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In this paper, we consider a portfolio optimization problem where the wealth consists of investing into a risky asset with a slow
mean-reverting volatility and receiving an uncontrollable stochastic cash fow under the exponential utility. Te Hamil-
ton–Jacobi–Bellman equation formulated from the optimal investment problem is a high-dimensional nonlinear partial dif-
ferential equation and difcult to fnd its analytical or numerical solutions. Te paper provides a tractable asymptotic approach
which treats the initial problem as a perturbation around the constant volatility problem. In this paper, we present a formal
derivation of asymptotic approximation and prove the accuracy of the value function. Moreover, an illustrative example is
provided to assess our approximate strategy and value function.

1. Introduction

Te problem of portfolio optimization in continuous time has
a long history dating from Merton’s seminal paper [1] which
provides explicit solutions for how best to allocate wealth
between a single risky asset modelled by Geometric Brownian
Motion and a riskless asset. Since then, this optimal portfolio
choice problem has attracted numerous studies [2–6] not only
in academia but also in the fnancial industry. Browne [2]
considered that the portfolio optimization problem is afected
by an uncontrollable stochastic cash fow or random risk
process. For instance, companies such as insurers or defned
beneft pension managers undertake to accept random un-
avoidable risks that they must match with returns [7, 8].

Te main goal of this paper is to study Browne’s in-
vestment model with a slow mean-reverting volatility. Tat
is, the coefcients of the risky asset are afected by a slow
random factor which is able to capture some of the well-
known features of volatility, such as the volatility smile and
skew in [9, 10]. Te asymptotic approach, in this paper, has
been developed in [11], where this method is used for linear
option pricing. Here, we provide some new results for the
nonlinear portfolio optimization problem with a random
risk process.

We assume the risky asset is defned asPt and its volatility σ
and growth rate μ are the functions of a slow factorZ.Te price
process of Pt and its volatility-driving factor Zt are given by

dPt � μ Zt( Ptdt + σ Zt( PtdW
(1)
t ,

dZt � δc Zt( dt +
�
δ

√
g Zt( dW(δ)

t ,
(1)

where the correlation of the standard Brownian motions
(W

(1)
t , W

(δ)
t ) satisfes

d〈W(1)
, W

(δ)〉t � ρ1dt, ρ1


< 1, (2)

and Zt is described as slow mean-reverting factor or slow
factor for short when δ goes to 0. Te more details of the
model and asymptotic calculation are presented in the
following sections.

Te novelties of this paper are described as follows. First,
the new portfolio optimization problem takes both an un-
controllable stochastic cash fow and a slow factor into
account. Second, compared with the results in Fouque et al.’s
paper [11], the asymptotic analysis is extended to a class of
nonlinear equation and the accuracy of the approximate
solution is proved. Tird, we analyze the feasibility of the
approximate strategy.
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Te rest of this paper is organized as follows. In Section 2,
we introduce the investment model with a random risk process
in a slowly varying stochastic environment. In Section 3, the frst
order approximate solutions of the value function and the
optimal strategy are provided. In Section 4, we prove the
theoretical accuracy of the frst order approximation to the value
function. Numerical experiments are conducted in Section 5 to
illustrate the tractability of the approximate solutions. Section 6
concludes and suggests directions of extension.

2. Reformulation of an Investment Model: Slow
Factor-Random Risk Process Situation

In this section, we formulate the investment model over
a fnite time horizon [0, T] and introduce the background in
the real world. Te dynamic processes of the risky asset Pt,
the slow factor Zt, and the random cash Yt are given by

dPt � μ Zt( Ptdt + σ Zt( PtdW
(1)
t ,

dZt � δc Zt( dt +
�
δ

√
g Zt( dW(δ)

t ,

dYt � αdt + βdW(2)
t ,

(3)

where μ, σ, c, and g are the functions of the slow factor Zt

and α and β are the constants. Te correlations of the
standard Brownian motions (W

(1)
t , W

(δ)
t , W

(2)
t ) on (Ω,F,

(F)t,P) satisfy

d〈W(1)
, W

(δ)〉t � ρ1dt, ρ1


< 1,

d〈W(1)
, W

(2)〉t � ρ2dt, ρ2


< 1,

d〈W(2)
, W

(δ)〉t � 0.

(4)

Te uninteresting case ρ22 � 1 is not considered where the
model we study is reduced to the classical Merton model [12].

Te total amount of money which the frm invest in the
risky asset is defned by ft. Assume ft is a suitable ad-
missible adapted control process, that is, ft is a non-
anticipative function that satisfes E

T

0 f2
t dt<∞. Te

wealth of the company is denoted by X
f
t which is given by

dXf
t �

ftdPt

Pt

+ dYt, X0 � x. (5)

Inserting (3) into (5), the wealth process is given by

dXt � ftμ(z) + α dt + ftσ(z)dW(1)
t + βdW(2)

t ,

dZt � δc Zt( dt +
�
δ

√
g Zt( dW(δ)

t ,
(6)

where the initial values are given by X0 � x and Z0 � z.
Te frm’s objective is to fnd a trading strategy that

maximizes expected utility conditioned on current value of x

and z: E U(XT) ∣ Xt � x, Zt � z . Tus, the value function
is defned as

V(t, x, z) � sup
f

E U XT(  ∣ Xt � x, Zt � z . (7)

Exponential utility is a concept in economics and fnance
that is used to model the preferences of individuals or in-
vestors when making decisions involving uncertain

outcomes or risks. It is particularly important in the feld of
decision theory, especially in situations where individuals
are making choices that involve uncertain future payofs,
such as investment decisions or decisions related to in-
surance. Exponential utility function U(x) is given by

U(x) � d −
l

r
e

− rx
, (8)

where d, l, and r are the positive constants and parameter r

represents constant absolute risk aversion. Exponential utility
function plays an important role in insurance mathematics
and actuarial practice due to the principle of zero utility under
which a fair premium is independent of the level of reserves of
an insurance company.

On the basis of the dynamic programming principle, the
HJB equation of value function V is formulated as

Vt + δMV +
1
2
β2Vxx + αVx + NL � 0,

V(T, x, z) � U(x), t ∈ [0, T], x ∈ R, z ∈ R,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

where the infnitesimal generator M is given as

M �
1
2
g
2
(z)

z
2

zz
2 + c(z)

z

zz
, (10)

and NL is given by

NL � max
f

1
2
σ2(z)f

2
t Vxx

+ ft ρ2σ(z)βVxx + μ(z)Vx +
�
δ

√
ρ1g(z)σ(z)Vxz .

(11)

3. ApproximateSolutionsofValueFunctionand
Optimal Strategy

Due to the difculty of fnding an explicit solution in (11), we
express the value function in terms of the solution of a linear
parabolic equation and perform an asymptotic analysis for
this linear parabolic equation.

3.1. Expansion of Value Function

Assumption 1. Before that, we make some assumptions as
follows:

(1) Zt � Z
(1)
δt

in distribution, where Z(1) has unique
invariant distribution ϕ which is independent of δ
and δ goes to 0

(2) Te value function V(t, x, z) satisfes the following
conditions: smooth on [0, T] × R+ × R, strictly in-
creasing, and strictly concave in x.

(3) Te coefcients μ(z) and σ(z) to be diferentiable
(4) Te value function V is the unique solution of the

HJB PDE (9)
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It is obvious that the “max” part of the HJB equation is
a quadratic function of f, and hence, the maximizer f∗ is
given by

f
∗
t � −

μ(z)

σ2(z)

Vx

Vxx
−

ρ2β
σ(z)

−
ρ1g(z)

�
δ

√

σ(z)

Vxz

Vxx
. (12)

Inserting f∗ into (9), we obtain the following PDE.

Vt + δMV +
1
2
β2Vxx + αVx −

1
2
σ2(z)Vxx

μ(z)

σ2(z)

Vx

Vxx
+

ρ2β
σ(z)

+

�
δ

√
ρ1g(z)

σ(z)

Vxz

Vxx
 

2

� 0,

V(T, x, z) � U(x), t ∈ [0, T], x ∈ R, z ∈ R.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(13)

Equation (13) is a nonlinear PDE where variables x, y,
and z are coupled, meaning changes in one variable afect
others. Tus, PDE (13) is not easily solved, either analytically
or numerically. When δ goes to zero, it is a regular per-
turbation and we construct an asymptotic approximation of
the solution which is originally introduced in [11].

Lemma 2. Under the assumptions listed above, the value
function V in (13) is given by

V(t, x, z) � d −
l

r
e

− rxφq
(t, z), (14)

where d,l, and r are positive, q � 1/1 − ρ21, and φ: [0, T] ×

R⟶ R+ solves the linear parabolic equation:

φt + δMφ +
1
2
β2r2

φ
q

− αr
φ
q

−
1
2
r
2θ2

φ
q

+
�
δ

√
ρ1grθφz � 0,

(15)

where θ(z) � ρ2β − (μ(z)/σ(z)r), M is defned in (10), and
the terminal condition φ(T, z) � 1.

Proof. Suggest that the value function is of the form

V(t, x, z) � d −
l

r
e

− rxφq
(t, z), (16)

where q � 1/1 − ρ21. Direct substitution in the HJB equation
(13) yields that φ solves

φt + δMφ +
1
2
β2r2

φ
q

− αr
φ
q

−
1
2
r
2θ2

φ
q

+
�
δ

√
ρ1grθφz � 0,

(17)

with terminal condition φ(T, z) � 1. □

Theorem  . Te value function V(t, x, z) in (13) can be
approximated by

V(t, x, z) ≈ V(t, x, z) ≔ V
(0)

(t, x, z) +
�
δ

√
V

(1)
(t, x, z),

(18)

where

V
(0)

(t, x, z) � d −
l

r
e

− rx
· φ(0)
 

q
, (19)

V
(1)

(t, x, z) �
l

2r
e

− rx
(T − t)

2ρ1r
3
g(z)θ(z)θ′(z) · φ(0)

 
q
,

(20)

φ(0)
(t, z) � exp

1
q

(T − t)
1
2
β2r2 − αr −

1
2
r
2θ2(z)  ,

(21)

θ(z) � ρ2β −
μ(z)

σ(z)r
, q �

1
1 − ρ21

. (22)

Proof. To obtain the approximate solution of the value
function V(t, x, z), we just need to analyze asymptotic
approximation of the new function φ.

First, we look for an expansion for the function φ in
power of

�
δ

√
:

φ(t, z) � φ(0)
(t, z) +

�
δ

√
φ(1)

(t, z) + δφ(2)
(t, z) · · · . (23)

Inserting this expansion into (15) and collecting the
order 1 terms lead to

φ(0)
t +

1
2
β2r2 − αr −

1
2
r
2θ2 

φ(0)

q
� 0, (24)

with the terminal condition φ(0)(T, z) � 1. It is obvious that
from (24), the explicit solution of φ(0)(T, z) is given by

φ(0)
(t, z) � exp

1
q

(T − t)
1
2
β2r2 − αr −

1
2
r
2θ2(z)  .

(25)

Taking the order
�
δ

√
terms after inserting the expansion

(23) into PDE (15) leads to

φ(1)
t +

1
2
β2r2 − αr −

1
2
r
2θ2 

φ(1)

q
� − ρ1rg(z)θ(z)φ(0)

z ,

(26)
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with zero terminal condition φ(1)(T, z) � 0. Trough (25),
φ(0)

z is given by

φ(0)
z (t, z) � − (T − t)

r
2θ(z)θ′(z)

q
φ(0)

(t, z). (27)

Inserting equation above into (26), we have

φ(1)
t +

1
2
β2r2 − αr −

1
2
r
2θ2 

φ(1)

q

� (T − t)
ρ1r

3
g(z)θ(z)θ′(z)

q
φ(0)

, φ(1)
(T, z) � 0.

(28)

From the linear PDE (28), we have the solution of
φ(1)(t, z):

φ(1)
(t, z) � −

1
2
(T − t)

2ρ1r
3
g(z)θ(z)θ′(z)

q
φ(0)

(t, z). (29)

Tus, the approximate solution of φ is given by

φ(t, z) ≈ φ(t, z) ≔ φ(0)
(t, z) +

�
δ

√
φ(1)

(t, z), (30)

where φ(0) and φ(1) are given in (25) and (29).
Second, through the approximate solution of φ in (30)

and value function (14), we have

V(t, x, z) ≈ d −
l

r
e

− rx φ(0)
+

�
δ

√
φ(1)

 
q

≈ d −
l

r
e

− rx φ(0)
 

q
+ q

�
δ

√
φ(1) φ(0)

 
q− 1

 

≈ d −
l

r
e

− rx 1 −
�
δ

√ 1
2
(T − t)

2ρ1r
3
g(z)θ(z)θ′(z)  · φ(0)

 
q

≔ V
(0)

(t, x, z) +
�
δ

√
V

(1)
(t, x, z)

≔ V(t, x, z),

(31)

where V(0)(t, x, z) and V(1)(t, x, z) are given by

V
(0)

(t, x, z) � d −
l

r
e

− rx
· φ(0)
 

q
,

V
(1)

(t, x, z) �
l

2r
e

− rx
(T − t)

2ρ1r
3
g(z)θ(z)θ′(z) · φ(0)

 
q
.

(32)

Te function θ(z) and parameter ρ are defned
by (22). □

3.2. Expansion of Optimal Portfolio

Theorem 4. Te optimal strategy f∗ in (12) can be ap-
proximated by

f
∗ ≈ f ≔ f

(0)
+

�
δ

√
f

(1)
, (33)

where f(0) and f(1) are given by

f
(0)

�
μ(z)

σ2(z)r
−

ρ2β
σ(z)

,

f
(1)

� −
ρ1g(z)

σ(z)
(T − t)rθ(z)θ′(z).

(34)

Te function θ(z) is defned by (22).

Proof. Inserting approximate solution of value function (18)
into (12) gives an approximation for f∗ which leads to an
approximate feedback policy of the form

f
∗

� f
(0)

+
�
δ

√
f

(1)
+ · · · , (35)

where f(0) and f(1) satisfy

f
(0)

� −
μ(z)

σ2(z)

V
(0)
x

V
(0)
xx

−
ρ2β
σ(z)

,

f
(1)

� −
μ(z)

σ2(z)

V
(1)
x

V
(0)
xx

−
V

(0)
x V

(1)
xx

V
(0)
xx 

2
⎛⎜⎝ ⎞⎟⎠ +

ρ1g(z)

σ(z)

V
(0)
xz

V
(0)
xx

.

(36)

Trough (25) and (32), we have

V
(0)
x

V
(0)
xx

� −
1
r
,

V
(0)
xz

V
(0)
xx

� − (T − t)rθ(z)θ′(z),

(37)

and
V

(1)
x

V
(0)
xx

−
V

(0)
x V

(1)
xx

V
(0)
xx 

2 � 0. (38)

Inserting equations (37) and (38) into (36), the ap-
proximate solution of f∗ satisfes (33).
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From these explicit expressions, we know the approximate
strategy f(0) +

�
δ

√
f(1) is independent of the initial price x.

Moreover, it can be seen that time to maturity comes to play
a role now, which is due to the fact that time matters when
fuctuation on slow time scale exists in the dynamics. □

4. Accuracy of Approximate Value Function

Now, for the investment model in the previous section, we
are going to prove the validity of our formal asymptotic of
the value function V. First, we prove the accuracy of the
approximate solution of linear PDE (15) which is a regular
perturbation problem of the type.

Assumption 5. Before that, we list here and comment on the
assumptions wemake on the class ofmodel we are considering.

(1) Te operator M is the infnitesimal generator of
a one dimensional difusion process admitting
moments of all order uniformly bounded in t<T

(2) μ(z)/σ(z) is bounded so that the difusion process Zt

has moments of all order uniformly bounded in δ for
t≤T

Lemma 6. Under the assumptions listed above, for fxed t<T

and z, there is a constant C such that for any δ≪ 1,

φ − φ(0)
−

�
δ

√
φ(1)



≤ δC. (39)

Proof. Te linear PDE (15) is rewritten as

δM +
�
δ

√
M1 + L φ � 0, φ(T, z) � 1, (40)

where M is defned in (10), and we defne

M1 � ρ1grθ
z

zz
,

L �
z

zt
−
β2r2 − 2αr − r

2θ2

2q
.

(41)

In previous section, we obtain the approximate solution
of φ:

φ ≈ φ(0)
(t, z) +

�
δ

√
φ(1)

(t, z). (42)

With this choice of functions φ(i), i � 0, 1, the following
equations are satisfed:

Lφ(0)
� 0, (43)

Lφ(1)
+ M1φ

(0)
� 0. (44)

Defning the residual,

R � φ − φ(0)
+

�
δ

√
φ(1)

 . (45)

From equations (40), (43), and (44), one obtains

δM +
�
δ

√
M1 + L R � − δMφ(0)

− δ3/2Mφ(1)
− δM1φ

(1)
� δSδ(t, z), (46)

where the source term Sδ(t, z) can simply be computed
using the equations for M, M1, φ(0), and φ(1). Using the
terminal condition in (40) and the terminal values for
φ(i), i � 0, 1, one obtains that the residual function R satisfes
the terminal condition:

R(T, z) � 0. (47)

Denoting by Zδ
t the difusion process with infnitesimal

generator δM +
�
δ

√
M1, the residual R, solution of PDE

problems (46) and (47) is given by the Feynman–Kac
formula:

R(t, z) � δE 
T

t
e

− (1/2q) 
s

t
β2r2 − 2αr − r

2θ2 Zu(  du
Sδ s, Z

δ
s ds ∣ Zδ

t � z

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (48)

Under our assumptions, one sees by direct computation
that Sδ is at most polynomially growing in z, and one obtains
|R(t, z)|≤ δC, where C is a constant, that is,

φ � φ(0)
(t, z) +

�
δ

√
φ(1)

(t, z) + O(δ). (49)
□

Theorem 7. Under the assumptions of Lemma 6, for fxed t,
x, and z, we obtain

V(t, x, z) � d −
l

r
e

− rx 1 −
�
δ

√ 1
2
(T − t)

2ρ1r
3
g(z)θ(z)θ′(z)  · φ(0)

 
q

+ O(δ). (50)
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Proof. According (14) and the result of Lemma 6, we have

V(t, x, z) � d −
l

r
e

− rx φ(0)
+

�
δ

√
φ(1)

+ O(δ) 
q

� d −
l

r
e

− rx φ(0)
 

q
+

�
δ

√
qφ(1) φ(0)

 
q− 1

+ O(δ) 

� d −
l

r
e

− rx 1 −
�
δ

√ 1
2
(T − t)

2ρ1r
3
g(z)θ(z)θ′(z)  · φ(0)

 
q

+ O(δ).

(51)

□
5. An Illustrative Example and
Numerical Computation

In this section, we consider the model adapted from [13] to
show the feasibility and accuracy of the asymptotic ap-
proximation method. For the convenience of calculation,
assume that the coefcients μ, σ, c, and g in equation (6) as

μ(z) � ρ2β − k1
�
z

√
,

σ(z) �
1
r
,

c(z) � m − z,

g(z) � k2
�
z

√
.

(52)

Ten, the model under consideration is

dXt � ft ρ2β − k1
�
z

√
(  + α dt +

ft

rdW(1)
t

+ βdW(2)
t ,

dZt � δ(m − z)dt +
�
δ

√
k2

�
z

√
( dW(δ)

t .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(53)

Te process Z is referred to as the “instantaneous pre-
cision” and the explicit solutions of value function and
optimal strategy are available. Te calculation here is
straightforward and follows the road map laid out in [13].
Te reduced linear PDE (15) for φ(t, z) with dynamics (53)
becomes

φt +
1
2
k
2
2δzφzz + δ(m − z) +

�
δ

√
ρ1rk1k2z φz +

1
2q

β2r2 − 2αr − r
2
k
2
1z φ � 0, (54)

with the terminal condition φ(T, z) � 1. A solution to this
reduced problem is

φ(t, z) � e
A(T− t)z+B(T− t)

, (55)

where the function A satisfes the Riccati ODE

A
′

�
1
2
k
2
2δA

2
+

�
δ

√
ρ1rk1k2A − δA −

1
2q

r
2
k
2
1, A(0) � 0,

(56)

where B′ � δmA + 1/2q(β2r2 − 2αr) with B(0) � 0. Assume
the quadratic term on the right hand side has two real roots,
which we denote by a±; then, we have

A(T − t) � a−

1 − e
− a(T− t)

1 − a− /a+( e
− a(T− t)

, (57)

where a is the square root of the discriminant of the qua-
dratic. Inserting equation above into B′ � δmA + 1/2q(β2r2
− 2αr), B(T − t) is given by

B(T − t) � δm a− (T − t) −
2
δk

2
2
log

1 − a− /a+( e
− a(T− t)

1 − a− /a+( 
   +

1
2q

(T − t) β2r2 − 2αr . (58)

Terefore, we fnd the exact formula for the value function.

V(t, x, z) � d −
l

r
e

− rx
· e

qA(T− t)z+qB(T− t)
. (59)

Te frst order approximate solutions of value function
V(t, x, z) and optimal strategyf(t, x, z) are given in equations

(18) and (33). With the exact and approximate formulas at
hand, we demonstrate the numerical accuracy of approximate
solutions of value function and optimal strategy. Combining the
data in [13], the parameters in Figure 1 are chosen as r � 0.75,
d � 0, l � 1, x � 0, m � 17.4345, ρ1 � 0.5241, ρ2 � 0.1,
k1 � 0.18, k2 � 0.3, β � 5, α � 1.5, z � 20.4345, and T � 2.
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In Figure 1, the exact and approximate solutions of value
function and optimal strategy are depicted over a range of
the scale parameter δ up to the value 0.4 which is to be
understood as monthly data. At that value of δ, the relative
error of value function is about one percent and that of
optimal strategy is about four percent, which show the
tractability of the approximate solutions. Furthermore, the
approximate solution presented in this article demonstrates
superior fnancial explanatory capabilities. For example,
through the approximated investment strategy (33), it be-
comes evident that as risk levels σ(z) increase, the allocation
of funds to risky assets decreases, while higher asset returns
μ(z) lead to a greater allocation of funds to risky assets.

Remark 8. Compared with the classical Merton model with
a slow factor in [12], the special model above contains
a random risk process. When the parameter β is zero, the
example in this section will reduce to the investment model
in [12].

6. Conclusion and Future Work

In this paper, we construct a portfolio optimization model
with a random risk process and a slow stochastic factor. We
provide approximate solutions of the value functionV(t, x, z)

and the optimal strategy f. Moreover, the accuracy of the
value function are proved in Section 4, and an illustrate
example is provided in Section 5.

Tere are a number of directions for us to extend and we
mention a few. First, consider more stochastic factors in our
portfolio optimization model, such as the fast mean-reverting
factor and delay factor in [5, 12]. Second, we can focus on
obtaining optimal investment strategies to minimize the
probability of ruin in [2], not to maximize utility of terminal
wealth. A third direction would be to predict asset returns,
that is, parameters μ(z) and σ(z) in our model through the
value of V(t, x, z) in the real world.
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