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Let k>1 be an integer. In this study, we derive an asymptotic formula for the average number of representations of integers
n=p~+p+pd+ pl+ plin short intervals, where py, p,, ps, pa> Ps are prime numbers.

1. Introduction

Let N,ky,k,,...,k, be integers with 2<k; <k, < --- <k,.
The Waring-Goldbach problem for unlike powers of primes
concerns the representation of N as the form

n=py+ py e+ Pl (1)

is classical. These topics have attracted mathematicians’
attention.

In 1953, Prachar [1] considered the representation of N
as the form

n=pi+ps+ Pyt P (2)

and he obtained the exceptional set is O (N (log N)~ (B0r47)+ey.

This result has been improved by Bauer [2], Bauer [3], and
Zhao [4], and the latest result is O (N~ (/16)*€)_For general
k = 5, the best result was given by Hoffman and Yu [5] which
is O (N1~ (47/4202+€y ywhere s = [k + 1/2].

In 1961, Schwarz et al. [6] also considered the repre-
sentation of N as the form

n=pi+p;+ps+ph (3)

and they obtained the exceptional set is O (N (log N )~ 4) for
any fixed A>0. Later, Briidern [7] improved it to
o) (Nl— (1/8k2)+e)_

Recently, Feng and Ma [8] considered a special case,

n=p\+py+p3+py+ po (4)

with k>4. Let E(k, N) be the number of positive even in-
tegers n up to N which cannot be written in the form (4).
They established that E (k, N) < N~ here

(L k=4
24
ok) =1 =, k=5 5)
- 54) -
1
—, k=6,
L 9x
where
14
|:—k—20], k=6,7,
3
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G- 5D05] )
— = —|+1)|, k=8
3 213 3
Let

ry (n) = D

ok 5343 pdapd
n=py+py+p3tpytps

logp,logp,logpslogp,logps. (7)
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In this study, we want to reconsider the result of Feng
and Ma by studying the average behaviour of r (n) over
short intervals [N, N + P] and P = o(N).

Theorem 1. Let N 22,1<P<N, k >4 be integers. Then, for
every € >0, there exists C = C(€) 20, such that

NP _ T(UK)T (4/3)*
2, milm= KT (473 + 1/k)

/
o e exp( o Lo "
k logL ’

as N — oo, uniformly for N'=%/ 0+ < P<N'"€ and I is
Euler’s function.

1/3+1/k

n=N+1

(8)

Comparing the result in Feng and Ma, from Theorem 1 we
can say that, for N sufficiently large, every interval of size large
than N'~¥(0*¢ contains the expected amount of integers
which are a sum of one prime power and four prime cubes.

Assuming that the Riemann Hypothesis (RH) holds, we
can further improve the size of P.

Theorem 2. Let € >0,N 22,1<P< N, k >4 be integers and
assume the Riemann Hypothesis holds. Then, there exists
a suitable positive constant B such that

N+P TR (4/3)"
2, riln = KT (473 + 1/k)

1/3+1/k
n=N+1 (9)
+ Ok(PzNI/k—2/3 + P1/2N5/6+1/(2k)LB),

as N — oo, uniformly for oo (N'~VK[2B) < P<0o(N). Here,
f =00(g) means g = o(f) and I is Euler’s function.

The proofs of Theorems 1 and 2 use the original Har-
dy-Littlewood circle method and the strategies adopted in
the works of Languasco and Zaccagnini [9-11].

2. Preliminaries

In this study, we assume that N is a sufficiently large integer.
Let e(a) = e,z = 1/N — 2mia, L =log N and [>1 be an
integer,

S (@) = i A(n)e_”l/Ne(nl ),

n=1

o (10)
Vi(a) =Y (log ple ?Ne(pla).
p=2
We have
|z < min(N, |a|™"). (11)
We also set
p
Ul(a,P) = Z e(ma). (12)
m=1
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From Montgomery [12], p. 39, we have
|U (o, P)|< min(P; | ). (13)

Now, we need some lemmas as follows.

Lemma 3 ([11], Lemma 3]). LetI>1 be an integer. Then, we
have

IS (@) = 7, (a)| < NV, (14)

Lemma 4 ([10], Lemma 2]). Let N >2 be a sufficiently large
integer and 121 be an integer. Then,

L/ 1

sl(“):lzil/l—j

Y 2T (/) + 0y (1), (15)
e

where o = +iy runs over the nontrivial zeros of the
Riemann-zeta function {(s).

Lemma 5 ([7], Lemma 4]). Let y>0. Then,

1/2 u N e 1
,[—1/2 z Ye(-na)da = e F{l) + OH<;>, (16)

uniformly for n> 1.

Lemma 6 ([11], Lemma 1]). Let > 1 be an integer and € be
an arbitrarily small positive constant. Then, there exists
a positive constant ¢, = c, (€), which does not depend on I,

such that
. T (/D)7 Vi L \"
- N ] — )
J—E ‘Sl(oc) da <« exp| —¢; log L
(17)

1z

uniformly for 0< &< N0 Assuming RH holds we

obtain
. T (1/])
J—E ‘Sz () - Iz

2
da <, N2, (18)

uniformly for 0<&<1/2.

Lemma 7 ([9], Lemma 5]). Let I,k be integers with
I21,1<k<l. There exists a suitable positive constant
A = A(k,]), such that

12 k .

j 5 () da < NC-RILA

-1/2

2 2k (25-k)i A 12
J V(@) da <y N L

-1/2

Lemma 8 ([9], Lemma 6]). Letl>1 and 7> 0. Then, we have

' S (a)|'da <, (tN¥' + N V)NE,
1 1
. (20)
V,(a)|'da <, (1N + N*1)NE
1 1
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Lemma 9 ([9], Lemma 7]). Let [>2,c21 and N *<w<
N¥=1 We also let I(w) = [-1/2,-w] U [w, 1/2]. Then, we
have

_ d(x N4/l— 1+e
J 5[ <, ,
I(w) x| w
(21)
_ N4/l 1+€
J [V ()]
I(w)
3. Proof of Theorem 1
Let P> 2B with
1 N 1/3
B=exp|d o8 , (22)
loglogN

where d = d (€) > 0 will be chosen later. Recalling (7), we can
write

N+P 172 ~
Z e_n/Nrk (n) = J_l/z 7 (@), (0)*U (~a, P)e (~Na)da.

n=N+1
(23)

We find it also convenient to set

F(l/l)

E/(@) =S (@) - (24)

Let I(B,P) = [-1/2,—-B/P]U [B/P, 1/2], we can obtain

N+P

Z ein/Nrk (n)

n=N+1

4
_ J’B/P F(l/k)r(4/3) U _a’P)e(—NOC)da

mp kUK

B/P k
B/Prk(ll//k)<s3( ) _r(4/3) )U( o PlelNede

B/P
+J By (@5, (0)*U (<, Pe (—Na)dat
B/P
1/2
+J (oc) V3(oc) =55 ()")U (~a, P)e(-Na)da
1/2
. JI/Z

Sy () (V¢ (&) = S (@) )U (~a, Pe (~Na)dax
1/2

+ Sk(oc)S3(oc) U (-a, P)e(-Na)da

=F |+ F o+ Fy+ Fy+ Fs+ F
(25)

Now, we need to estimate these terms.

n/N _ ,-1

3.1. Estimate of #,. From the approximation e~ e+

O(PN™1), Lemma 5, and (11) we can obtain

N+P P

Z 3K onIN +Ok<*>
N

n=N+1

1/2 d(X
o[ e
B/Poc7/3+1/k

_ T(U/K)T(4/3)"
kT (4/3 + 1/k)e

3 P 4/3+1/k
+Ok(P2N”k 23 VKRS (E) .

T (1/k)T (4/3)*

g A
VT kT (4/3 + 1/k)

(26)

1/3+1/k

3.2. Estimate of %,. From the identity f*-g*=2g(f -
g)+ (f — g)% (24), and S, (a) < N'/3, we obtain

r(uk)(s (o _r(4/3))
3
z

k 1/k 4/3
k 2
rk(ll/,k)(sg() = )(22(4/3)&(@ E3<a>2)

I'(1/k) (= 2 4/3 7

E; (o) + S5 (a)’E; (o)

2r(4/3) B0+ r(4/3) TR (o ))

2 |E3 (“)I
1/3+1/k

|Es ("‘)|
| |1+1/k

< |S3( )| N2/3+1/klE3 (“)

|2
(27)
Using (11) and (27), we obtain

B/P 2| 5 (a )|

|S3( )| 2| da+P

1+1/k

BIP |E
972<<PJ j | 3(oc)|d
-B/P |Z|

+ PN2/3+1/k J |E3 ((X)| da

= P(&, +&,+ N"eg,),
(28)

By Lemma 6 we can obtain, for every € >0, there exists
¢, = ¢, >0 such that

3
& <<,<N_1/3 exp| —c L) .
’ "\logL

provided that B/P < N~ 1¥18-¢ j e P> BN1¥/18+¢ By (11) and
(29) and the Cauchy-Schwarz inequality we have, for every
€ >0, there exists ¢; = ¢, >0, such that

(29)
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BIP 5 \2/ (N raalk BP  du \?
&, <<k(JB/P|E3(a)| da) (J'UNN da+2J- Tz/k)

L
<, N1/3+1/kexp 4
2 \logL

provided that P > BN'¥1¥*¢ By Lemma 7, (11), (29), and the
Cauchy-Schwarz inequality we also have, for every € >0,
there exists ¢, = ¢, >0 such that

B/P 1/2
& < (JB/P |E3(a)|2dtx) <J

UN |af
(30)

)

~ 4 1/2
B/P |33 (“)l d
2/3+2/k o

-BIP|z|

BP RNCY T o NP e\
Sk (J—B/P B ()] da J—uz 5: (@) da .[—B/P |z|#/3+4/k

B/IP d
12 12 Al4 o
< %3/ N L/(J _

1/4
) (31)

_B/P |z|4/3+4/k

1/N BIP  (dg 1/4
<4 %;/2 NO/12p Al J N3k 4 o J et

~UN UN &

4 \logL

1/3
c L
<, %é/2N1/2+1/kLA/4 <, N3+ exp<— 1( ) >’

provided that P> BN'3/18+¢ Hence, by (28)-(31), we finally
obtain that for every e > 0, there exists ¢; = ¢, >0 such that

1/3
F, «, PNk exp( (L (32)
2k 4 \logL ’

12 o \V2/ (BP 5 5
Fi<y (J |S3(oc)| doc) (I |Ek(oc)| |U (a, P)| doc)
-1/2 -B/P

provided that P > BN'¥/18+¢,

3.3. Estimate of 5. Now, we estimate & ;. By (13), Lemmas
6 and 7, and the Cauchy-Schwarz inequality, we have, for
every € >0, there exists ¢; = ¢, >0 such that

172

5/6 1 Al2 BP = 2 v
< PN°L <J_B/P|Ek(oc)| doc) (33)

c L\
<4 PN1/3+1/k exp “1 ,
2 \logL
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provided that P> BN1~%(6k+e,

3.4. Estimate of & ,. From Lemma 3 and V, (a) <, Nk, we
have

Vi @(75 (0 =55 (@") < [V (@75 (@) = 5 @)] (|75 (@)] +[55 (@)])’

<, NYerk max<|\73 (oc)|3, IS; (oc)|3>.

Then, we have
1/6+1/k 172 = 3 = 3
F, < N J (172 @[+ @] U (- Plida
-1/2

— N1/6+1/k (]1 + ]2)
(35)
By (13), Lemmas 8, and 9, we have

P B d
J, < PJ 8 (@ da + j 5, (@[22
-1/P 1(1,P)

|t
» P 4 3/4
< P <<J IS5 ()| doc)
-1/P

~ do\ da\ V4 (36)
ve(]  B@S) <] =
[(LP) o] 1(1,p)|a

3/4
< P3/4N1/4+6+(HN1/3+6) L1/4

« pilAnLare
provided that P> N'3. Similarly, we have
Il < P3/4Nl/4+6. (37)
By (35)-(37), we have
F, < PNk (38)
4 >
provided that P> N3,

3.5. Estimate of % 5. By Lemmas 3, 8, 9, (13), and a partial
integration, we have

P Sl
F. <, PN”(Zk)J |s3(a)|“da+N”<2">j S @[y,
_up /ey ol
N2/3+e
<<k PNl/(Zk)( - + N1/3+€) +PN1/(2k)N1/3+€
<<k Nl/(Zk)(N2/3+€ +PN1/3+E),
(39)

provided that P> N3,

3.6. Estimate of . Clearly, by Lemma 9 and (13), we have

(34)

Bl

Fo Ly Nl/kj
18p o

(40)
£N1/3+1/k+€

>

<

provided that P> BN'3,

3.7. Completion of the Proof. Let k > 4. By (26)-(40) we can
obtain, for every € >0, there exists ¢, = ¢, (€) >0, such that

N+P

Z e—n/Nrk (n)

n=N+1

_ T (k)T (4/3)"
T kL (4/3 + 1/k)e

13
+ O, [ PNHE e 1 L L Ptk
k 4 \logL B ’

(41)

provided that P>BN'=%(0* We choose d = ¢, in (22).
Then, for every k >4, we have for every € >0, there exists
C =C(e) >0, such that

1/3+1/k

I\ip Ny (n) = T(UKT(4/3)* s

"~ kT (4/3 + 1/k)e

1/3
L
+Ok<PNl,3+1/kexp<_C<> ))
logL

(42)

provided that P> N'~¥(k+ We note that e™"N = ¢ 1+
O(P/N)forn € [N +1,N + P],1<P<N. Then, we have for
every € >0, there exists C = C(€) >0, such that

n=N+1

N+P T (KT (4/3)*  seuk
Z Ty (n) =

KT (4/3 + 1/k)

1/3
L
+Ok<PN1/3+1,kexp<_C(_> >>
logL

P N+P
+Ok<N > rk(”)>,

n=N+1

n=N+1

(43)



provided that P<N and P> N!"%©* for k>4, Using

e"N < e? and (41), the last error term is <  P2NVk=2/3 Thus,

P _ T(1/K)T (4/3)"
2, ri(m= kT (4/3 + 1/k)

v [ PNV exp( o L :
k P logL ’

(44)

1/3+1/k

n=N+1

uniformly for N!=%(Ft¢<p<N!'=¢ Now, Theorem 1
follows.

4. Proof of Theorem 2

Let k>4, P>2, and P = 0(N) be an integer. We recall that
we set L = log N for brevity. From now on we assume that
RH holds, we may write

N+P

Z e"Nr (n) =

n=N+1

JM/ 7, (@7, (0)*U (-a, P)e (~Na)da.
-1/2

(45)

In this conditional case, we can simplify the proof.
Recalling Lemma 4 and (24), we have

N+P

Z e—n/Nrk (f’l)
n=N+1
; 4
[ TN (e

_1 kz4/3+1/k

1/2
+J r(”k)<33( ) _r(4/3)

2 gk >U( o, P)e (~Na)da

12 |§3(oc)|

1
JZ < 171/2W|E3 (a)||U( (X,P)|d0(+ -[ .

+J eolBs @l U (a, P)lde
1/2

Tk
|z

=K+ Hy+ K.

Let

- B, (0]

U (-a, P)|da. (49)
Sz |z)VR U (=, Pldex

P |E 2
w<<PN1/kJ |E; ()] doc+2Pj [E; (@)] da+2
N
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+J By (@5, (0)*U (<, Pe (—Na)dat
J 7, (07 (@)* = 5, (@)*)U (e, P)e (-Na)da

J S, (@) (V. (@) = S (@))U (~a, P)e (~-Na)da
=F, + I, + I+ I+ s
(46)
Now, we can evaluate these terms.
4.1. Evaluation of .#,. Using Lemma 5, a direct calculation
gives

_T(URT(4/3)* Nip 34Uk =N Ok(P)

VKT (43+1/k) 42 N

_ T(U/RT4/3)" sk 2 1/k-2/3 1/3+1/k

i@ uie Y OPNTE N,
(47)

4.2. Evaluation of .%,. By (27), we have
(@)
0 Pl

(48)

Using Lemma 6, (13), and integration by parts, we have

1+1/k da

j”z |E, ((x)|2
1/P « (50)

1/k
“/

<4 PNl/k—2/3L +Pl/kN1/3L < Pl/kN1/3L
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Then, we have By the Cauchy-Schwarz inequality, (11), (13), and (50),

we have
Hy <, PYNI?. (51)

12 _ 1/2
mew ([ HERD,)

12 |z|2+1/k
" sk [N VP gy 112 4q \"2 (52)
<y'“( PN*" da +2P — —_—
_UN UN a2+l/k P o3+1k

<, U2+ (2K \g2I3+1/ (2K) [

By the Cauchy-Schwarz inequality, (11), (13), and (50),
we have

1/2 V4, 2 4
-1/2 o 8 |U(_OC,P)|
H, <y (Jm IS5 (a)] d“) (J ek 9%

-12 |z]

UN
< pl/(2k)N1/6LN5/12LA/4<P2N4/3+2/k J doc)

-1/N (53)

1/P 172
+2P° J 4gfz/k +2 J 10(/130iz/k
1/N « 1/P

<, pU2H (2K) \23+11(2K) [ 1+A/4

Summing up by (48)-(54), we have 4.3. Evaluation of #;. Using the Cauchy-Schwarz in-
7« pYAHUQER N2 QR LeAse (54) equality, (13), and Lemma 6, we can obtain
2 k bl

for every k>4.

1/2

12 o \2/ (v 5 5
Iy <, 15, (@) dar |Ei ()['IU (o, P)Pdx
-172 -172

up 2 da\ 2 (55)
< N5/6LA/2<P2 Jiw |Ey (@) dac + 2 JUP By () “)

o?

< . P1/2N5/6+1/(2k)L1+A/2.

4.4. Evaluation of 7. Clearly, %, = &%, of Section 3.4. So,  4.5. Evaluation of 7. Clearly, #5 = %5 of Section 3.5. So,
we can obtain we can obtain

J4 <<k P3/4N5/12+1/k+6, (56) js <<k Nl/(Zk)(N2/3+e +PN1/3+€), (57)

provided that P> N3, provided that P> N3,



4.6. Completion of the Proof. By (46) and (47) and (54)-(57),
there exist B = B(A) such that for P> N3,

N T(URT(4/3)" sk
2 ") = i vk
n=N+1 ( + )e
+ Ok(PZN”k’ZB + P1/2N5/6+1/(2k)LB)’
(58)
which is an asymptotic formula for

00 (N Vk[2BYy < P<o(N). From e "N = ¢! + O(P/N) for
ne [N+1,N+P] and 1<P<N, we can obtain the
following:

1/3+1/k

NeP TR (4/3)"
IEACE kT (4/3 + 1/k)

n=N+1

+ Ok(PZNUk* 23 P1/2N5/6+1/(2k)LB) (59)

P N+P
+Ok<<ﬁ Z rk(n)>.

n=N+1

Using "N < e? and (58), the last error term is dominated
by all of the previous ones. Thus, Theorem 2 follows.
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