the failure components are not repaired yet),

� Pi(t, x) 1 − μi(x)∆t  + o(∆t), i � 2, 3.

(11)

Derived from formula (11) and the defnition of partial
derivative,

Pi(t + ∆t, x + ∆t) − Pi(t, x) � − Pi(t, x)μi(x)∆t + o(∆t),⇒

Pi(t + ∆t, x + ∆t) − Pi(t, x + ∆t) + Pi(t, x + ∆t) − Pi(t, x) � − Pi(t, x)μi(x)∆t + o(∆t),⇒

Pi(t + ∆t, x + ∆t) − Pi(t, x + ∆t)

∆t
+

Pi(t, x + ∆t) − Pi(t, x)

∆t
�

− Pi(t, x)μi(x)∆t

∆t
+

o(∆t)

∆t
,⇒

lim
∆t⟶0

Pi(t + ∆t, x + ∆t) − Pi(t, x + ∆t)

∆t

+ lim
∆t⟶0

Pi(t, x + ∆t) − Pi(t, x)

∆t

� − lim
∆t⟶0

Pi(t, x)μi(x) + lim
∆t⟶0

o(∆t)

∆t
,⇒

zPi(t, x)

zt
+

zPi(t, x)

zx
� − μi(x)Pi(t, x).

(12)

Te boundary conditions and initial conditions of the
system are discussed below [20].

Because P2(t, 0) represents the probability that the
system just enters the state 2 at t, that is, the probability that
the system just leaves the state 1 at t, i.e.,

P2(t + ∆t, 0)∆t � λP1(t)∆t + o(∆t). (13)

From formula (13) and the defnition of derivative,

P2(t + ∆t, 0)∆t

∆t
�
λP1(t)∆t

∆t
+

o(∆t)

∆t
,⇒

lim
∆t⟶0

P2(t + ∆t, 0) � lim
∆t⟶0

λP1(t) + lim
∆t⟶0

o(∆t)

∆t
,⇒

P2(t, 0) � λP1(t).

(14)

In addition, P3(t, 0) represents the probability that the
system just enters state 3 at t, that is, the probability that the
system just leaves state 0 or state 1 at t, i.e.,

P3(t + ∆t, 0)∆t � λs P0(t) + P1(t) ∆t + o(∆t). (15)

From formula (15) and the defnition of derivative

P3(t + ∆t, 0)∆t

∆t
�
λs P0(t) + P1(t) ∆t

∆t
+

o(∆t)

∆t
,⇒
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lim
∆t⟶0

P3(t + ∆t, 0) � lim
∆t⟶0

λs P0(t) + P1(t)  + lim
∆t⟶0

o(∆t)

∆t
,⇒

P3(t, 0) � λs 

1

i�0
Pi(t).

(16)

Assuming that time t � 0, both parts are good, that is, the
initial condition is

P0(0) � 1, P1(0) � Pc(0) � P2(0, x) � P3(0, x) � 0, x≥ 0.

(17)

At this time, from probability analysis formulas (5) to
(17) [18, 19], the integro-diferential equations of the
mathematical model of the two-robot security system with
early warning function can be described in the Figure 1 are

dP0(t)

dt
� − λ + α + λc0 + λs( P0(t) + μP1(t) + μcPc(t) + 

3

i�2

∞

0
Pi(t, x)μi(x)dx, (18)

dP1(t)

dt
� − μ + λ + λc1 + λs( P1(t) + (λ + α)P0(t), (19)

dPc(t)

dt
� λc0P0(t) + λc1P1(t) − μcPc(t), (20)

zPi(t, x)

zx
+

zPi(t, x)

zt
� − μi(x)Pi(t, x), i � 2, 3, (21)

P2(t, 0) � λP1(t), P3(t, 0) � λs 

1

i�0
Pi(t), (22)

P0(0) � 1, P1(0) � Pc(0) � P2(0, x) � P3(0, x) � 0. (23)

3. Well-Posedness of the System Solution

Since the repairable robot system with early warning
function contains both integral and diferential, it is difcult
to directly deal with it. Terefore, it is necessary to perform
the necessary conversion before the reliability analysis [23].
In order to facilitate the subsequent discussion of the

adaptability of the system solution, the system equations
(18)–(23) are translated into an abstract Cauchy problem in
Banach space [24, 25]. For this defnition, make
b0 � λ + α + λc0 + λs, b1 � μ + λ + λc1 + λs.

Take state space

X ≔ P ∈ R3
× L

1
[0, +∞ 

2
‖P‖ � 

1

i�0
Pi


 + Pc


 + 

3

i�2
Pi(x)

����
����L1[0,+∞]

<∞
⎧⎨

⎩

⎫⎬

⎭, (24)

among which P � (P0, P1, Pc, P2(x), P3(x)). At this point, it
can be proved (X, ‖ · ‖) is a Banach space. Te following

operators A and B and their domains D(A), D(B) are de-
fned as follows:

6 Journal of Mathematics



D(A) � P ∈ X

d
dx

+ μi(x) Pi(x) ∈ L
1
[0, +∞), Pi(x)(i � 2, 3)

is a strictly succession function andmeets

P(0) � P0, P1, Pc, P2(0), P3(0)(  � P0, P1, Pc, λP1, λs 

1

i�0
Pi

⎛⎝ ⎞⎠



⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (25)

For P ∈ D(A), the range R(A) � AP | P ∈ D(A){ } of the
operator A is defned as follows:

AP � diag − b0, − b1, − μc, −
d
dx

+ μ2(x) ,

−
d
dx

+ μ3(x) P.

(26)

And for P ∈ X � D(B), the range
R(B) � BP | P ∈ D(B){ } of the operator B is defned as
follows:

BP �

0 μ μc 
∞

0
μ2(x)dx 

∞

0
μ3(x)dx

λ + α 0 0 0 0

λc0 λc1 0 0 0

0 0 0 0 0

0 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P0

P1

Pc

P2(x)

P3(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, D(B) � X, (27)

Terefore, the system equations (18)–(23) can be re-
written as an abstract Cauchy problem in Banach space:

dP(t, x)

dt
� (A + B)P(t, x), t≥ 0,

P(0, x)≜P
0

� (1, 0, 0, 0, 0)
T
,

P(t, x)≜ P0(t), P1(t), Pc(t), P2(t, x), P3(t, x)( 
T
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

Several lemmas are given below, which play a signifcant
part in describing the semigroup characteristics of system
operators.

Lemma 1 (see [26]). When c> 0, c ∈ ρ(A), have
‖(cI − A)− 1‖< 1/c.

Proof. For any y � (y0, y1, yc, y2(x), y3(x)) ∈ X, discuss
the equation (cI − A)P � y, which is equivalent to

c + bi( Pi � yi, (i � 0, 1),

c + b2( Pc � yc,

dPi(x)

dx
� − c + μi(x)( Pi(x) + yi(x), (i � 2, 3),

P2(0) � λP1, P3(0) � λsP0 + λsP1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

Terefore,
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Pi �
yi

c + bi

, (i � 0, 1),

Pc �
yc

c + b2
,

Pi(x) � Pi(0)e
− cx− 

x

0
μi(ξ)dξ

+ e
− cx− 

x

0
μi(ξ)dξ


x

0
e

cτ+ 
τ

0
μi(ξ)dξ

yi(τ)dτ, (i � 2, 3).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

So, from equations (29) and (30) and Fubini theorem, we
have

‖P‖ � 
1

i�0
Pi


 + Pc


 + 

3

i�2
Pi(x)

����
����L1[0,∞]

≤ 
1

i�0
Pi


 + Pc


 + 

3

i�2

∞

0
Pi(x)


dx 

� 

1

i�0
Pi


 + Pc


 + 

3

i�2
Pi(0) 

∞

0
e

− cx− 
x

0
μi(ξ)dξdx

+ 
∞

0
e

− cx− 
x

0
μi(ξ)dξdx 

x

0
e

cτ+ 
τ

0
μi(ξ)dξ

yi(τ)


dτ

� 
1

i�0
Pi


 + Pc


 + 

3

i�2
Pi(0) 

∞

0
e

− cx− 
x

0
μi(ξ)dξdx

+ 
∞

0
yi(τ)


e

cτ+ 
τ

0
μi(ξ)dξdτ 

∞

τ
e

− cx− 
x

0
μi(ξ)dξdx

≤ 
1

i�0
Pi


 + Pc


 + 

3

i�2
Pi(0) 

∞

0
e

− cxdx

+ 
∞

0
yi(τ)


e

cτdτ 
∞

τ
e

− cxdx

� 

1

i�0
Pi


 + Pc


 + 

3

i�2

1
c

Pi(0) +
1
c


∞

0
yi(τ)


dτ 

�
1

c + b0
y0


 +

1
c + b1

y1


 +
1

c + μc

yc


 +

λ
c

1
c + b1

y1




+
λs

c

1
c + b0

y0


 +
1

c + b1
y1


  +

1
c


∞

0
y2(τ)


dτ +

1
c


∞

0
y3(τ)


dτ

<
1
c

y0


 + y1


 + yc


 + y2

����
����L1[0,∞ + y3

����
����L1[0,∞  �

�
1
c

‖y‖.

(31)
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Among them, 
∞
0 e− cxdx � 1/c, e− cτ ≤ 1, c> 0, τ ∈

[0,∞) and since c> 0, (cI − A)− 1: X⟶X is a bounded
linear operator. c ∈ ρ(A) and ‖(cI − A)− 1‖< 1/c. □

Lemma 2 (see [27]). D(A) Dense in X.

Proof. Suppose Pi(t) ∈ C∞0 [0,∞) and there is a constant Ci,
so that for any t ∈ [0, Ci], there are Pi(t) � 0, (i � 2, 3).
Construct a set

L �
P(t) � P0, P1, Pc, P2(t), P3(t)(  ∣ Pi(t) ∈ C

∞
0 [0,∞), and there is a constantCi > 0,

makes for arbitrary t ∈ 0, Ci , always havePi(t) � 0, i � 2, 3.
 . (32)

At this time, using the knowledge of functional analysis,
it is not difcult to verify that L is dense in Banach space X.
Terefore, to verify that D(A) is dense in X, just prove D(A)

is dense in L. For this, take P � (P0, P1, Pc, P2(t), P3(t)) ∈ L;

then, for any i(i � 2, 3), there is a constant Ci > 0; when
x ∈ [0, Ci], there is alwaysPi(t) � 0, so when t ∈ [0, 2s],
0< 2s< min C1, C2 , there is always Pi(t) � 0, (i � 2, 3). Let

f
s
(0) � P0, P1, Pc, f

s
2(0), f

s
3(0)(  � P0, P1, Pc, λP1, λsP0 + λsP1( ,

f
s
(t) � P0, P1, Pc, f

s
2(t), f

s
3(t)(  � P0, P1, Pc, P2(t), P3(t)( .

(33)

Among them

f
s
i (t) �

f
s
i (0) 1 −

t

s
 

2
, t ∈ [0, s),

− μi(t − s)
2
(t − 2s)

2
, t ∈ [s, 2s),

Pi(t), t ∈ [2s,∞).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

i � 2, 3.

μi �
f

s
i (0) 

2s

0 μi(t)[1 − t/s]
2dx


2s

0 μi(t)(t − s)
2
(t − 2s)

2dt
, i � 2, 3.

(34)

At this point, it is easy to verify fs(t) ∈ D(A), and

P − f
s
(t)

����
���� � 

2

i�1

∞

0
Pi(t) − f

s
i (t)


dt

� 
3

i�2

2s

0
Pi(t) − f

s
i (t)


dt

� 

3

i�2


s

0
f

s
i (0)


 1 −

t

s
 

2
dt + 

2s

s
μi


(t − s)

2
(t − 2s)

2dt 

� 
3

i�2
− s 

s

0
f

s
i (0)


 1 −

t

s
 

2
d 1 −

t

s
  + 

2s

s
μi


(t − s)

2d
(t − 2s)

3

3
 

� 
3

i�2
−

s

3
f

s
i (0)


 1 −

t

s
 

3
|
s
0 − 

2s

s
μi


2(t − s)d

(t − 2s)
4

12
 

� 
3

i�2

s

3
f

s
i (0)


 − 2 μi



(t − s)(t − 2s)4

12



2s

s

+ 
2s

s
μi



(t − 2s)

4

6
d(t − s)⎛⎝ ⎞⎠

� 
3

i�2
f

s
i (0)



s

3
+ μi




s
5

30
 ⟶0, (s⟶0).

(35)
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Te above mentioned formula indicates that D(A) is
dense in L, so D(A) is dense in X. □

Lemma 3 (see [28]). Operator A + B creates positive C0
compressed hemigroup T(t).

Proof. We split the proof this theorem into three steps.
Te frst step is to verify that A + B creates C0

hemigroup T(t).
It can be verifed by the demi-closed operator theorem

that A is a closed linear operator; from the defnition of B
operator, B is a bounded linear operator, and

‖B‖≤max λ + α + λc0, λc1 + μ, μc, M . (36)

From the above mentioned proof and the Hille–Yosida
generation theorem, we know that the operator A creates
a C0 hemigroup, and then from the perturbation theorem of
the semigroup, the operator A + B creates a C0 hemigroup,
denoted as T(t).

Te second step is to verify that A + B creates a hemi-
group T(t) that is a positive C0 semigroup.

In fact, when yi(i � 0, 1, c, 2, 3) is a nonnegative vector, P
is a nonnegative vector, so (cI − A)− 1 is a positive operator.
At the same time, it is known from the meaning of B that B is
also a positive operator. Hence,

(cI − A − B)
− 1

� I − (cI − A)
− 1

B 
− 1

(cI − A)
− 1

. (37)

So, when c> max λ + α + λc0, λc1 + μ, μc, M , there
is‖(cI − A)− 1‖< 1, which [I − (cI − A)− 1B]− 1 exists and is
bounded because

I − (cI − A)
− 1

B 
− 1

� 
∞

k�0
(cI − A)

− 1
B 

k
. (38)

Terefore, [I − (cI − A)− 1B]− 1 is also a positive oper-
ator, so when c> max λ + α + λc0, λc1 + μ, μc, M ,
(cI − A − B)− 1 is a positive operator, so the semigroup T(t)

created by A + B is a positive C0 semigroup.
Te third step is to prove that A + B creates positive C0

compressed hemigroup T(t).
In fact, whatever P � (P0, P1, Pc, P2(t), P3(t)) ∈ D(A),

let

QP �
P0 

+

P0
,

P1 
+

P1
,

Pc 
+

Pc

,
P2(x) 

+

P2(x)
,

P3(x) 
+

P3(x)
 . (39)

Among them [Pi]
+ � max Pi, 0 , (i � 0, 1, c),

[Pi(x)]+ � max Pi(x), 0 , (i � 2, 3).
Terefore,

〈(A + B)P, QP〉 � − b0P0 + μP1 + μcPc + 
3

i�2

∞

0
Pi(x)μi(x)dx⎛⎝ ⎞⎠

P0 
+

P0

(λ + α)P0 − b1P1 
P1 

+

P1
+ λc0P0 + λc1P1 − μcPc( 

Pc 
+

Pc

− 
3

i�2

∞

0

dPi(x)

dx
+ μi(x)Pi(x) 

Pi(x) 
+

Pi(x)
dx

≤ − b0 P0 
+

+ μ P1 
+

+ μc Pc 
+

+ 
3

i�2

∞

0
μi(x) Pi(x) 

+dx

+(λ + α) P0 
+

− b1 P1 
+

+ λc0 P0 
+

+ λc1 P1 
+

− μc Pc 
+

+ 
3

i�2
Pi(0) 

+
− 

3

i�2

∞

0
μi(x) Pi(x) 

+dx

� − λ + α + λc0 + λs(  P0 
+

+ μ P1 
+

+ μc Pc 
+

+(λ + α) P0 
+

− μ + λ + λc1 + λs(  P1 
+

+ λc0 P0 
+

+ λc1 P1 
+

− μc Pc 
+

+ λ P1 
+

+ λs P0 
+

+ λs P1 
+

� 0.

(40)

Ten, A + B is a difusion operator. From the above
mentioned proof and Pillips theorem, A + B creates a posi-
tive contraction C0 hemigroup T(t). Terefore, by the
uniqueness theorem of a C0 hemigroup, T(t) is a positive
contraction C0 hemigroup.

Te well-posedness of the system solution is discussed
below; because the system equations (18)–(23) are complex
equations composed of diferential, partial diferential and
integral, it is difcult to solve them directly. Terefore, in
order to discuss the existence and uniqueness of the
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nonnegative solution of the system, system (18)–(23) is
converted into the form of convolution Volterra integral
equation. To this end, notation is introduced:

b0 � λ + α + λc0 + λs,

b1 � μ + λ + λc1 + λs

Pi(t, x) �
Pi(t, x), 0≤x≤ t, (i � 2, 3)

0, x> t.


Pi(t) �
Pi(t), t≥ 0,

0, t< 0.
 (i � 0, 1, c)

μi(x) �
μi(x), x≥ 0,

0, x< 0.
 (i � 2, 3)

(41)

For convenience, Pi(t, x), Pi(t), μi(x) is still represented
by Pi(t, x), Pi(t), μi(x) in the following system equations.
Pi(t, x) can be obtained from the partial diferential equa-
tions (21):

Pi(t, x) � Pi(t − x, 0)e
− 

x

0μi(ξ)dξ
, (i � 2, 3). (42)

First, substituting (42) into (18), then make t − x � τ as
a variable to obtain

dP0(t)

dt
� − b0P0(t) + μP1(t) + μcPc(t) + 

3

i�2

∞

0
Pi(t, x)μi(x)dx

� − b0P0(t) + μP1(t) + μcPc(t) + 
3

i�2


t

0
Pi(t − x, 0)e

− 
x

0
μi(ξ)dξμi(x)dx

� − b0P0(t) + μP1(t) + μcPc(t) + 
3

i�2


t

0
Pi(τ, 0)e

− 
t− τ

0
μi(ξ)dξμi(t − τ)dτ.

(43)

Since the initial condition P0(0) � 1, s − τ � v, P0(t) can
be obtained as follows:

P0(t) � P0(0)e
− 

t

0b0dx
+ e

− 
t

0b0dx


t

0
μP1(s)

+ μcPc(s) + 

3

i�2


s

0
Pi(τ, 0)e

− 
s− τ

0
μi(ξ)dξμi(s − τ)dτ⎤⎦e


s

0
b0dxds

� e
− b0t

+ 
t

0
μP1(s) + μcPc(s) + 

3

i�2


s

0
Pi(τ, 0)e

− 
s− τ

0
μi(ξ)dξμi(s − τ)dτ⎡⎣ ⎤⎦e

− b0(t− s)ds

� e
− b0t

+ μ
t

0
P1(s)e

− b0(t− s)ds + μc 
t

0
Pc(s)e

− b0(t− s)ds

+ 
3

i�2


t

0


s

0
Pi(τ, 0)e

− 
s− τ

0
μi(ξ)dξμi(s − τ)dτ e

− b0(t− s)ds
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� e
− b0t

+ 
t

0
μP1(s)e

− b0(t− s)ds + 
t

0
μcPc(s)e

− b0(t− s)ds

+ 
3

i�2


t

0
Pi(τ, 0)dτ 

t− τ

0
e

− b0(t− τ)
e

b0v− 
v

0
μi(ξ)dξμi(v)dv

� e
− b0t

+ 
t

0
μP1(τ)e

− b0(t− τ)dτ + 
t

0
μcPc(τ)e

− b0(t− τ)dτ

+ 
3

i�2


t

0
Pi(τ, 0)dτ 

t− τ

0
e

− b0(t− τ)
e

b0v− 
v

0
μi(ξ)dξμi(v)dv

� e
− b0t

+ 
t

0
k0μP1(τ)dτ + 

t

0
k0μcPc(τ)dτ + 

3

i�2


t

0
ki(t − τ)Pi(τ, 0)dτ.

(44)

Among them,

k0 � e
− b0(t− τ)

,

ki(t − τ) � 
t− τ

0
k0e

b0v− 
v

0
μi(ξ)dξμi(v)dv, i � 2, 3.

(45)

Similarly, P1(t) and Pc(t) can be solved by (19) and (20),
respectively:

P1(t) � P1(0)e
− 

t

0b1dx
+ e

− 
t

0b1dx


t

0
(λ + α)P0(τ)e

τ
0b1dxdτ

� 
t

0
e

− b1(t− τ)
(λ + α)P0(τ)dτ

� 
t

0
(λ + α)k1P0(τ)dτ.

(46)

Pc(t) � Pc(0)e
− 

t

0μcdx
+ e

− 
t

0μcdx


t

0
λc0P0(τ) + λc1P1(τ) e

τ
0μcdxdτ

� 
t

0
e

− μc(t− τ) λc0P0(τ) + λc1P1(τ) dτ

� 
t

0
λc0kcP0(τ)dτ + 

t

0
λc1kcP1(τ)dτ.

(47)

Among them,

k1 � e
− b1(t− τ)

, kc � e
− μc(t− τ)

. (48)

Substituting formulas (44) and (46) into formula (22),
respectively:

P2(t, 0) � λP1(t) � 
t

0
(λ + α)λk1P0(τ)dτ, (49)

P3(t, 0) � λsP0(t) + λsP1(t) � λse
− b0t

+ 
t

0
(λ + α)λsk1P0(τ)dτ + 

t

0
k0μλsP1(τ)dτ + 

t

0
k0μcλsPc(τ)dτ

+ 
3

i�2


t

0
λski(t − τ)Pi(τ, 0)dτ,

(50)
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Put expressions (44), (46), (47), (49), and (50) together to
form the convolution Volterra integral equations:

P0(t) � e
− b0t

+ 
t

0
k0μP1(τ)dτ + 

t

0
k0μcPc(τ)dτ + 

3

i�2


t

0
ki(t − τ)Pi(τ, 0)dτ,

P1(t) � 
t

0
(λ + α)k1P0(τ)dτ,

Pc(t) � 
t

0
λc0kcP0(τ)dτ + 

t

0
λc1kcP1(τ)dτ,

P2(t, 0) � λP1(t) � 
t

0
(λ + α)λk1P0(τ)dτ,

P3(t, 0) � λse
− b0t

+ 
t

0
(λ + α)λsk1P0(τ)dτ + 

t

0
k0μλsP1(τ)dτ

+ 
t

0
k0μcλsPc(τ)dτ + 

3

i�2


t

0
λski(t − τ)Pi(τ, 0)dτ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(51)

And write the Volterra integral equation in vector form

P(t) � f(t) + 
t

0
k(t − τ)P(τ)dτ. (52)

Among them,

P(t) � P0(t), P1(t), Pc(t), P2(t, 0), P3(t, 0)( 
T
,

f(t) � f0(t), f1(t), fc(t), f2(t, 0), f3(t, 0)( 
T

� e
− b0t

, 0, 0, 0, λse
− b0t

 ,

k(t − τ) �

0 μk0 μckc k2(t − τ) k3(t − τ)

(λ + α)k1 0 0 0 0

λc0kc λc1kc 0 0 0

(λ + α)λk1 0 0 0 0

(λ + α)λsk1 λsμk0 λsμck0 λsk2(t − τ) λsk3(t − τ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(53)

According to the above mentioned equation, the fol-
lowing theorem holds. □

Theorem 4. Te existence and uniqueness of nonnegative
solutions for the system (18)–(23) are a necessary and suf-
cient condition for the existence and uniqueness of non-
negative solutions for the Volterra integral equation (52).

For any T> 0, from the expressions of f(t) and k(t − τ),
each component fi(t)(i � 0, 1, c, 2, 3) of f(t) and each ki(t −

τ)(i � 2, 3) of k(t − τ) are nonnegative bounded functions,
according to documents [36, 37] the following theorem holds.

Theorem 5. TeVolterra integral equation (52) has a unique
nonnegative solution on C[0, T].

According to Teorem 5 and the specifc expression of the
solution of Pi(t, x)(i � 2, 3), we know that Pi(t, x)(i � 2, 3)

has a unique nonnegative solution on C[0, T]. So, the Vol-
terra integral (52) has a unique nonnegative solution on
C[0, T], that is, P(t) � (P0(t), P1(t), Pc(t), P2(t, 0),

P3(t, 0))T exists and is unique on C[0, T].
To sum up, the following theorem holds.

Theorem 6. Te system (18)–(23) has a unique nonnegative
solution on C[0, T].

Te main results of this paper and the well-posedness
conclusions of the system solution are given below.

Theorem 7 (see [29]). Abstract Cauchy problem has a sole
nonnegative solution P(t, x) which satisfes

‖P(t, ·)‖ � 1, T≥ 0. (54)
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Proof. From the above Lemmas 1–3, it can be seen that the
abstract Cauchy problem has a sole nonnegative solution
P(t, x) which satisfes P(t, x) � T(t)p(0) � T(t)

(1, 0, 0, 0, 0), also ‖T(t)‖ ≤ 1; therefore,

‖P(t, ·)‖ � ‖T(t)(1, 0, 0, 0, 0)‖≤ ‖(1, 0, 0, 0, 0)‖ � 1, t≥ 0.

(55)

At the same time, since Pi(t, x), (i � 2, 3) satisfes the
systemmodel, if ‖P(t, ·)‖ is regarded as time t function, there
are

d
dt

‖P(t, ·)‖ � 
1

i�0

d
dt

Pi(t)


 +
d
dt

Pc(t)




+ 

3

i�2

d
dt


∞

0
Pi(t, x)dx � 0.

(56)

Terefore, ‖P(t, ·)‖ � ‖P(0, ·)‖ � 1. □

Theorem 8 (see [30]). 0 is the simple eigenvalue of the
operator A + B.

Proof. Discuss the equation (A + B)P � 0, that is,

− b0P0 + μP1 + μcPc + 
3

i�2

∞

0
Pi(x)μi(x)dx � 0,

(λ + α)P0 − b1P1 � 0

λc0P0 + λc1P1 − μcPc � 0

dPi(x)

dx
+ μi(x)Pi(x) � 0, i � 2, 3,

P2(0) � λP1, P3(0) � λsP0 + λsP1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(57)

Solve the above equations to get

Pi(x) � Pi(0)e
− 

x

0
μi(τ)dτ

, i � 2, 3,

− b0P0 + μP1 + μcPc + 
3

i�2

∞

0
μi(x)Pi(0)e

− 
x

0
μi(τ)dτdx � 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(58)

Assume P0 > 0, from the system of equations (57) and
(58),

P1 �
λ + α

b1
 P0,

Pc �
λc0b1 + λλc1 + αλc1

μcb1
 P0,

P2(x) � λ
λ + α

b1
 e

− 
x

0
μ2(τ)dτ

P0,

P3(x) � λs

λ + α + b1

b1
 e

− 
x

0
μ3(τ)dτ

P0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(59)

It can be seen that, Pi(x) ∈ L1[0,∞), i � 2, 3, so P �

(P0, P1, Pc, P2(x), P3(x)) is the eigenvector of 0 eigenvalue
corresponding to the operator A + B.

Take Q � (1, 1, 1, 1, 1), then we have
〈P, Q〉 � 

1
i�0Pi + Pc + 

3
i�2 
∞
0 Pi(x)dx> 0. For arbitrary,

P ∈ D(A + B) have 〈(A + B)P, Q〉 � 0; thus, 0 is the simple
eigenvalue of A + B. □

4. Reliability of the System Solution

Te reliability of the system is one of the signifcant contents of
the repairable system model. In the above system (18)–(23),
because the size of P0(t) indicates the probability that both
robots are in good condition and can work normally at t � 0,
the larger the P0(t) is, the closer the system is to working
properly; therefore, the size of P0(t) determines the probability
that the system will work properly and thus gets one of the
important factors afecting the reliability of the system.

So as to discuss the reliability of the system, several
defnitions are given at frst.

Defnition 9. P0(t) is called the transient reliability of system
(18)–(23).

Defnition 10. If limt⟶0P0(t) � P∗0 exists, then P∗0 is called
the stable-state reliability of the system (18)–(23).

Defnition 11. If P0(t)≥P∗0 , the system is said to be
reliable [31].

Theorem 12. Te system (18)–(23) has a time-dependent
asymptotically steady stable-state solution P∗(x), namely,
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lim
x⟶∞

P(t, ·) � P
∗
(x) � P0, P1, Pc, P2(x), P3(x)( , (60)

where P∗(x) � (P0, P1, Pc, P2(x), P3(x)) is called the stable-
state solution of the system (18)–(23).

Theorem 13. When the fault quotiety and fx quotiety are
constants, the system (18)–(23) has reliability.

Proof. Let the fault quotiety and fx quotiety be constants,
i.e.,

λ � λc0 � λc1 � λs � α � κ,

μ � μc � μ2(x) � μ3(x) � β.
(61)

Simultaneously let

d
dt


∞

0
Pi(t, x)dx � 

∞

0

zPi(t, x)

zt
dx, i � 2, 3,

Pi(t) � 
∞

0
Pi(t, x)dx, i � 2, 3.

(62)

Ten, the actual physical background of the system
(18)–(23) is 

3
i�0Pi(t) + Pc(t) � 1, which can be transformed

into formula (18):

dP0(t)

dt
� − 4κP0(t) + βP1(t) + βPc(t) + βP2(t) + βP3(t).

(63)

A system of ordinary diferential equations can be
converted from the upper system (18)–(23):

dP0(t)

dt
� − (4κ + β)P0(t) + β,

dP1(t)

dt
� − (3κ + β)P1(t) + 2κP0(t),

dPc(t)

dt
� κP0(t) + κP1(t) − βPc(t),

dP2(t)

dt
� κP1(t) − βP2(t),

dP3(t)

dt
� κP0(t) + κP1(t) − βP3(t),

P0(0) � 1, P1(0) � Pc(0) � P2(0) � P3(0) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(64)

At this point, if

P(t) � P0(t) P1(t) Pc(t)( 
T
,

b � β 0 0( 
T
,

A �

− (4κ + β) 0 0

2κ − (3κ + β) 0

κ κ − β

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(65)

Ten, the frst three equations of system (18)–(23) can be
converted into an abstract Cauchy problem:

dP(t)

dt
� AP(t) + b,

P(0) � 1 0 0( 
T
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(66)

Te solution of the system (66) is obtained by using
ordinary diferential equation theory and advanced algebra
knowledge, including the following four steps:

Step 1: Find all eigenvalues of matrix A

det(rE − A) �

r +(4κ + β) 0 0

− 2κ r +(3κ + β) 0

− κ − κ r + β





� 0.

(67)

Tat is, (r + 4κ + β)(r + 3κ + β)(r + β) � 0, then the
eigenvalues of the matrix A are r1 � − 4κ − β,

r2 � − 3κ − β, r3 � − β.
Step 2: Seek eAt, let

e
At

� q1(t)Q0 + q2(t)Q1 + q3(t)Q2. (68)

Among them,

Q0 � E, Q1 � − r1E − A( , Q2 � − r2E − A( Q1,

(69)

q1(t) � e
r1t

,

q2(t) � 
t

0
e

r2(t− s)
q1(s)ds,

q3(t) � 
t

0
e

r3(t− s)
q2(s)ds.

(70)

Substitute the formulas (69) and (70) into the formula
(68) and sort them out

e
At

�

e
− (4κ+β)t 0 0

e
2κt

e
− (3κ+β)t 0

e
κt

e
κt

e
− βt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (71)

Step 3: Find A− 1. From the knowledge of linear algebra,
it is easy to fnd the inverse matrix A− 1 of A, that is,

A
− 1

�

−
1

4κ + β
0 0

−
2κ

(4κ + β)(3κ + β)
−

1
3κ + β

0

−
κ(5κ + β)

(4κ + β)(3κ + β)β
−

κ
β(3κ + β)

−
1
β

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(72)
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Step 4: Finding the solution of the system (66), we have

P(t) � e


t

0
Adx


t

0
e

− 
τ
0Adξbdτ + P(0) 

� e
At

−
1
A


t

0
e

− Aτbd(− Aτ) + P(0) 

� e
At

P(0) − A
− 1

E − e
At

 b.

(73)

Substitute the above formulas eAt and A− 1 into the
formula (73) and sort them out

P(t) �

β
4κ + β

+
4κ

4κ + β
e

− (4κ+β)t

2κβ
(3κ + β)(4κ + β)

+
6κ

3κ + β
e

− (3κ+β)t
−

8κ
4κ + β

e
− (4κ+β)t

5κ2 + κβ
(3κ + β)(4κ + β)

−
2κ

3κ + β
e

− (3κ+β)t
+

κ
4κ + β

e
− (4κ+β)t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (74)

So, the transient reliability of the system (18)− (23) is

P0(t) �
β

4κ + β
+

4κ
4κ + β

e
− (4κ+β)t

, (75)

Tus, by defnition of 10, the stable-state reliability of
system (18)− (23) is

P
∗
0 � lim

t⟶∞
P0(t) �

β
4κ + β

, (76)

From the above mentioned discussion, it is obvious that
you can get P0(t)≥P∗0 , Terefore, according to the defni-
tion of 11, the system (18)–(23) is reliable. □

5. Controllability of System Zero State

Using the method of functional analysis to fnd a control
element μ∗ ∈ U, to study the controllability of P0(t), P0(t) in
the system model can be transferred to the specifed state in
a fnite time T(T> 0), and the allowable control set is se-
lected as follows:

U � μ(x)

μ(x) � μ2(x), μ3(x)(  ∈ L
∞

[0,∞) × L
∞

[0,∞), 0≤ μi(x)<∞

M � sup
x∈[0,∞

μi(x)<∞, 
∞

0
μi(x)dx �∞, i � 2, 3



⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (77)

Theorem 14. Let the failure rate λ � λc0 � λc1 � λs � α � κ,
the repair rate μ � μc � μ2(x) � μ3(x) � β, and let η be the
probability that the system reaches the desired state at fnite
time T(T> 0) and fts e− 4κT < η< 1, then there is μ∗ ∈ U such
that P0(T) � η.

Proof. By the formula of (75),

P0(T) �
β

4κ + β
+

4κ
4κ + β

e
− (4κ+β)T

. (78)

Considering P0(T) as a function of the variable β, we
derive

dP0(T)

dβ
�

4κ
(4κ + β)

2 −
4κ

(4κ + β)
2

× e
− (4κ+β)T

[1 + (4κ + β)T],

(79)

since

e
x >x + 1, x> 0, (80)

and therefore

e
(4κ+β)T > 1 + (4κ + β)T. (81)

Tus, we have
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dP0(T)

dβ
≥

4κ
(4κ + β)

2 −
4κ

(4κ + β)
2 × e

− (4κ+β)T
e

(4κ+β)T
� 0.

(82)

Tis formula shows that P0(T) is a monotonically in-
creasing function about the variable β, Note that
limβ⟶0P0(T) � e− 4κT, limβ⟶∞P0(T) � 1. Terefore, for any
η: e− 4κT < η< 1, according to the intermediate value theo-
rem, there is β∗ ∈ U, such that

P0(T) � η. (83)

Te above mentioned proves that the zero state P0(T) of
the system is controllable.

Teorem 14 indicates that the zero state P0(t) of the
system is controllable, in other words, the initial state P0(t)

of the system is controllable, but it does not mean that other
states of the system are controllable, that is, the conclusion of

controllability of the whole system is not necessarily derived
from zero-state controllability, Similarly, to prove that the
system is completely controllable, it is also necessary to
prove other states of the system, such as
P1(t), Pc(t), P2(t, x), P3(t, x), etc. are controllable. □

6. Numerical Simulation

According toTeorem 7, there is a unique nonnegative time-
dependent solution for the model of a repairable robot
system with early warning function. In addition, the re-
liability of the two-robot security system with the function of
early warning is discussed by using the theory andmethod of
ordinary diferential equation, On this basis, the control-
lability of the zero state of the system is proved by using the
method of functional analysis. Te following is a numerical
simulation of the above results by using the numerical
calculation method, which verifes the correctness of the
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Figure 2: Numerical solution of the system (18)–(23) (μ2(x) � μ3(x) � constant).
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Figure 3: Transient reliability and stable-state reliability of the system (18)–(23).
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results of the system reliability theory [32]. Assuming that
the system failure rate and repair rate are constants κ, β,
respectively, i.e.,

λ � λc0 � λc1 � λs � α � κ,

μ � μc � μ2(x) � μ3(x) � β.
(84)

To do this, as shown by the above proof of reliability
Teorem 13, the system is converted into an ordinary dif-
ferential equation system (64), solve the linear equations, we
have

P0(t) �
β

4κ + β
+

4κ
4κ + β

e
− (4κ+β)t

,

P1(t) �
2κβ

(3κ + β)(4κ + β)
+

6κ
3κ + β

e
− (3κ+β)t

−
8κ

4κ + β
e

− (4κ+β)t
,

Pc(t) �
5κ2 + κβ

(3κ + β)(4κ + β)
−

2κ
3κ + β

e
− (3κ+β)t

+
κ

4κ + β
e

− (4κ+β)t
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(85)

At this time, if κ � 0.3, β � 0.4, the numerical solution of
system (18)–(23) can be obtained by using Matlab mathe-
matical software, and the result is shown in Figure 2.

It can be seen from Figure 2 that the system equations
(18)–(23) has a time-dependent asymptotically steady stable-
state solution P∗(x), which is consistent with the conclusion
of the Teorem 12, at the same time, Teorem 12 indicates
that the system equations (18)–(23) is steady. It should be
pointed out here that the importance of the Teorem 12 lies
in that it not only proves the asymptotic stability [33] of the
solution of the system equations (18)− (23), but also proves
the existence of the stable-state solution P∗(x) of the system
related to the stable-state reliability P∗0 of the two-robot
safety system with early warning function.

In addition, by selecting κ � 0.1, 0.2, 0.25, β
� 0.25, 0.7, 0.95, respectively, the 3 groups of instantaneous
reliability P0(t) and stable-state reliability P∗0 of the system
equations (18)–(23) can be obtained by using MATLAB
software. For more intuitive comparison, put the charts of
P0(t) and P∗0 together. Te result is shown in Figure 3:

It can be seen from the Figure 3 that the transient re-
liability curves of the system equations (18)–(23) are all
above the stable-state reliability curves [34], when t⟶∞,
P0(t)⟶P∗0 can be obtained by mathematical limit analysis,
which is consistent with the reliability of the conclusion
system equations (18)–(23) of the Teorem 13. To some
extent, the above results show that the numerical method
can refect and depict that each state of the system tends to be
stable with the change of time, and the results are in line with
the actual situation of the robot security system.

7. Concluding Remarks

In this paper, the mathematical model of a two-robot safety
system with an early warning function is studied, the
semigroup characteristics of system operators are discussed
by using linear operator semigroup theory, and the well-
posedness of the solution of the system is proved. Under the

assumption that the fault quotiety and fx quotiety of the
system are constants, the early warning model equations are
converted into ordinary diferential equations, the transient
reliability and stable-state reliability of the system are ob-
tained, and the reliability and zero-state controllability of the
system are proved. Finally, the numerical solution of the
ordinary diferential equation set of (64) is obtained by using
Matlab mathematical software, and the graphs of the
transient reliability and stable-state reliability of the system
of equations (18)–(23) are simulated, which shows that the
results obtained by numerical calculation and numerical
simulation are consistent with the proof of the above
theory [35].

Te research on the repairable system model with an
early warning function is mainly carried out by qualitative
analysis, quantitative analysis, and the combination of
qualitative analysis and quantitative analysis. Most of the
existing literatures adopt qualitative analysis methods, but
few use quantitative analysis methods. And the application
of the qualitative analysis combined with the quantitative
analysis method in the repairable system model is rarely
reported in the repairable system model. First, the in-
novation of this paper is to combine the qualitative analysis
with the quantitative analysis method in order to perfect and
enrich the theory and method of repairable systems. Second,
in the early warning system, when the warning prompt is
invalid, the robot system model with an early warning
function approaches to a repairable system model without
an early warning function; the relationship between the early
warning system and the nonearly warning system should be
further studied, and the relationship between their steady-
state solutions should be discussed. Finally, when studying
the important indexes of system reliability, transient re-
liability, and steady-state reliability because of the relative
complexity of the solution of the system (66) model, this
paper uses the method of solving linear diferential equa-
tions with constant coefcients that satisfy initial conditions,
which is computationally complex. Whether the solution
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process can be simplifed by the methods of Laplace
transformation inversion, MATLAB mathematical software
coding and compiling, and so on remains to be further
studied.
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