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Tis article aims to investigate unifed versions of the well-knownHermite–Hadamard inequality by considering q-h-integrals and
properties of convex functions. Currently published results for q-integrals can be deduced from inequalities of this paper.
Moreover, some new results are presented in terms of corollaries.

1. Introduction

Real-valued functions satisfying inequality (1) have very
interesting properties. For example, they assure continuity
and left and right diferentiability in the interior of the
domains (for more details, see [1, 2]). Especially, in the
theory of mathematical inequalities, convex functions play
very vital role. Several discrete and integral inequalities can
be proven by analyzing properties of convex functions.

Defnition 1 (see [1]). Let a real-valued function g be defned
on the real line’s interval I. Ten g is called convex on I, if it
satisfes

g(zx +(1 − z)y)≤ zg(x) +(1 − z)g(y), (1)

for z ∈ [0, 1], x, y ∈ I.
Convex functions and related inequalities are very fre-

quently analyzed for new kinds of notions including frac-
tional derivative and integral operators. Applications of
convex functions are found in almost all felds of mathe-
matical analysis including statistics, optimization theory,
and economics. For more details, we refer the readers to

[3–6]. A geometric representation of a convex function
defned on real line is the well-known Hermite–Hadamard
inequality stated in the following theorem.

Theorem 2. Te function satisfying (1) holds the following
inequality:

g
x + y

2
 ≤

1
y − x


y

x
g(x)dx≤

g(x) + g(y)

2
. (2)

It states that the integral mean 
b

a
g(x)dx/b − a of

a convex function g over [a, b] lies in between value of
function g at arithmetic mean (AM a, b{ } ≔ a + b/2) of a, b

and the arithmetic mean (AM g(a), g(b)  ≔ g(a) +

g(b)/2) of values g(a) and g(b) of function g. Te following
theorem provides a generalization of the aforementioned
inequality by involving a function which is symmetric
about AM a, b{ }.

Theorem 3 (see [7]). Te upcoming inequality is valid under
the conditions of the aforementioned theorem, if p is sym-
metric about AM a, b{ }:
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b

a
p(x)dx g(AM a, b{ })≤ 

b

a
g(x)p(x)dx ≤ 

b

a
p(x)dxAM g(a), g(b) . (3)

Inequalities (2) and (3) were studied by many re-
searchers since their appearance in the literature of math-
ematical inequalities. For instance, for fractional-order
derivatives/integrals, one can see [8–10], while for quantum
derivatives/integrals, one can see [11–15].

In this paper, we aim to give Hermite–Hadamard in-
equalities for q-h-integrals defned in Defnition 9, see [16].
From these versions, we can get various types of q-Her-
mite–Hadamard inequalities. It is needful to give some
important defnitions and related results to elaborate the
motivation behind this article. Tese notions and results are
given in the forthcoming section.

2. Preliminaries

In this section, we give defnitions of q-, q-h-derivatives,
q-derivative on fnite intervals, q-defnite integrals,
q-h-derivatives on fnite intervals, and q-h-defnite integrals.
Also, some Hadamard type q-integral inequalities are given
from some recently published articles.

Defnition 4. Let g ∈ C(I), 0< q< 1. Te following
expression:

Dqg(x) �
g(qx) − g(x)

(q − 1)x
, (4)

is called q-derivative of g.

Defnition 5 (see [11]). Let g ∈ C(I), 0< q< 1, and h ∈ R.
Ten the q-h-derivative of g is defned by

ChDqg(x) �
hdqg(x)

hdqx
�

g(q(x + h)) − g(x)

(q − 1)x + qh
. (5)

For h � 0 in (5), we get (4), i.e.,
C0Dqg(x) � Dqg(x). (6)

Defnition 6 (see [13, 17]). Let g ∈ C[a, b]. Ten the fol-
lowing expressions:

aDqg(x) �
g(x) − g(qx +(1 − q)a)

(q − 1)(x − a)
, x≠ a,

bDqg(x) �
g(x) − g(qx +(1 − q)b)

(q − 1)(x − b)
, x≠ b,

(7)

are called qa-derivative and qb-derivative of g, respectively.
Also, aDqg(a) � limx⟶aaDqg(x) and bDqg(a) � limx⟶ab
Dqg(x).

Defnition 7 (see [13, 17]). Let g ∈ C[a, b]. Ten the qa- and
qb-defnite integrals are given by


x

a
g(t)adqt � (x − a)(1 − q) 

∞

n�0
q

n
g 1 − q

n
( a + q

n
x( ,


b

x
g(t)

b
dqt � (b − x)(1 − q) 

∞

n�0
q

n
g q

n
x + 1 − q

n
( b( ,

(8)

where x ∈ [a, b].

One can note that 
b

a
g(t)adqt � 

b

a
g(t)bdqt, when g is

symmetric about the line x � AM a, b{ }.

Defnition 8 (see [16]). Let f ∈ C[a, b]. For q ∈ (0, 1), the
qa− h-derivative of f at x ∈ [a, b] is defned by the expression

ChD
a
qf(x) �

f(x) − f(qx +(1 − q)a + qh)

(x − a)(1 − q) − qh
, x≠

a(1 − q) + qh

1 − q
≔ x°. (9)

Analogously, the qb− h-derivative of f at x ∈ [a, b] is
given by

ChD
b
qf(x) �

f(x) − f(qx +(1 − q)b + qh)

(1 − q)(x − b) − qh
, x≠

b(1 − q) + qh

1 − q
≔ y°. (10)
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Also, ChDa
qf(x°) � limx⟶x°

ChDa
qf(x) and ChDb

q

f(x°) � limx⟶y°
ChDb

qf(x).
Defnition 9 (see [16]). Let f ∈ C[a, b], 0< q< 1, and h ∈ R.
Ten the qa− h- and qb− h-integrals denoted by Ia

q− hf and
Ib

q− hf, respectively, are given by

I
a
q− hf(x) ≔ 

x

a
f(t)hd

a
qt

� ((x − a)(1 − q) + qh) 
∞

n�0
q

n
f q

n
x + 1 − q

n
( a + nq

n
h( , x> a,

I
b
q− hf(x) ≔ 

b

x
f(t)hd

b
qt

� ((b − x)(1 − q) + qh) 
∞

n�0
q

n
f q

n
x + 1 − q

n
( b + nq

n
h( , x< b.

(11)

Recent research [11] employing q-defnite integrals has
demonstrated the following q-H-H inequality for convex
functions.

Theorem 10. A diferentiable convex function f: [a, b]

⟶ R must satisfy the upcoming inequality for qa-integrals:

f
b + aq

1 + q
 ≤


b

a
f(x)d

a
qx

b − a
≤

qf(a) + f(b)

1 + q
. (12)

Theorem 11. Te upcoming inequality holds for qa-integrals
under the conditions of the aforementioned theorem:

f
a + bq

1 + q
  + f

′ a + bq

1 + q
 

(b − a)(1 − q)

1 + q
≤


b

a
f(x)d

a
qx

b − a
≤

qf(a) + f(b)

1 + q
. (13)

Theorem 12. A diferentiable convex function f on [a, b]

must satisfy the following qa-integral inequality:

f(AM a, b{ }) + f
′
(AM a, b{ })

(b − a)(1 − q)

2(1 + q)
≤


b

a
f(x)d

a
qx

b − a
≤

qf(a) + f(b)

1 + q
. (14)

In [13], the following q-H-H inequality for convex
functions was proved.

Theorem 13. A diferentiable convex function f on [a, b]

satisfes the upcoming inequality:

f
a + bq

1 + q
 ≤


b

a
f(x)d

b
qx

b − a
≤

f(a) + qf(b)

1 + q
. (15)

Te following example is needful for upcoming results.

Example 1. If f(x) � x, x ∈ [a, b] and 0< q< 1. Ten
Ia

q− h(f(x)), Ib
q− h(f(x)) are given by

I
a
q− h(f(x)) � 

x

a
f(x)dqx � ((x − a)(1 − q) + qh) 

∞

n�0
q

n
f q

n
x + 1 − q

n
( a + nq

n
h( 

� ((x − a)(1 − q) + qh)
x + aq

1 − q
2 + h 

∞

n�0
nq

2n⎛⎝ ⎞⎠
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� ((x − a)(1 − q) + qh)
x + aq

1 − q
2 +

hq
2

1 − q
2

 
2

⎛⎜⎝ ⎞⎟⎠,

I
b
q− h(f(x)) � 

b

x
f(x)dqx � ((b − x)(1 − q) + qh) 

∞

n�0
q

n
f q

n
x + 1 − q

n
( b + nq

n
h( 

� ((b − x)(1 − q) + qh)
x + bq

1 − q
2 + h 

∞

n�0
nq

2n⎛⎝ ⎞⎠

� ((b − x)(1 − q) + qh)
x + bq

1 − q
2 + +

hq
2

1 − q
2

 
2

⎛⎜⎝ ⎞⎟⎠.

(16)

3. Generalized q-h-H-H Inequalities

We establish generalized q-h-H-H type inequalities for
convex functions. In particular cases, a number of q-H-H
inequality versions are deducible. In the whole paper, we

consider S to be the sum of the series 
∞
n�0n q2n, that is,

S � hq2/(1 − q2)2.

Theorem 14. A convex function H: [a, b]⟶ R satisfes
the upcoming qa− h-integral inequality:

H
b + aq

1 + q
 

(x − a)(1 − q) + qh

1 − q
+ m((x − a)(1 − q) + qh)

x − b

1 − q
2 + Sh 

≤ 
x

a
H(x)hd

a
qx≤ ((x − a)(1 − q) + qh)

H(a)

1 − q
+
H(b) − H(a)

b − a

x − a

1 − q
2 + hS  .

(17)

Proof. It is given that H is convex function; therefore,
a tangent toH at any point must be line of support forH at
that point. Let f denotes the function which describes the line

of support to the function H at b + aq/1 + q. Ten in
equation form, we have

f(x) � H
b + aq

1 + q
  + m x −

b + aq

1 + q
 , m ∈ H−

′ b + aq

1 + q
 ,H+

′ b + aq

1 + q
  . (18)

Furthermore, f and H must satisfy the inequality
f(x)≤H(x), since g is a convex function. Hence, the
upcoming inequality holds.

H
b + aq

1 + q
  + m x −

b + aq

1 + q
 ≤H(x), x ∈ (a, b). (19)

Taking qa− h-integral on both sides, we get the upcoming
inequality:


x

a
H

b + aq

1 + q
  + m x −

b + aq

1 + q
  hd

a
qx≤ 

x

a
H(x)hd

a
qx.

(20)

From Example 1, one can see that


x

a
xhd

a
qx � ((x − a)(1 − q) + qh)

x + aq

1 − q
2 + hS , (21)

and


x

a
hd

a
qx �

(x − a)(1 − q) + qh

1 − q
. (22)

Te frst inequality of (17) can be obtained by using (21)
and (22) in (20).

For getting the other inequality of (17), we proceed as
follows. Te line passing through the points (a,H(a)) and
(b,H(b)) is defned by the function L:

L(x) � H(a) +
H(b) − H(a)

b − a
(x − a), (23)
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and it satisfes the inequality H(x)≤ L(x) for all x ∈ [a, b]

because g is convex on [a, b]. Terefore, we have

H(x)≤H(a) +
H(b) − H(a)

b − a
(x − a). (24)

Te following qa− h-integral inequality is obtained:


x

a
H(x)hd

a
qx≤ 

x

a
H(a) +

H(b) − H(a)

b − a
(x − a)  hd

a
qx.

(25)

Te second inequality of (17) can be found after some
computation.

Next, we provide a few implications of the aforemen-
tioned theorem. □

Corollary 1 . If, in addition, H is diferentiable in Teorem
14, then we have the following inequality:

H
b + aq

1 + q
 

(x − a)(1 − q) + qh

1 − q
+ H
′ b + aq

1 + q
 ((x − a)(1 − q) + qh)

x − b

1 − q
2 + Sh 

≤ 
x

a
H(x)hd

a
qx≤ ((x − a)(1 − q) + qh)

H(a)

1 − q
+
H(b) − H(a)

b − a

x − a

1 − q
2 + hS  .

(26)

Proof. Since H is diferentiable function, m � H′

(b + aq/1 + q). From inequality (17), one can
obtain (26). □

Corollary 16. If h � 0 in Teorem 14, we get the upcoming
inequality:

H
b + aq

1 + q
  + H

′ b + aq

1 + q
 

x − b

1 + q
≤


x

a
H(x)0d

a
qx

x − a

≤ H(a) +
(H(b) − H(a))(x − a)

(b − a)(1 + q)
 .

(27)

Remark 17. Under the assumption of aforementioned
theorem, one can get the following results:

(1) If x � b in (27), we get the inequality (12) stated in
Teorem 10. Further, if H is symmetric about
AM a, b{ }, inequality (27) holds for qb-integrals.

(2) If h � 0, x � b and q⟶ 1 in Teorem 14, one can
have inequality (2).

A generalization of the above theorem is given in the
following result.

Theorem 18. Additionally, if p is a nonnegative function, the
upcoming inequality for qa− h-integrals also holds under the
conditions of the aforementioned theorem:

H
b + aq

1 + q
  −

m(b + aq)

1 + q
  

x

a
p(x)d

a
qx + m 

x

a
xp(x)d

a
qx

≤ 
x

a
H(x)p(x)hd

a
qx≤

bH(a) − aH(b)

b − a
  

x

a
p(x)d

a
qx +

H(b) − H(a)

b − a


x

a
xp(x)d

a
qx.

(28)
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Proof. By multiplying inequality (19) with p(x) and then
taking qa− h-integral on both sides, one can get the frst
inequality of (28) after some simplifcations. Te second
inequality of (28) can be obtained in a similar way by using
inequality (24) instead of (19). □

Theorem 19. Inequality (29) holds for qa− h-integrals under
the same conditions of the above theorem:

H
a + bq

1 + q
 

(x − a)(1 − q) + qh

1 − q
+ H
′ a + bq

1 + q
 ((x − a)(1 − q) + qh)

·
(x − a) − q(b − a)

1 − q
2 + Sh ≤ 

x

a
H(x)hdqx≤ ((x − a)(1 − q) + qh)

×
H(a)

1 − q
+
H(b) − H(a)

b − a

x − a

1 − q
2 + hS  ,

(29)

provided H is diferentiable.

Proof. Te tangent line of function H at point a + bq/1 +

q ∈ (a, b) is defned by function T which satisfes the in-
equality T(x)≤H(x). Terefore, we have

H
a + bq

1 + q
  + H

′ a + bq

1 + q
  x −

a + bq

1 + q
 ≤H(x), (30)

for all x ∈ [a, b]. Taking qa − h-integral on both sides, we get
the upcoming inequality:


x

a
H

a + bq

1 + q
  + H

′ a + bq

1 + q
  x −

a + bq

1 + q
   hdqx≤ 

x

a
H(x)hdqx. (31)

By using (21) and (22), we get

H
a + bq

1 + q
 

(x − a)(1 − q) + qh

1 − q
+ H
′ a + bq

1 + q
  ((x − a)(1 − q) + qh)

x + aq

1 − q
2 + hS 

−
((x − a)(1 − q) + qh)

1 − q

a + bq

1 + q
≤ 

x

a
H(x)hdqx.

(32)

Te frst inequality of (29) is proved. Te second in-
equality can be proved on the same lines as in proof of
Teorem 14.

A few implications of the aforementioned theorem are
given as follows. □

Corollary 20. If h � 0 in Teorem 19, we get the upcoming
inequality:

H
a + bq

1 + q
  + H

′ a + bq

1 + q
 

x − a − q(b − a)

1 + q
≤


x

a
H(x)0d

a
qx

x − a

≤H(a) +
(H(b) − H(a))(x − a)

(b − a)(1 + q)
.

(33)
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Remark 21

(1) If x � b in (27), we get the inequality (13) stated in
Teorem 11. Further, if f is symmetric about
AM a, b{ }, inequality (33) holds for qb-integrals.

(2) If h � 0, x � b and q⟶ 1 in Teorem 14, one can
have inequality (2).

Theorem 22. Additionally, if p is a nonnegative function, the
upcoming inequality for qa− h-integrals also holds under the
conditions of Teorem 14:

H
a + bq

1 + q
  −

a + bq

1 + q
H
′ a + bq

1 + q
   

x

a
p(x)d

a
qx + H

′ a + bq

1 + q
  

x

a
xp(x)d

a
qx

≤ 
x

a
H(x)hp(x)d

a
qx≤

bH(a) − aH(b)

b − a
  

x

a
p(x)d

a
qx +

H(b) − H(a)

b − a


x

a
xp(x)d

a
qx,

(34)

provided H is diferentiable.

Proof. By multiplying inequality (30) with p(x) and then
taking qa− h-integral on both sides, one can get the frst
inequality of (34) after some simplifcations. Te second
inequality of (34) can be obtained in a similar way by using
inequality (24) instead of (30). □

Remark 23. It can be noted that for p(x) � 1, Teorem 22
provides Teorem 19.

Theorem 24. Te upcoming inequality holds under the
conditions of Teorem 14:

H(AM a, b{ })
(x − a)(1 − q) + qh

1 − q
+ H
′
(AM a, b{ })((x − a)(1 − q) + qh)

×
2x − (b − a)q − (b + a)

2 1 − q
2

 
+ Sh⎛⎝ ⎞⎠≤ 

x

a
H(x)hd

a
qx≤ ((x − a)(1 − q) + qh)

×
H(a)

1 − q
+
H(b) − H(a)

b − a

x − a

1 − q
2 + hS  ,

(35)

provided H is diferentiable.

Proof. Te tangent line of the functionH at point AM a, b{ }

of (a, b) is defned by the function T2 as follows:

T2(x) � H(AM a, b{ }) + H
′
(AM a, b{ })(x − AM a, b{ }).

(36)

It is given thatH is convex, and we have T2(x)≤H(x),
i.e.,

H(AM a, b{ }) + H
′
(AM a, b{ })(x − AM a, b{ })≤H(x),

(37)

for all x ∈ [a, b] from which the following qa − h-integral
inequality holds:


x

a
H(AM a, b{ }) + H

′
(AM a, b{ })(x − AM a, b{ })  hd

a
qx≤ 

b

a
H(x)hdqx. (38)

By using (21) and (22), we get the upcoming inequality:

Journal of Mathematics 7



H(AM a, b{ })
(x − a)(1 − q) + qh

1 − q
+ H
′
(AM a, b{ })

× ((x − a)(1 − q) + qh)
x + qa

1 − q
2 + hS 

− ((x − a)(1 − q) + qh)
a + b

2(1 − q)
≤ 

b

a
H(x)hdqx.

(39)

Te frst inequity of (35) is proved.Te second inequality
can be proved on the same lines as in proof of Teorem 14.

In the following, we provide a few implications of the
aforementioned theorem. □

Corollary 2 . If h � 0 in Teorem 24, we get the upcoming
inequality:

H(AM a, b{ }) + H
′
(AM a, b{ })

2x − q(b − a) − (b + a)

2(1 + q)
≤


x

a
H(x)0d

a
qx

x − a

≤H(a) +
(H(b) − H(a))(x − a)

(b − a)(1 + q)
.

(40)

Remark 26

(1) By setting x � b in (40), we get (14) as stated in
Teorem 12. Further, if f is symmetric about
AM a, b{ }, inequality (40) holds for qb-integrals.

(2) If h � 0, x � b and q⟶ 1 inTeorem 14, we get the
H-H inequality.

(3) It can be noted that for p(x) � 1, Teorem 18
provides Teorem 14.

4. Concluding Remarks

Hermite–Hadamard inequalities for convex functions using
q-h-integrals were proved. Inequalities for q-integrals
proved in [11, 13] were mentioned in particular cases. By
using defnitions and properties of diferent classes related to
convex functions, new inequalities can be established for
q-h-integrals. We are interested to explore further
q-h-integral versions of classical inequalities including Opial
inequality, Ostrowski inequality, and Grüss inequality.
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